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Hydroelasticity of marine structures with and without forward speed is 
studied directly using time dependent Boundary Integral Equation Method 
with Neumann-Kelvin linearisation where the potential is considered as 
the impulsive velocity potential. The exciting and radiation hydrodynamic 
parameters are predicted in time with transient wave Green function whilst 
the structural analysis is solved with Euler-Bernoulli beam method at 
which modeshapes are defined analytically. The modal analysis is used to 
approximate the hydroelastic behaviour of the floating systems through 
fully coupling of the structural and hydrodynamic analyses. As it is 
expected, it is found with numerical experience that the effects of the rigid 
body modes are greater than elastic modes in the case of stiff structures. 
The predicted numerical results of the present in-house computational tool 
ITU-WAVE are compared with experimental results for validation purposes 
and show the acceptable agreements.   
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1. Introduction

The fluid-structure interactions of the floating system 
result in rigid or elastic motions which depend on the 
disturbance of pressure field around marine structures. 
If the effects of the rigid body modes  are greater than 
elastic modes, the contribution of elastic modes to the 
disturbance of the pressure field is not important which 
implicitly means that the floating system is a stiff structure 
and the structural and hydrodynamic analyses are weak-
ly coupled and two analyses can be done separately [1-3].
If the radiation field is affected significantly with the 
structural deformation, the hydroelastic analysis, which 
considers the fully coupling of the structural and hy-
drodynamic analysis, needs to be taken into account for 
the prediction of the motion of the floating systems [4-5].

 Hydroelasticity plays significant role especially for the 
high-speed crafts and larger marine vehicles. In the case 
of larger floating systems, the incident wave frequencies 
and natural frequency are closer to each other whilst the 
frequency range that results in the hull-girder vibrations 
approaches the encounter frequency of the high-speed 
crafts.     

The elastic deflection of the structures in air can be pre-
dicted accurately with modeshapes, however, in the case 
of floating systems, due to the effects of the radiation pres-
sure field the modeshapes need to be determined at current 
time and the elastic deformation of the floating structures 
may be predicted with the modeshape superpositions. The 
dry modeshapes in air can be used to predict the elastic 
deformation of the floating systems [1], alternatively, elas-
tic deflection in fluid may be represented with orthogonal 
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polynomials [4] or orthogonal beam of a uniform beam [6]. 
The rigid body modes are considered as the part of the 
elastic modes under the same boundary conditions in the 
hydroelastic analysis. It is expected that the effects of 
higher modes on elastic motions would not be significant 
as the interactions between the natural frequencies of the 
higher modes and incident wave frequencies would be 
weaker compared to those of lower modes.    

The frequency domain [1] or time domain [2-3, 5] methods 
may be used to predict the hydroelastic behaviour and 
analysis of the floating systems. Two-dimensional strip 
theory methods [7-8] are one of the options that may be used 
for the approximations of the hydrodynamic and hydro-
elastic parameters. However, the strip theory method has 
shortcomings at bow and stern regions of floating systems, 
global loads approximations, complex geometries, high 
forward speed, and low frequency ranges. These short-
comings of the strip theory methods could be overcome 
with the use of three-dimensional methods both in fre-
quency and time domains which include the interactions 
amongst panels automatically.  

The hydrodynamic parameters can be predicted with 
two popular numerical methods both in frequency and 
time domains including wave Green function [2, 9-10] and 
Rankine panel methods [11-12]. The wave Green function 
methods satisfy the condition at infinity and free surface 
boundary condition automatically which results in only 
discretisation of the body surface under mean water level 
to satisfy the body boundary condition. In the case of Ran-
kine panel method, both some part of the free surface and 
body surface under mean position need to be discretised 
to satisfy the condition at infinity and body boundary con-
dition respectively. in the context of linear analysis, the 
frequency and time domain results depend on each other 
via Fourier transform. The time domain methods are bet-
ter suited to predict the nonlinear cable forces, unsteady 
manoeuvring, motions with large amplitudes, and noncon-
stant forward speed compared to frequency domain meth-
ods.   

The finite element method with three-dimensional 
shell elements [12], two-dimensional plate elements using 
Kirchoff or Mindlin plates [2-3] or one-dimensional beam 
elements using Vlasov, Timoshenko and Euler-Bernoulli 
beams [1, 5, 13] are used to predict the hydroelastic behaviour 
of the floating systems including eigenvectors and eigen-
values. The body boundary conditions for elastic floating 
bodies, which include rigid body boundary conditions, are 
obtained [1, 4-5] through the extension of unified theory [14].

The fluid forces and velocities are predicted with 
potential three-dimensional formulation and transient 
wave Green function whilst the structural parameters are 

obtained with one-dimensional Euler-Bernoulli beam 
approximation in the present paper. The free stream is 
selected as a basis flow which results in the linearisation 
of the initial boundary value problem. The time dependent 
boundary integral equation is obtained using the three-di-
mensional transient wave Green function and Green 
theorem [2-3, 5, 15-21]. The present in-house ITU-WAVE 
computational numerical results are validated against the 
experimental results [22-23] which shows acceptable agree-
ments. 

2. Equation of Motion of Elastic Floating Sys-
tems

The body-f ixed Car tes ian coordinate  system 
 in Fig. 1 is used to represent the fluid be-

haviour around the elastic floating systems. The positive 
directions of x, y and z directions are defined with the 
positive direction of a right-hand coordinate system. The 
free surface is coincident with z=0 plane. The elastic 
floating body moves forward in positive x direction with 
forward speed U0 . The fluid domain in Fig. 1 is identified 
with boundary at infinity , boundary on free surface ,

boundary of body surface Sb(t) and interaction be-
tween free surface and body (t) [2, 15].   

Figure 1. Fluid boundaries and Coordinate system

It is assumed that the fluid is inviscid, incompressible 
and the flow of the fluid is irrotational. These assump-
tions result in the fluid velocities to be represented as the 
gradient of the velocity potential  and 
Laplace equation governs the fluid domain .
The time dependent equation of motions includes the in-
ertia term, elastic hydrostatic and hydrodynamic restoring 
coefficients which is represented with convolution integral 
and excitation force due to incident wave which is also 
represented with convolution integral [24].
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                                         (1)

Where j=1,2,3,…,K and the coefficients in Eq. (1) are 
given as

                               (2)

                           (3)

                        (4)

The displacement, velocity and acceleration of elastic 
floating system are given in Eq. (1) with , 
and  respectively. The structural mass matrix Eq. (2) 
where  is the part of the modeshapes ,
structural stiffness matrix Eq. (3), and hydrostatic restor-
ing force coefficients Eq. (4) are represented with Mjk ,
kjk , and Cjk respectively. The nondimensional stiffness 
parameter , which is the function of the hy-
drostatic restoring force and structural stiffness, is devel-
oped assuming the mass m per unit length and structural 
stiffness EI are uniformly distributed along longitudinal 
direction[25]. The nondimensional parameter S=0 is used 
for fully elastic structure whilst  is for fully rigid 
structures. The generalised modes with separation of vari-
ables are used to represent the total displacements of the 
elastic floating structures.

                            (5)

Where time dependent principal coordinates  
and modeshapes depending on spatial variables (x, y, 
z) are given with  and  respectively. The 
elastic modeshapes  include the rigid body 
modes such that  is used for heave mode whilst 

 is used for pitch mode.    

                                                (6)

                         (7)

                                           (8)

       (9)

The convolution integral at the left-hand side of Eq. (1) 
is the function of the radiation Impulse Response Func-
tions (IRFs) Kjk(t) and the velocity  of the elastic 
floating systems. This convolution integral represents 
the wave damping or hydrodynamic restoring force co-
efficients. The time dependent IRFs Kjk(t) represent the 
memory or free surface effect. The frequency and time 
independent infinite added mass, damping and restoring 
force related coefficients are given with akj, bjk, and cjk 
respectively. The time independent instantaneous fluid re-
sponse and the steady displacement of the elastic structure 
due to forward speed effect are given with  and  
respectively. The transient behaviour of elastic floating 
system due to free surface effect is considered with the 
time dependent potential xk(t) [26].

                                                      (10)

                                             (11)

     (12)

The convolution integral in the right-hand side of Eq. 
(1) is the function of the exciting IRFs KjD(t) and incident 
wave elevation  which is impulsive and defined at the 
centre of the fixed coordinate system with heading angle  

 in Fig. 1. The exciting IRFs KjD(t) have two compo-
nents; one of them is due to incident waves KjI(t) in Eq. (11) 
whilst the second one is due to the effects of the scattering 
waves KjS(t) in Eq. (12) respectively. The time dependent 
impulsive pressure is given with  whilst the scattering 
wave potential which results from the interactions of the 
incident waves with floating systems is given with  [10].     

3. Deflection of Elastic Floating Bodies

The bending moments and shear forces of elastic 
floating systems with three-dimensional finite element 
methods [2-3, 27] can be predicted with the free vibration 
of the marine structures defining the deformations with 
modeshapes. Free-free beam [6], Chebyshev and Legendre 
polynomials or Fourier series [4] could be also used to de-
termine the deformation of the elastic marine structures. 
Euler-Bernoulli beam theory with free-free beam modes 
and nondimensional coordinates , which sat-
isfy the boundary conditions of zero shear forces and 
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bending moments at the end points, is used in the present 
paper[6].  

                (13)

    (14)

Where nondimensional normalized coordinate 
 and mode index j = 1,2,3,…. As the rigid body 

modes are the part of the elastic modes, the first elastic 
mode is the heave rigid body mode u0(q)=1 whilst the sec-
ond elastic mode is the pitch rigid body mode u1(q)=-qL/2. 
The  vector represents the modeshapes in 
Eq. (13) and Eq. (14) in which the kj parameters are deter-
mined with Eq. (15).    

                              (15)
The free-free beam modeshapes of the elastic modes, 

which include the rigid modes of heave and pitch, are pre-
sented in Fig. 2.
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Figure 2. The first six free-free beam modes and the first 
six first derivatives of free-free beam modes which in-

clude the rigid body modes of heave and pitch

3.1 An Elastic Slender Barge for Hydroelastic 
Analysis

An elastic slender barge in head seas floating freely 
is used to predict the deformable modes which include 
heave and pitch rigid body modes. The elastic barge has 

zero speed with draft to beam ratio T/B=0.5 and length to 
beam ratio L/B=10. Total 516 panels are used to discretise 
the elastic barge including 3 panel in vertical direction, 6 
panels in transverse direction and 40 panels in longitudi-
nal direction as presented in Fig. 3. 

Figure 3. Total 516 panels are used with 3 panel in ver-
tical direction, 6 panels in transverse direction and 40 

panels in longitudinal direction

It is assumed that the structural stiffness and mass are 
distributed uniformly in longitudinal direction of the elas-
tic floating systems such that mass matrix with constant 
mass distribution [4] is given as 

    (16)

where the Kroenecker delta function and elastic beam’s 
total mass are given with  and M=mL respectively. The 
structural stiffness kjk with constant EI is given as 

                                                                                       (17)
where the modulus of elasticity and second moment of 

inertial are given with E and I respectively. The off-diago-
nal elements of the stiffness and mass matrices are zero as 
these matrices are symmetric.  

The deformable nondimensional radiation IRFs of 
elastic barge including 7,8,9,…,14 elastic modes are pre-
sented in Fig. 4 in which the area under each elastic mode 
represents the available energy for each mode. It may be 
noticed in Fig. 4 that available energy decreases with in-
creasing elastic mode numbers which implies that the ef-
fects of the higher elastic modes to the total displacements 
are not significant.   
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The time domain radiation IRFs Kjk(t) and frequency 
domain added-mass  and damping coefficients  

 in the context of linear analysis depend on each 
other through Fourier transform for each elastic mode as 
presented in Eq. (18) and (19).  

   (18)

                  (19)

Fourier transform of radiation IRFs Kjk(t) in Fig. 4 
is used to obtain the frequency dependent added-mass 

 and damping coefficients  in Fig. 5. As in 
the case of IRFs in Fig. 4, the same behaviour may be 
observed in Fig. 5 as the amplitude of the added-mass and 
damping coefficients are decreasing with the increasing 
mode numbers.
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Figure 5. The first 8 deformable modes of nondimension-
al added-mass and damping coefficients

The regular or irregular incident wave , which is 
defined at the centre of body-fixed coordinate system in 
Fig. 1, is used to excite the elastic floating systems whilst 
the time dependent incident wave potential  is 
known and analytically defined in Eq. 20.  

                                     (20)

Where the absolute frequency of the incident waves, 
encounter frequency, wave number in infinite water depth, 
incident wave heading angle and positions on the free sur-
face with respect to heading angle are given with ,

  and 

 respectively. 

Froude-Krylov IRFs, diffraction IRFs and excit-
ing IRFs which are obtained by the superposition of 
Froude-Krylov and diffraction IRFs are presented in Fig.6 
for the first three deformable modes including 7, 8 and 9 
modes. The area under these IRFs represent the available 
energy that would be absorbed by the elastic floating sys-
tems during the interactions of incident waves and elastic 
marine structures. 

As in the case of radiation analysis, the time dependent 
Froude-Krylov, diffraction and exciting IRFs are linked 
to frequency dependent Froude-Krylov, diffraction and 
exciting force amplitude and phase angles through Fourier 
transform as presented in Eq. (21).

         (21)

where the frequency dependent exciting force param-
eters in complex form are given with  in which 
the exciting force amplitudes including Froude-Krylov 
and diffraction are the absolute value of complex exciting 
force  whilst those of phase angles is the argu-
ments of . The frequency dependent exciting force 
amplitudes and phase angles in Fig. 7 are obtained via 
Fourier transform of time dependent IRFs in Fig. 6.    
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phase angles of elastic slender barge for the first 8 deform-

able modes including 7, 8 and 9 modes

Response Amplitude Operators (RAOs) or deflections 
of an elastic floating systems in frequency domain may be 
written as in Eq. (22).

                                    (22)

Where normalised coordinate in nondimensional form 

is given with . The , which is the function 
of the absolute wave frequency  and normalised coordi-
nates q, is the complex form of the elastic RAOs in which 
the absolute value is the amplitude of the response whilst 
the argument is the phase angle of the response. The non-
dimensional stiffness parameter S for fully rigid, hydro-
elastic effect significant, and fully flexible elastic slender 
barge are given with S=1, S=10-5, and S=0 for the first 
eight deformable elastic modes in Fig. 8.    

The effects of the deformable modes to the response 
of elastic slender barge in the case of fully rigid condition 
S=1 is not significant and almost zero whilst in the case of 
fully elastic condition S=0, the effects of elastic deform-
able modes to RAOs are considerable and significant. 

The RAOs, which are predicted using Eq. (22), at stern 
(-L/2), midship (0xL) and bow (L/2), are presented for 
different stiffness factor S. It may be noticed from Fig. 
9 that there are no differences with the results of S=10-1 
and rigid body motion whilst there are also no differences 
with those of stiffness parameter S=10-8 and S=0. It can be 
withdrawn from Fig. 9 results that the range of 10-8< S< 
10-2 has the significant hydroelastic effects.

It is known that the maximum response occurs when 
the elastic floating body length equals the incident wave-
length ( =0.785 rad/s). The RAOs and the superposition 
of RAOs are presented in Table 1 using eight deformable 
elastic modes in the case of nondimensional stiffness fac-
tor S = 10^-4 at the location of L/4 and L/2 (bow). The 
convergence up to three decimals are achieved with four 
elastic deformable modes as can be observed from Table 1.
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Table 1. RAOs and sum of 8 free-free beam loads at L/4 
and L/2 (bow) at the frequency with wavelength equals 

floating body length

Mode L/4 L/4-Sum L/2 L/2-Sum

7 0.077235 0.077235 0.778619 0.778619

8 0.062694 0.139929 0.107215 0.885834

9 0.003279 0.143209 0.005280 0.891114

10 0.000484 0.143693 0.001891 0.893005

11 0.000032 0.143725 0.000115 0.893120

12 0.000170 0.143894 0.000258 0.893378

13 0.000002 0.143897 0.000003 0.893382

14 0.000015 0.143912 0.000057 0.893439

The derivative of the shear force is used to obtain the 
load distribution Eq. (23) [5] 

                      (23)

where Fj is the unknown force coefficients. The first 
and the second integrations of Eq. (23) are used to deter-
mine the shear force and bending moment respectively. 
The equation of motion in Eq. (1) is used to determine the 
unknown force coefficient Fj in time domain with Eq. (24).

            (24)

and in the frequency domain with Eq. (25)

         (25)

Fig. 10 shows the shear forces as a function nondimen-
sional wave number at symmetric locations in longitudinal 
direction of the elastic slender barge.   
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Figure 10. Nondimensional shear force of elastic slender 
barge Eq. (23) with stiffness factor S=1 (completely rigid) 

and (-) is for aft of mid-ship, (+) for front of mid-ship

The shear force and bending moment are numerically 
tested to determine the effects of the hydroelasticity in 
Fig. 11 and 12 at which nondimensional shear force and 
bending moment are presented at the location of q=-L/4, 
q=0, and q=L/4 in arrange of stiffness factor S.

It can be observed from Fig. 11 that the bending mo-
ment and shear force decays to zero when the nondimen-
sional stiffness factor approach the fully flexible condition 
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Figure 11. Nondimensional shear forces of elastic slender barge Eq. (23) with a range of non-dimensional stiffness factor 
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of S=0. The effects of the hydroelasticity for elastic slen-
der barge play significant role at 10-8< S<10-2. 

3.1.1 Validation of ITU-WAVE Numerical Results 
with Experimental Results of a Flexible Barge

The experimental results [23] for vertical RAOs (deflec-
tion) at head seas and zero forward speed are used to val-
idate the in-house ITU-WAVE computational numerical 
results of the elastic barge in Fig. 1. The length L, length 
to draught ratio L/T, and length to beam ratio L/B, vertical 
bending stiffness EI of the elastic flexible barge are given 
with 2.445m, 20.375, 4.075, and 175 Nm2 respectively. 
The given length dimension and vertical bending stiffness 
results in the prediction of nondimensional stiffness factor 

 implying that hydroelastic effect 

is expected to be significant. Total 1080 elements are used 
to discretise the flexible barge with 5 elements in vertical 
direction, 10 elements in transverse direction, 49 elements 
in longitudinal direction whilst  is used for 
nondimensional time step size for ITU-WAVE numerical 
prediction. It can be seen from Fig. 13 that ITU-WAVE 
numerical results show acceptable level of agreement with 
the experimental results[23] for vertical deflection (RAOs). 

3.1.2 Validation of ITU-WAVE Numerical Tool 
with Experimental Results of a Stiff Wigley Hull 
Form

ITU-WAVE numerical results of heave and pitch 
RAOs, and bending moment and shear force are validated 
with experimental results[22] of Wigley hull form in Fig. 
14 with Fn=0.2, heading angle , length L=2.5m, 
length to draught ratio L/T=18, length to beam ratio L/
B=7.  

Figure 14. Total 648 panels is used to discretise Wigley 
form with 12 panels along the girth direction and 54 pan-

els in longitudinal direction

The convergence test results are presented in Fig. 15 
for heave and pitch IRFs. The convergence test is done 
both with respect to nondimensional time step (
=0.01, 0.03, 0.05) and panel numbers (64, 144, 225, 324, 
441). The nondimensional time step =0.05 and 
panel number 324 on half part of Wigley hull form due 
to symmetry are used for the numerical predictions of 
ITU-WAVE numerical results as the numerical results are 
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Figure 12. Nondimensional bending moments of elastic slender barge Eq. (23) in a range of nondimensional stiffness 
factor  

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8 9 10 11 12

RA
O

 -
m

id
sh

ip
 (0

L[
m

])

w (rad/sec)

0L[m] - Midship

Exp - Malenica et.al. (2003)
ITU-WAVE

  

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9 10

RA
O

 -
bo

w
(L

/2
[m

])

w (rad/sec)

L/2[m] - Bow

Exp - Malenica et.al. (2003)
ITU-WAVE

Figure 13. Vertical RAOs of flexible barge at mid-ship (0) and bow (L/2) with heading angle   , Fn=0.0 and 
stiffness factor  =1.99×10-4
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converged at these nondimensional time step and panel 
number.   
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Figure 15. Nondimensional radiation heave and pitch 
IRFs of Wigley hull form at Fn = 0.2

The convergence test is presented in Fig, 16 for ex-
citing heave and pitch IRFs and the numerical results of 
ITU-WAVE are converged with nondimensional time step 

=0.05 and panel number 324 on half part of Wigley 
hull form due to symmetry as in radiation convergence test. 
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Figure 16. Nondimensional exciting heave and pitch IRFs 
of Wigley hull form at Fn = 0.2 and 

The heave and pitch RAOs of ITU-WAVE numerical 
results at heading angle  are presented in Fig. 
17 together with experimental results [22] for comparison 
purpose which show satisfactory agreement. The numeri-
cal solution of the RAOs in Fig. 17 are obtained using the 
frequency domain coupled heave-pitch equation of motion 
[28]. The frequency domain radiation and exciting param-
eters for frequency domain equation motion are obtained 
with Fourier transform of IRFs of Fig. 15 and Fig. 16 for 
radiation and exciting IRFs respectively. 
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Figure 17. Heave and pitch RAOs of Wigley hull form at 
Fn = 0.2 and 

If the floating body does not deform much compared to 
rigid body motion, it can be considered as stiff structure 
implying that contribution of rigid body modes to the dis-
turbance of the pressure field is much greater compared 
o elastic deformable modes. In this case Eq. (24) and Eq. 
(25) can be modified to take only contribution of rigid 
body modes for unknown force coefficients as in present-
ed in Eq. (24a) and Eq. (25a) in which the summation 
boundary 2 is used for heave and pitch rigid body modes. 
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               (24a)

               (25a)

The shear force and bending moment of Wigley hull 
form at heading angle  and Froude number 
Fn=0.2 are presented in Fig. 18 in which the present ITU-
WAVE computational results are compared with the ex-
perimental results [22]. Eq. (25a) is used to obtain the force 
coefficients  which is then used for the prediction 
of the shear force and bending moment in Eq. (23).
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Figure 18. Shear force and bending moment of Wigley 
hull form at Froude number Fn = 0.2 and heading angle 

 using 8 free-free Euler-Bernoulli elastic beam 
modes

4. Conclusions 

The application of ITU-WAVE computational tool 
is extended to include the hydroelastic behaviour of the 
floating marine structures in the present paper. The hydro-
dynamic part is solved with a three-dimensional potential 
panel method whilst Euler Bernoulli beam analysis in 
which modeshap is defined analtically is used for the pre-
diction of the structural behaviour. 

A non-dimensional structural stiffness parameter 

 is used and depending on this stiffness pa-
rameter the hydroelastic effects of floating slender barge 
are studied for RAOs, bending moments, and shear forces. 
It is found out that the hydroelastic effects are dominant in 
the range of 10-8<S<10-2 for a slender barge. A Wigley hull 
form is then studied as a stiff structure in order to deter-
mine the effects of elastic modes due to rigid body modes 
only which are coupled with elastic modes. As opposite 
to the traditional approaches, the effects of the different 
incident wave lengths and geometry of floating bodies are 
taken into account for the prediction of bending moments 
and shear forces in the present study.     

Numerical results (including the added-mass and 
damping coefficients as well as the amplitudes of exciting 
forces and phase angles which can be obtained by Fourier 
transform of radiation and exciting IRFs respectively) 
were presented to demonstrate the convergence of the 
developed computer code for the radiation and exciting 
IRFs. The numerical predictions for heave and pitch 
RAOs, bending moment, and shear force at mid-ship of 
Wigley hull form are shown to be in satisfactory agree-
ment with the experimental results.

References

[1] Bishop, R.E.D, Price, W.G. Hydroelasticity of Ships. 
Cambridge University Press, 1979.

[2] Kara, F. Time Domain Hydrodynamics and Hydro-
elastic Analysis of Floating Bodies with Forward 
Speed. Ph.D. Thesis, University of Strathclyde in 
Glasgow, Scotland, UK, 2000.

[3] Kara, F., Vassalos, D. Hydroelastic Analysis of Can-
tilever Plate in Time Domain. Ocean Engineering, 
2007, 34, 122-132.

[4] Newman, J. N. Wave effect on deformable bodies. 
Applied Ocean Research, 1994, 16, 47-59.

[5] Kara, F. Time Domain Predictions of Hydroelasticity 
of Floating Bodies. Applied Ocean Research, 2015, 
51, 1-13.

[6] Gran, S. A Course in Ocean Engineering. Elsevier, 
Amsterdam, 1992.

[7] Korvin-Kroukovsky, B.V., Jacobs, W.R. Pitching and 
Heaving Motions of a Ship in Regular Waves. Trans-
action of the Society of Naval Architects and Marine 
Engineers, 1957, 65, 590-632.

[8] Salvensen, N., Tuck, E.O., Faltinsen, O. Ship Mo-
tions and Sea Loads Transactions of the Society of 
Naval Architects and Marine Engineers, 1970, 78, 
250-287.

[9] Liapis, S. Time Domain Analysis of Ship Motions. 
Report No. 302, The Department of Naval Archi-
tecture and Marine Engineering, The University of 

DOI: https://doi.org/10.36956/sms.v2i1.264



24

Sustainable Marine Structures | Volume 02 | Issue 01 | January 2020

Distributed under creative commons license 4.0

Michigan, Ann Arbor, Michigan, USA, 1985.
[10] King, B.W. Time Domain Analysis of Wave Exciting 

Forces on Ships and Bodies. Report No. 306, The 
Department of Naval Architecture and Marine En-
gineering, The University of Michigan, Ann Arbor, 
Michigan, USA, 1987.

[11] Nakos, D., Sclavounos, P.D. Ship Motions by a Three 
Dimensional Rankine Panel Method. Proceedings of 
the 18th Symposium on Naval Hydrodynamics, Ann 
Arbor, Michigan, 1990:21-41.

[12] Kim, K-H., Bang, J-S., Kim, J-H., Kim, Y., Kim, S-J., 
Kim Y. Fully coupled BEM-FEM analysis for ship 
hydroelasticity in waves. Marine Structures, 2013, 
33, 71-99.

[13] Xia, J., Wang, Z., Jensen, J.J. Nonlinear Wave Loads 
and Ship Responses by a Time Domain Strip Theory. 
Marine Structures, 1998, 11(3):101-123.

[14] Newman, J.N. The Theory of Ship Motions. Advanc-
es in Applied Mechanics, 1978, 18, 221-283.

[15] Kara, F. Multibody Interactions of Floating Bodies 
with Time Domains Predictions. Journal of Water-
way, Port, Coastal and Ocean Engineering, 2020, 146 
(5).

[16] Kara, F. Time Domain Prediction of Seakeeping Be-
haviour of Catamarans. International Shipbuilding 
Progress, 2016, 62 (3-4):161-187.

[17] Kara, F. Time Domain Prediction of Power Absorp-
tion from Ocean Waves with Wave Energy Convert-
ers Arrays. Renewable Energy, 2016, 92, 30-46.

[18] Kara, F. Time Domain Prediction of Added Re-
sistance of Ships. Journal of Ship Research, 2011, 
55(3):163-184.

[19] Kara, F. Time Domain Prediction of Power Absorp-
tion from Ocean Waves with Latching Control. Re-
newable Energy, 2010, 35, 423-434.

[20] Kara, F., Vassalos, D. Time Domain Computation of 
Wavemaking Resistance of Ships. Journal of Ship 
Research, 2005, 49 (2):144-158.

[21] Kara, F., Vassalos, D. Time Domain Prediction of 
Steady and Unsteady Marine Hydrodynamic Prob-
lem. International Shipbuilding Progress, 2003, 
50(4):317-332.

[22] Adegeest, L. Experimental investigation of the influ-
ence of bow flare and forward speed on the nonlinear 
vertical motions, bending moments and shear forces 
in extreme regular wave conditions. Laboratory of 
Ship Hydromechanics, Delft University of Technolo-
gy, Report Nr. 993, The Netherlands, 1994.

[23] Malenica, S., Molin, B., Remy, F., Senjanovic, I. 
Hydroelastic response of a barge to impulsive and 
non-impulsive wave loads. Hydroelasticity in Marine 
Technology, Oxford, UK, 2003:107-115.

[24] Cummins, W.E. The Impulse Response Function and 
Ship Motions. Shiffstechnik, 1962, 9, 101-109.

[25] Newman, J. N. Efficient hydrodynamic analysis of 
very large floating structures. Marine Structures, 
2005, 18, 169-180.

[26] Ogilvie, T.F. Recent Progress Toward the Under-
standing and Prediction of Ship Motions. Proceed-
ings of the 5th Symposium on Naval Hydrodynam-
ics, Office of Naval Research, Washington, D.C., 
1964:3-128.

[27] Bishop, R.E.D., Price, W.G., Y. Wu. A General Lin-
ear Hydroelasticity Theory of Floating Structures 
Moving in a Seaway. Philosophical Transactions of 
the Royal Society of London, Series A, 1986, 316, 
375-426.

[28] Lewis, E. V. Principles of Naval Architecture: vol-
ume III motions in waves and controllability, second 
revision, 1989.

DOI: https://doi.org/10.36956/sms.v2i1.264


