

 Vol. 6, No. 2 | July – December 2022

SJCMS | P-ISSN: 2520-0755| E-ISSN: 2522-3003 | Vol. 6 No. 2 July – December 2022

15

Collusion Detection using Predictive Functions based

on Android Applications

Asad Hameed Soomro1*, Samina Rajper1, Aurangzeb Magsi1*, Samar Abbas Mangi1,

Aneela Jan Soomro2

Abstract:
Android is used by most of the population of the users. It is an attractive target for malicious

application developers due to its open-source nature. A number of applications are developing

day by day for android devices to serve the purpose of data stealing activity. A collision attack

is one of the types of applications or programs used for data stealing from android devices.

During this attack, different apps communicate via Inter-Process Communication (IPC) for a

variety of purposes. In this paper, a dynamic approach is proposed for automatic collision

detection between communications among different applications. The focus of the study is on

the sharing of multiple data types. Moreover, to select applications for analysis is a difficult task

to perform and two predictive functions have been used in this regard. The evaluation is

performed on a dataset of 800 android applications for analyzing the colluding couples. The

developed methodology produces an accuracy of 97.2% during the experiments by the

developed system.

Keywords: Security, Android, Collision Detection, Formal Model, Predictive function

1. Introduction

According to surveys [1, 2], Android is an
open-source operating system that is
dominating the mobile market and ranks first
among mobile operating systems. There are
massive numbers of apps that are rapidly
growing. According to [3], there were over 3.3
million apps accessible in Google Play during
the first half of 2018, with millions more
available in unauthorized stores. Despite this,
the Apple app stores secure 2nd place among
mobile operating systems. Along with
applications there is a remarkable growth for
android operating system has also been
reported. It has been reported that most of the
applications compromise the users’
confidential data and stole or damage the data.
These are called malicious applications.
Likewise, most of the applications are over-
privileged and ask for a lot of permissions

1Department of Computer Science, Shah Abdul Latif University, Khairpur Mirs, Pakistan
2Computer Department, Government College for Women Khairpur Mirs, Pakistan

Corresponding Authors: aurangzeb.magsi.sef@gmail.com, asad.soomro31@yahoo.com

without any need for permission for the
execution of the application. These over-
privileged apps direct or indirectly access the
users’ data [4] and spread them into the sinks
(external sources).

For application environment
implementation, Android supports mobile
devices. It consists of the operating system, the
application charter, and the fundamental
functionality. The Android operating system is
built on the Linux kernel [5], which is used for
device drivers, memory management, process
monitoring, and networking. The next stage
comprises of Android built-in archives. These
archives are used by most of the higher-layer
libraries, which are developed in C/C++.
Integrating these archives in Android
applications is performed through Java built-in
interface. Run-time is an additional level,
covering the Dalvik simulated machine and the

mailto:aurangzeb.magsi.sef@gmail.com
mailto:asad.soomro31@yahoo.com

Collusion Detection using Predictive Functions based on Android Applications (pp. 15 - 26)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 6 No. 2 July – December 2022

16

primary archives. Dalvik runs .dex libraries are
considered to be further dense and memory-
efficient than Java class libraries. Through java
created primary libraries, Android-explicit
archives, and Java 5 SE suites give a large
subset. The Google-provided apparatus, as
well as trademarked extensions or services, are
included in the app structure layer, which was
written in Java. For installation, each software
is packaged in an.apk archive.

This package is similar to a standard Java
jar file in that it contains all of the app's non-
code and code attributes (such as images or
primary files). The Android software
development kit (SDK) provides APIs for
Android applications that are written in Java.
Applications like phones, browsers, email
clientst, and more are provided by the highest
application level. Android also implements a
permission mechanism for the security of the
application. Every application should ask for
permission that can be required in the Android
manifest file during the coding phase. During
the first execution of the app after installation
these permissions will be granted by the user
in order to use the full functionality of the
application.

This permission mechanism becomes
ineffective when more and more permission
APIs are executed. This has raised an alarming
issue because malicious writers write code to
perform specious actions when these
permission mechanisms become ineffective to
steal the sensitive data of the user [6, 7, 8].

With respect to this context, Collision
attack [9] which is called a new style has been
characterized by vicious developers. This type
of attack is characterized in such a manner that
the malicious actions are divided into several
apps that can be executed, for which the app
requires least permissions [10]. The existing
antimalware apps are unable to identify such
type of attack vectors because of its distributed
malicious payload [11]. This scenario can be
very clear in the statement: the first application
required permission to read private data for
providing it to the second app, which spread it
to the sinks (outsources). In this manner, only
read permission is required by the first
application and Internet access permission is

required by the second app to initiate attack
[10]. These colluding apps if analyzed
individually will not be identified by
antimalware to find malicious code, since the
impact will be performed by their collision
[12].

Most of the time applications are not
independent from each other in the Android
mechanism, the applications are connected
through Inter-Component Communication
(ICC). This functionality is provided by
Android to their developers to lighten the
coding burden and computing cost in the
applications by allowing inter-application
cooperation to exchange information among
components that may be of same application or
different applications [13]. On the other hand,
this functionality can also raise the issue that
this mechanism is being misused by malicious
developers to perform malicious actions for
different to steal users’ sensitive data for
different purposes [14].

By following these concepts, this paper
presents a tool for implementing a
methodology that analyzes Android
applications to detect collusion among apps by
using a new predictive function that is able to
minimize the number of the examined apps. To
define the function µ-calculus temporal logic
is used. The focus of the paper is on multi-
valued resources shared exploiting Android
SharedResources

The following is the paper's structure.
Section 2 offers a literature overview of prior
works, section 3 outlines the problem, section
4 defines the suggested method for collusion
detection in Android applications, and section
5 concludes with future research directions.

2. Literature Review

As an open-source platform, Android has a
stronghold on the mobile market, which has
seen rapid expansion in recent years. The
number of apps available to users has exploded
as well. In comparison to other operating
systems, [15] reveals that Google's Android
Operating System holds up to 91 percent of the
market. Furthermore, it offers a significant
effect value for Android-based products. The

Collusion Detection using Predictive Functions based on Android Applications (pp. 15 - 26)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 6 No. 2 July – December 2022

17

Android operating system protects users'
privacy by implementing a permission-based
approach that limits all apps' access to a user's
personal information. Each app requires a set
of rights, which the app developer determines
and the user accepts during the app installation
process [7, 16]. However, these permission
systems have become useless when malicious
applications are used to steal the sensitive data
of the user.

Different studies regarding android
malicious applications are reported. [6, 14]
Performed surveys in order to analyze the
footprints that lead to the collection of
sensitive data and to analyze the android
security approaches, respectively. Likewise, a
study was conducted in such a way to propose
a threat model that enlightens the existing
threats of the android operating system for
collecting sensitive resources [17]. In this
manner, an experiment was performed for
classification and feature extraction using
machine learning algorithms. Similarly, two
asymmetric methodologies to spot malicious
samples in android have been proposed in [18]
based on machine learning and model
checking. Evolution shows effective results by
both design methods and finds HummingBad
(a malware family) footprints in malicious
android applications. Moreover, a study to
measure the security-related issues was
conducted in [9] on the permission mechanism
of android. In this connection, defense
mechanism model name PBAD (Permission
Based attack defense) was proposed. The
proposed model first examines the application
interacting with each other in order to perform
malicious actions then-after, shelter the
permission-protected interfaces on the
innocuous applications. Another study was
reported that uses a runtime instrumented
testing environment that executes thousands of
android apps [7]. During testing the apps’
behavior for transmitting sensitive data over
the network by using unauthorized access was
analyzed. Then, reverse engineering was used
to reverse the activities of apps and to
determine the malicious actions evidence.

In the light of the above research, a study
was performed for measuring the effectiveness

of using the Android permission mechanism.
The novelty of the study was to analyze the
relationship between permission mechanisms
and users’ private data. Additionally, repeated
permissions were analyzed in the android
application, and users’ perspective to
understand the permissions was also discussed.
Additionally, some studies in users’ contexts
have also been reported [19, 20]. A user-
centric approach has been proposed in this
regard that allows end-users to customize the
requested app permissions on a per-feature
basis and some newly acquired responses
regarding users’ privacy settings that affect the
functionality of applications in contrast with
previous studies that were on the spotlight,
respectively.

Despite of all these different ways for
specious activities performed by malicious app
developers to steal sensitive data of the users,
a new footprints of a method have also been
found for performing spurious actions. This
method is called Inter-Component
Communication (ICC) / Inter-app
Communication (IAP) which executes
collision attacks and communication between
applications.

Followed by this statement, a static
approach for ICC/IAC was proposed in [21] to
analyze the flow of information from source to
sink. The study was based on android intent
sharing between different applications for
sharing of sensitive data. Presented tactic was
claimed as first automatic information flow
analysis of ICC/IAC that uses short summaries
instead of analyzing all tuples of apps. A
similar study was also performed to tackle the
security issue of android that uses reflective
methods [22]. The study was based on the
static examination of apps that communicate
for unauthentic purposes and perform specific
tasks. In this connection, an automated tool
called DroidRA was proposed that shows
effective statistical analysis on the dataset
during evolution for threat detection.

Likewise, a study to observe the
exploitability of prospective threats by
analyzing of implicit information flow (IIF)
has been discussed [23]. In this regard, switch-
transfer-based semantic analysis were applied.

Collusion Detection using Predictive Functions based on Android Applications (pp. 15 - 26)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 6 No. 2 July – December 2022

18

The result was effective and efficient using
proof-of-concepts for transmitting sensitive
data by avoiding state-of-the-art privacy
monitors. The study was summarized by
proposing a solution for defending against IIF
leveraging a special control dependence
tracking technique. Moreover, a permission-
centered study for secure information flow was
also performed [24]. The author proposed an
interpretation algorithm for primary security
type systems. The soundness of the study was
based on a feature that restricts that branching

brought by consent testing and allows more
specific security plans to be imposed. A
Mutation based analysis was also performed
by the MUTAFLOW prototype in [25]. The
prototype track the mutation changes
dynamically returned from sensitive resources
and is determined to outsource where data was
received. Then-after, the flow between the
source and destination was mechanized. The
prototype shows more effective results than
other existing tools and mechanisms.

Fig. 1. Collision between Applications using SharedResources

Collusion Detection using Predictive Functions based on Android Applications (pp. 15 - 26)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 6 No. 2 July – December 2022

19

Application collusion studies are
performed in variety of ways by other
researchers that uses the same attack vector
which non-other than collusion and detection
of these applications by using different
methods are increasing the accuracy but there
are a variety of gaps that still exists. The
current studies mostly performed static
approaches in order to analyze the application
which is insufficient. Moreover, analyzing
individual applications is not enough to find
the communication channel between different
applications. In this paper, a dynamic approach
has been proposed that is able to find the
coupling or communication channel between
applications.

3. Problem Statement

As “Fig 1” depicts the behavior of two
different applications A and B. After
installation and acceptance of policies, the
application is installed in the device as per the
desire of the end-user. After installation, the
individual installed applications can transmit
data through the same SharedResources name
i.e “Shared”. Subsequently, a hidden door will
be opened between applications for coupling
or communication purposes and at that point of
time multiple data values will be shared. The
next statement will make it clear: Two apps
can make a couple as App A sense the private
data from the users’ device that could be
transmitted to App B, which can be spread to
sinks. For this kind of action, the first app-only
entails consent to read the data, the other one
only needs the usage of an Internet connection
[10]. Because commercial antimalware
solutions examine all apps individually, they
will not be able to detect the threat or find the
mistakes, because the damage will be created
by their collusion [12]. In this study, a tool that
implements an approach for detecting
colluding android applications using predictive
functions is proposed. Precisely, the focus is on
multiple data type values exploiting Android
SharedResources.

4. Proposed Methodology

Initially, the stage entails defining a formal
model that will be utilized to create an android

application model. As a result, a general model
is defined that can verify all types of properties
on the system.

Starting from the bytecode, the formal
model is generated using the Calculus of
Communicating Systems (CCS) approach,
which replicates the actions of an application.
CSS is defined as follows using the Backus
Normal Form (BNF):

P ::=0 | a.P1 | A | P1 + P2 | P1| P2 | P1[b/a] |
P1\a

In the order listed above, the pieces of the
syntax are:

Inactive process:

The process a.P1 can perform an action a
and continue as the process P1.

Process identifier:

Write A≝P_1 to refer to the process P1
with the identifier A. (which may contain the
identifier A itself, i.e., recursive definitions are
allowed).

Choice:

The process P1 + P2 can be carried out as
either process P1 or the process P2.

Parallel composition:

P1| P2 indicates that processes P1 and P2
are active at the same time.

Renaming:

P1[b/a] is the process P1 with all a-named
actions renamed to b.

Restriction:

P1\a is the process P1 without action a.

An Android app, commonly known as
an.apk (Android Package), is a modified
version of the popular.jar archive file. This sort
of file contains the Dalvik Virtual Machine's
executable code, such as the .dex file, the
supply folder (icons, graphics, and sounds),
and the Manifest file. The.apk file, which
could be the first step, can be used to obtain
bytecode information. The following are the
steps that will be followed to obtain
Javabytecode via an apk file:

Collusion Detection using Predictive Functions based on Android Applications (pp. 15 - 26)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 6 No. 2 July – December 2022

20

• Mining the java class file and the
handbooks from the.jar file using the
Java Archive Tool utility2;

• Generation of the.jar file from the.apk
file using a device named dex2jar1;

• Creation of the Bytecode Android
application that summons the BCEL
(Byte Code Engineering Library3).

Following the acquisition of Java
Bytecode, the researchers created an
interpretation algorithm (see Mercaldo et al.,
2016). For each Java Bytecode line, the
algorithm can generate a CSS process. The
procedure then encrypts the coding and

characterizes the opcodes by encrypting the
steps it takes (i.e. the control flow among
multiple instructions).

4.1 Predictive Functions: PUT and

GET

Detecting the colluding apps is a very
difficult task to perform because the existing
tools present in the market are ineffective and
unable to find the coupling apps. There is a
huge amount of applications available in the
official and unofficial markets for the users and
this is the reason for the exponential growth of
examination costs.

Fig. 2. Proposed Methodology

Consider the number of apps n, to evaluate
n number of applications the system needs to
perform n2 tests, and n3 tests will be
performed for all the possible triples and so on
“Fig 2”. In this context, there is a solid need for
a method that reduces the search space from
the large dataset for colluding candidates and
analyzes the group of apps that can be selected
for collision detection.

The study presents two predictive
functions: Put and Get

The Put focused on the SharedResources
and analyzed each possible code route for
every read/write operation on an integer,
string, or float share resource. It will divide the
apps into groups based on how they use shared
resources.

Let's take a look at the Android code
sample below to see how SharedResources
work. It is an example of SharedResources
invocation; specifically, the code snippet
receives an integer value from the

SharedResources by using the getInt methods
(stored in the value1 variable).

The function of SharedResources can be
demonstrated by considering the piece of
Android code shown below: The invocation of
SharedResources has been mentioned as an
example, specifically, the piece of code is
invoked using getInt methods an Integer value
from the SharedResources (stored in the
sharing1 variable

1. SharedResources sharedResources =
this.

getSharedResources (SharedResources,

Context. WRITEABLE);

2. Int value1 =
sharedResources.getInt(sharing1

,defaultValue);

The second Android piece of code depicts the
SharedResources writing invocations.

Collusion Detection using Predictive Functions based on Android Applications (pp. 15 - 26)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 6 No. 2 July – December 2022

21

1. SharedResources sharedResources =
this.

getSharedResources(SharedResources,
Context

2. WRITEABLE);

3 SharedResources.Editor editor =
sharedResources.

edit();

4 editor.putInt (sharing1, “010”);

More precisely, the example shows that the
particulars of getInt method is kept in the
SharedResources. As mentioned in literature
[12], it is an easy task for multiple application
to share the private record only by
acknowledging the name of the
SharedResources (in the code snippets
SharedResources)

In general, two separate apps can perform
different operations on a shared resource (i.e
get and put actions).

To encode these actions, we use the μ-
calculus temporal logic, which states that each
proposition and variable is a formula, such as
if Φ is a formula and is a formula, then [a] Φ.
is a formula as well.

• If a process is capable of performing
the following sequence of activities, it
can perform a "put" on a shared
resource (Table 1 – Formula 1):
callgetSharedResources references,
calledit, callputInteger, callcommit;

• An app can do a "get" on a shared
resource if the process can perform the
following sequence of actions:
callgetSharedresources, callgetInteger
(Table 1 – Formula 2).

In the proposed methodology predictive
functions ‘Put’ and ‘Get’ are defined to detect
a couple of collusion applications in a short
time. These predictive functions will be able to
find the two multiple sets of applications which
will be examined. The first one will probably
that validate put property and the second one
will validate the get property.

Furthermore, the predictive functions will
reduce computing capacity by checking a
temporal logic formula in the CCS procedures
displaying the applications. The infinite
sequence behavior N0[Q0> N1[Q1> … N the
following infinite sequence behavior σ = ≪ N0
… Nn, Nn, … >> is obtained. Let a and b be
two arbitrary temporal formulas; p be many
place; t be a transition; q, q1 …, qn be rigid
variables; σ = ≪ N0, N1, … >> be a behavior;
and σl = ≪ NL, Ns+1, … >> be a L-step-
shifted behavior sequence. We define the
semantics of temporal formulas recursively as
follows:

(1)𝜎⟦𝜌(𝑥1,…….𝑥𝑛
⟧ ≡ 𝑀0 ⟦𝜌(𝑥1,…….𝑥𝑛

⟧

(2)𝜎⟦𝑡⟧ ≡ 𝑀0 ⟦𝑡⟧𝑀1

(3)𝜎⟦¬𝑢⟧ ≡ ¬𝜎⟦𝑢⟧

(4)𝜎⟦𝑢 𝛬 𝑣⟧ ≡ 𝜎⟦𝑢⟧ 𝛬 𝜎⟦𝑣⟧

(5)𝜎⟦∀𝑥𝑢⟧ ≡ ∀𝑥 𝜎⟦𝑢⟧

(6)𝜎⟦𝑢⟧ ≡ ∀𝑥 ∈ 𝐍𝐚𝐭 𝜎𝑛⟦𝑢⟧

The work flow of Get and Put property is
subsequently one after the other minimizes the
searching capacity of the applications used for
collusion based on execution flow.

The proposed methodology will have the
ability to find all the sets of colluding
applications that shows the footprints of threat
using SharedResources.

5. Evaluation and Results

To test the proposed methodology, a
dataset is generated from different official and
un-official sources of android applications.
The dataset contains 800 android applications
for experimental purpose. The dataset is
evaluated in three different viewpoints:

In the first perspective applications are
analyzed to find out the colluding couples
which perform collision for sharing the data
using SharedResources. Hence by applying
our proposed methodology, it has been found
that 60 out of 120 applications use
SharedResources method to share the data
between applications and other sinks. “Fig 3”

Collusion Detection using Predictive Functions based on Android Applications (pp. 15 - 26)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 6 No. 2 July – December 2022

22

is the graphical representation of colluding
evaluation.

The second perspective to analyze the
dataset is to identify the type of data which is
transmitted among these couples. The Get and
Put functions produced effective results in this
regard. “Fig 4” shows that 38% of the
applications transmit the string type data using
SharedResources. In addition, integer and float

type data are also transmitted with 32% and
30%, respectively.

After analyzing the data type, the size of
the data transferred by colluding applications
also analyzed. “Fig 5” describes that 37% of
the colluding couple transmits 301-500KB
data between them, which is the highest size
calculated from the dataset. Likewise, the
minimum size of the transmitted data noted as
1KB.

TABLE I. FORMULA DESCRIBING THE PREDICTIVE FUNCTIONS GET AND PUT

Formula 1

ϕPUT = µY. (callgetSharedResources) ϕPUTa W(−callgetSharedResources)

ϕPUTa = µY. (calledit) ϕPUTb W (−Calledit) Y

ϕPUTb = µY. (callputInt) ϕPUTb W (−callputInt)Y = µY. (callcommit) ss Y (−Callcommit) Y

Formula 2

ϕGETa = µY. (callgetSharedResources) ϕGETa W (−callgetSharedResources) Y

ϕGETb = µY. (callgetInt) ss ∨ (−callgetInt) Y

Fig. 3. Colluding Evaluation

0

200

400

600

800

1

120
60

650

Colluding Evaluation

Colluding Apps Couples Non Colluding

Collusion Detection using Predictive Functions based on Android Applications (pp. 15 - 26)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 6 No. 2 July – December 2022

23

Fig. 4. Data Type Transmitted between Colluding Applications

Fig. 5. Estimated Data Size Transmitted between Colluding Applications

Furthermore, a confusion table is selected to
represent the findings because the system
generated genuine positive and false negative
results for the provided input, as well as true
negative and false positive outcomes at times.
As shown in “Fig 5.2”, Table 2 is the further
demonstration of evaluation of the dataset to
identify string type data based on the computed
size. The developed approach successfully
recognized 647 true positive and 111 false

negative applications. The System also
produced some unexpected outcomes, such as
false positives and true negatives.

32%

38%

30%

Data Type

Int Type

String Type

Float Type

17%

37%

33%

13%

Data Size

1-50 KB 51-100 KB 101-300 KB 301-500 KB

Collusion Detection using Predictive Functions based on Android Applications (pp. 15 - 26)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 6 No. 2 July – December 2022

24

TABLE II. IDENTIFICATION OF STRING TYPE DATA ACCORDING TO THE CALCULATED SIZE

Total Apps = 800
1 KB – 50 KB = 351

51 KB – 200 KB = 221
201 KB – 500 KB = 228

Data Size (String) True

Positive

False Positive True Negative False Negative

1 KB – 50 KB 303 2 0 46

51 KB – 200 KB 180 4 13 24

201 KB – 500 KB 164 6 17 41

Table 3, on the other hand, shows the
generated results for integer-type data based on
the calculated size. The technology
successfully detected 705 true positive
applications and 82 false negative applications.
The data of the float type also examined
according to the size, as shown in table 4. The

proposed approach is also successful in
identifying float type data based on its size.
Seven hundred and eighty-five applications
yielded 705 and 81 true positive and false
negative results, respectively, with a minor
number of false positives and true negatives.

TABLE III. IDENTIFICATION OF INTEGER TYPE DATA ACCORDING TO THE CALCULATED SIZE

Total Apps = 800
1 KB – 50 KB = 298

51 KB – 200 KB = 309
201 KB – 500 KB = 193

Data Size (Integer) True

Positive

False Positive True Negative False Negative

1 KB – 50 KB 263 4 1 30

51 KB – 200 KB 287 2 0 20

201 KB – 500 KB 155 4 2 32

TABLE IV. IDENTIFICATION OF FLOAT TYPE DATA ACCORDING TO THE CALCULATED SIZE

Total Apps = 800
1 KB – 50 KB = 193

51 KB – 200 KB = 309
201 KB – 500 KB = 298

Data Size (Float) True Positive False Positive True Negative False Negative

1 KB – 50 KB 156 3 2 32

51 KB – 200 KB 288 2 0 19

201 KB – 500 KB 263 4 1 30

Collusion Detection using Predictive Functions based on Android Applications (pp. 15 - 26)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 6 No. 2 July – December 2022

25

The proposed methodology produced effective
results to identify all 60 colluding couples
among datasets which perform spiteful actions
utilizing the SharedResources. Furthermore,
cumulative accuracy of 97.2% has been
achieved during the experimental study

6. Conclusion and Future Work

Android permission mechanism is used to
secure the users’ devices from threats or
vulnerabilities but this permission mechanism
becomes useless when more and more
permissions are being executed. This paper
highlights a new trend in this context which is
called collision attack. This type of attack is
used by most of the malicious applications to
share data between them. We present a novel
method that is beneficial to identify application
couples that perform collision attacks. The
proposed method uses predictive functions to
analyze the dataset of applications. These
functions are useful for reducing the
computing cost and search space. The system
produces effective results for the colluding
detection method. The overall accuracy of the
system is 97.2% for the identification of
colluding applications and for the detection of
the type and size of the data shared by these
colluding couples using SharedResources. For
future work more applications will be analyzed
for the detection of sharing of some other type
of data like image, audio, video. In addition, a
method will also be proposed to prevent the
application for sharing of data.

REFERENCES

[1] Statista 2021, ‘App stores_ number of apps in
leading app stores 2021 _ Statista’, Statista 2021,
2021. [Online]. Available:
<https://www.statista.com/statistics/266136/.
[Accessed: 05-February-2021]

[2] Enck, William, et al. "Taintdroid: an information-
flow tracking system for realtime privacy
monitoring on smartphones." ACM Transactions on
Computer Systems (TOCS) 32.2 (2014): 1-29.

[3] Statista 2021, ‘App stores_ number of apps in
leading app stores 2021 _ Statista’, Statista 2021,
2021. [Online]. Available:
<https://www.statista.com/statistics/2766
23/number-of-apps- available-inleading-app-
stores/>. [Accessed: 05-February-2021].

[4] Gu, Jie, et al. "Privacy concerns for mobile app
download: An elaboration likelihood model
perspective." Decision Support Systems 94 (2017):
19-28.

[5] Shabtai, Asaf, et al. "Google android: A
comprehensive security assessment." IEEE Security
& Privacy 8.2 (2010): 35-44..

[6] Shen, Yun, Pierre-Antoine Vervier, and Gianluca
Stringhini. "Understanding worldwide private
information collection on android." arXiv preprint
arXiv:2102.12869 (2021)..

[7] Reardon, Joel, et al. "50 ways to leak your data: An
exploration of apps' circumvention of the android
permissions system." 28th {USENIX} Security
Symposium ({USENIX} Security 19). SANTA
CLARA, CA, USA, (2019).

[8] Omar, Marwan, et al. "Android application
security." Research Anthology on Securing Mobile
Technologies and Applications. IGI Global, (2021),
pp.610-625.

[9] Javed, Khadija, and Maria Tariq. "Formal modeling
of security concerns in android." Lgurjcsit 4.1
(2020), pp.33-37..

[10] Marforio, Claudio, et al. "Analysis of the
communication between colluding applications on
modern smartphones." ACSAC '12: Annual
Computer Security Applications Conference
Orlando, Florida, USA,(2012), December 3 – 7.

[11] Memon, Atif M., and Ali Anwar. "Colluding apps:
Tomorrow's mobile malware threat." IEEE Security
& Privacy vol. 13, no.6, (2015): 77-81.

[12] Casolare, Rosangela, et al. "A model checking based
proposal for mobile colluding attack detection."
2019 IEEE International Conference on Big Data
(Big Data). IEEE, Los Angeles, CA, USA, (2019).

[13] Xu, Ke, Yingjiu Li, and Robert H. Deng.
"Iccdetector: Icc-based malware detection on
android." IEEE Transactions on Information
Forensics and Security 11.6, (2016), pp1252-1264.

[14] Chin, Erika, et al. "Analyzing inter-application
communication in Android." Proceedings of The 9th
International Conference on Mobile Systems,
Applications, and Services, Bethesda, Maryland,
USA (2011),28 June - 1 July.

[15] Radzi, Wan Norsyafawati W. Muhamad, et al. "The
impact of latest product features advanced
technology on intention to purchase Android
smartphones users." AIP Conference Proceedings,
Vol. 2339. No. 1. (2021), AIP Publishing LLC,
2021.

[16] Alkindi, Zainab R., et al. "Android Application
Permission Model." 4th Free & Open Source
Software Conference (FOSSC’2019-OMAN),(
2019).

[17] Negi, Charu, et al. "A Review and Case Study on
Android Malware: Threat Model, Attacks,

Collusion Detection using Predictive Functions based on Android Applications (pp. 15 - 26)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 6 No. 2 July – December 2022

26

Techniques and Tools." Journal of Cyber Security
and Mobility (2021), pp231-260..

[18] Martinelli, F., Mercaldo, F., Nardone, V., Santone,
A. and Vaglini, G., “Model checking and machine
learning techniques for HummingBad mobile
malware detection and mitigation”, Simulation
Modelling Practice and Theory, 105,(2020)
p.102169,.

[19] Scoccia, Gian Luca, et al. "User-centric android
flexible permissions." 39th International
Conference on Software Engineering Buenos Aires
Argentina, (2017, May 20 – 28.

[20] Andriotis, P., Li, S., Spyridopoulos, T. and
Stringhini, G., “A comparative study of android
users’ privacy preferences under the runtime
permission model” International Conference on
Human Aspects of Information Security, Privacy,
and Trust, Springer, Cham,(2017),pp. 604-622.

[21] Tiwari, A., Grob, S. and Hammer, C., “IIFA:
modular inter-app intent information flow analysis
of android applications”, International Conference
on Security and Privacy in Communication
Systems, Springer, Cham, (2019), pp. 335-349,

[22] Sun, X., Li, L., Bissyandé, T.F., Klein, J., Octeau,
D. and Grundy, J., “Taming Reflection: An
Essential Step Toward Whole-program Analysis of
Android Apps”, ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 30,
no.3 (2021), pp.1-36.

[23] You, W., Liang, B., Li, J., Shi, W. and Zhang, X.,
“Android implicit information flow demystified”,
10th ACM Symposium on Information, Computer
and Communications Security Singapore Republic
of Singapore (2015), 14 April - 17 March, pp. 585-
590.

[24] Chen, H., Tiu, A., Xu, Z. and Liu, Y., “A
permission-dependent type system for secure
information flow analysis”, 2018 IEEE 31st
Computer Security Foundations Symposium (CSF),
Oxford, UK (2018), july 9-12, pp. 218-232.

[25] Mathis, B., Avdiienko, V., Soremekun, E.O.,
Böhme, M. and Zeller, A., “Detecting information
flow by mutating input data” ACM/IEEE
International Conference on Automated Software
Engineering Urbana-Champaign IL, USA,(2017),
30 October- 3 November, pp. 263-273.

[26] Mercaldo, F., Nardone, V., Santone, A. and
Visaggio, C.A., “Ransomware steals your phone.
formal methods rescue it”, International Conference
on Formal Techniques for Distributed Objects,
Components, and Systems,(2016), Springer, Cham,
pp. 212-2

[27] Li, H., Shen, L., Wang, Y., Feng, J., Tan, H., & Li,
Z. “Risk measurement method of collusion privilege
escalation attacks for android apps based on feature
weight and behavior determination”, Security and
Communication Networks, (2021).

[28] Casolare, R., Di Giacomo, U., Martinelli, F.,
Mercaldo, F., & Santone, A., “Android Collusion

Detection by means of Audio Signal Analysis with
Machine Learning techniques”, Procedia Computer
Science 192, (2021), pp. 2340-2346.

