

 Vol. 5, No. 2 | July – December 2021

SJCMS | P-ISSN: 2520-0755| E-ISSN: 2522-3003 | Vol. 5 No. 2 July – December 2021

36

Ontology-Based Transformation and Verification of

UML/OCL Constraints

Abdul Hafeez1, Asif Wagan2, Aamir Umrani3

Abstract:
In Software Engineering (SE), the graphical models specify the system's architecture,

connection, and characteristics. New SE methods such as Model Driven Architecture (MDA)

utilize graphical models as a nucleus of all development activities. In the MDA, the UML class

models are very important and play very significant role in software development. But UML

class model did not have support of any formal System. Therefore, it is very difficult to verify

the correctness of UML class model. This paper presents the transformation and verification of

class diagram and Object Constraint Language (OCL) and transformation algorithm from Class

model to ontology in the continuity of our research on UML and ontology integration. The class

diagram is transformed into ontology, and constraints specified through OCL are transformed

into SPARQL. The benefit of the method presented in the study is that the availability of many

efficient reasoners which can perform reasoning on huge ontology models in a very adequate

time. This electronic document is a “live” template and already defines the components of your

paper

Keywords: UML, OCL, Ontology, SPARQL

1. Introduction

In the present time software are part of our
daily life; they control the stock exchange,
manage patient records, taking decisions, etc.
However, software failure causes either losses
of human life and economical. Therefore, the
correctness of software must be testified before
implementation. Testing has two main issues
1. Testing never gives 100% grantee of error-
free software. It only checks specifics bugs that
drive from the test cases 2. testing activity is
executed after completion of code. The bug
identification and rectification cost are much
higher in the later phases than in earlier phases
[1]. Furthermore, more complex and large
software is required in the industry, requiring
extensive human efforts, and software houses
want to agility in release software due to
completion with their rivals [2]. Hence, new

1 Department of Software Engineering, SMI University, Karachi, Pakistan
2 Department of Computer Science, SMI University, Karachi, Pakistan
3 Department of Business Administration, SMI University, Karachi, Pakistan

Corresponding Author: ahkhan@smiu.edu.pk

software development techniques have been
developed to tackle the issues, and Model
Driven Architecture (MDA) is one of them.

In MDA approach, graphical models play
key roles in the development. MDA uses
Unified Modeling Language (UML) as the
main modeling language. UML is an industry-
standard, and currently, it is used in all
development activities such as analysis, design
and documentation, code generation, and
testing [3][4]. It provides many diagrams that
deal with various facets of software [5][6][7].
The UML Class diagram is very important part
of UML [5][8][9][10]. It represented the real-
world model via classes, collaboration, and
constraints [11]. Object Constraint Language
(OCL) is a constraint speciation language, and
its small scripts are attached with UML for
defining constraints, conditions, and business

Abdul Hafeez (et al.), Ontology-Based Transformation and Verification of UML/OCL Constraints (pp. 36 - 40)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 5 No. 2 July – Dec 2021

37

rules [12]. However, the MDE approach has
some limitations, and it also has some
limitations, such as it is not free from error risk.
For example, the model may be created with
bugs that can be indirectly transported into the
code. Verification of the model can be a
possible solution to the problem.

Current UML Class/OCL model
transformation and verification techniques
offer good support to verify the model's
correctness. However, formal and semi-formal
methods are used in them for the formalization
of the model and their notation based on
mathematics. It is numerously diversified from
the UML and very hard to understand by the
software engineer. On the other side, the UML
class model and ontology have so many
common components and are developed to
represent real-world concepts [13].

The OCL is an important element of UML.
It is used to specify constraints that add
additional restrictions in the UML model. It
can access objects attributes, operation, and
navigate object to object through associations
and query operation calls. It is specially used
to apply integrity constraints on the class
model and also be used in other UML models
such as the state chart model.

SPARQL Protocol and RDF Query
Language (SPARQL) is a semantic query
language for manipulating ontology [14]. It is
not only used for the query. It is also used for
various other functionality, e.g. ASK and
CONSTRUCT, which are used for checking
constraint consistency. The ASK command is
used to verify constraints consistency, and the
CONSTRUCT command is used to inferring
new information. The OCL constraints are
transformed into SPARQL ASK Negation as
failure (NAF) Query in the proposed method.

2. Methodlogy and Proposed Solution
In [14], we have proposed ontology-based

approaches for transformation and verification

UML class model and presented how the

SPARQL can efficiently represent OCL. This

work presents an extension of our ongoing

research ontology-based verification of the

UML Class and OCL [14] [15] [16][17][18].

It presents the detailed mapping of different

OCL elements into SPARQL. Ontology and

UML class/OCL model have various similar

elements e.g. classes, collaborations,

constraints, instances, and generalization.

However, ontology has additional benefits,

such as reasoning, and on the other hand,

UML does not have an appropriate formal

foundation and reasoning ability. The UML

model and ontology have a difference, such as

Open World Assumption (OWA), which is

supported by ontology UML supports Close

Work Assumption (CWA). In OWA, the

currently unknown assumption is treated as

true, and in CWA, an unknown assumption is

treated false. We proposed the representation

of UML and OCL constraints into the

SPARQL negation as failure (NAF) queries

for supporting CWA in the ontology.

2.1. Class Model Transformation

In this work, the UML classes are converted

into ontology classes, and Class properties are

converted into the Ontology datatype

property. Associations are converted into the

object properties of Ontology, and their

multiplicities are transformed into the

Qualified cardinalities. The complete detail of

class model transformation can be found in

[13]. In this work, we presented the

transformation algorithm of the UML class

model to Ontology. According to the

algorithm, the proposed method will take the

UML class model in XMI format, read the

entire file, and convert the model element

according to the proposed method

2.2. OCL to SPARQL Transformation

SPARQL has similar data types as OCL for
example integer, real etc., and both support
common operations and functions. OCL has 4
Basic type such as Integer, Real, String, and
Boolean and SPARQL support all OCL basic
datatype such as for Real SPARQL has a
decimal, float, and double as shown in table 1.
OCL integer transformed into xsd:integer,

Abdul Hafeez (et al.), Ontology-Based Transformation and Verification of UML/OCL Constraints (pp. 36 - 40)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 5 No. 2 July – Dec 2021

38

string into xsd:string, and Boolean into
xsd:boolen.

Algorithm : Transformation (f as XMI File)

Pre: Required Class diagram in XMI format
Post: OWL File

While f <> Eof
1) e←getElemet(f)
2) if e=UMLclass

addOWLClass(UMLclass.name)
while e.Attributes<>null

 a← e.Attributes
 addOWLDataProperty
(a.ame,e.name as domain ,a.datatye
as range)

3) if e=UMLassociation
if (e.type = unidirectional)

 addOWLObjectProperty
(e,e.sourse as domain, e.target as
range)
else

 addOWLObjectProperty
(e,e.sourse as domain, e.target as
range)
 addOWLInverseObjectProperty
(e,e.traget as domain , e.sourse as
range)

4) if e=UMLgeneralization
a. s ←Call SuperClass
b. AddOWLSubCLass(e,s)

return (OWLModel)
End

TABLE I. Primitive Types.

OCL SPARQL

Real xsd:float,xsd:double,xsddecimal

Integer xsd:integer

String xsd:string

Boolean xsd:Boolean

The primary computational operator of OCL,
such as arithmetic, relational, and logical also
supported by SPARQL, as shown in Table2.
OCL has many types of functions such as
number, string, conversion, and group. The
number functions perform different
manipulation on a number such as ceiling and
floor of a number. The transformation of the
numeric function into the SPARQL is shown
in table 3.

TABLE II. Operation on primitive type

Arithmetic Relational Logical

OCL SPARQL OCL SPARQL OCL SPARQL

+ + < < Or Or

- - > > And And

* * <= <= Not Not

/ / >= >=

 <> !=

TABLE III. OCL Function Transformation

Integer
OCL SPARQL

Abs() Abs()

Floor() Floor()

Round() Round()

Ceil() Ceil()

Mod() NA

String
OCL SPARQL

Concat() Concat()

Substring() SUBSTR()

ToUpperCase() UCASE()

ToLowerCase() LCASE()

Size() STRLEN()

Conversion
OCL SPARQL

toInteger() Xsd:integer()

toReal() Xsd:float()

xsd:double()

xsd:decimal()

toBoolean() Xsd:Boolean

Group
OCL SPARQL

Max() Max()

Min() Min()

Sum() Sum()

Count() Count()

2.3. Transformation of Collection

Operations

OCL provides various operations on the

collection types. They are specially designed

for projecting new collections from existing

ones. this section discusses the transformation

of the collection operation

2.3.1. Select and Reject operation

Select and Reject operations specify a

selection from a specific collection. The select

specifies a subset of a collection. It returns a

Abdul Hafeez (et al.), Ontology-Based Transformation and Verification of UML/OCL Constraints (pp. 36 - 40)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 5 No. 2 July – Dec 2021

39

collection that contains the elements where the

Boolean-expression evaluates to true. In

SPARQL, the select operation is mapped into

a select query, as shown in table 4.

The reject operation is just the inverse of the

select. It rejects all the elements where the

Boolean-expression evaluates true. In

SPARQL, it is mapped into the inverse of

select

2.3.2. Include and Exclude

Include operation returns true if the specified

object exists in the collection and exclude

returns true when the object does not exist. In

SPARQL, the includes and excludes are

mapped into Exits and Not Exit, as shown in

the example presented in Table 4.

2.3.3. ForAll, Exit and Collect

The ForAll operation declares multiple

iterators, which iterate over the complete

collection. It returns true if the expression is

true for each element. In SPARQL, it mapped

into the simple query filter without Exits and

Not Exits, as shown in Table 4. The Exits

operation returns true if at least expression is

true for one element. In SPARQL, it can be

map into the filter with No Exists statement,

as shown in Table 4.

3. Conclusion

UML Class/OCL model constraints are
essential elements of UML. It is used for
graphically representing real-world entities.
This paper presents a new method for the
transformation and verification of OCL
constraints into SPARQL. OCL and SPARQL
have many common elements, such as data
types, operators, and functions. However,
different types of collection operations such as
select, reject, includes, includes all etc. can be
easily mapped into the SPARQL through NAF
ASK query with Filter construct

TABLE IV. Equivalences of OCL
operations

Includes

 context Employee

inv:

Ask where {

?E :Manage ?D.

self.worksFor-

>includes(self.man

ages.Department)

 Filter (NOT EXISTS

{?E :Workin ?D}) }

Excludes

context Employee

inv:

self.subordinates-

>excludes(self)

ASK where {

?E1 rdf:type

Com1:Employee.

?E1 :Workin ?E2

Filter (EXISTS {?E1

:Workin ?E2})

Filter ((?E1 = ?E2))}

IncludesAll

context Faculty

inv:

self.works.controls

-

>includesAll(self.

worksOn.Research

project)

ASK where {

?F rdf:type

Com1:Faculty.

?F :Work ?D. ?D

:Manage ?RP.

Filter (NOT EXISTS

{?F :Workon ?RP})}

ExcludeAll

Inverse of Include

Exit

context University

inv: self.Faculty-

>exists(firstName

= `Abdul')

ASK where {

Filter (!(NOT EXISTS

{?F :FName

"Abdul"^^xsd:string})) }

Forall

context University

inv: self.Faculty-

>forAll(age <= 65)

ASK Where {

 ?F :age ?age. Filter

(!(?age >65)) }

Select

context University

inv:

self.Faculty-

>select(Sal >

10000)-

>notEmpty()

ASKwhere {

Filter (NOT EXISTS

{?D :iworkin ?F. ?F

:Fsal 10000})

{select ?D where { ?D

rdf:type :Department}}}

Reject

context University

inv:

self.Faculty-

>reject(isMarried

)->isEmpty()

Inverse of reject

REFERENCES

[1] K. Anastasakis, B. Bordbar, G. Georg and I. Ray
“UML2Alloy: A Challenging Model
Transformation”, ACM/IEEE 10th International
Conference on Model Driven Engineering
Languages and Systems (MoDELS 2007), LNCS,
Vol. 4735,PP 436-450, 2007

Abdul Hafeez (et al.), Ontology-Based Transformation and Verification of UML/OCL Constraints (pp. 36 - 40)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 5 No. 2 July – Dec 2021

40

[2] I.Traore, D. Aredo “Enhancing Structured Review
with Model-Based Verification”, IEEE
Transactions on Software Engineering, Volume 30
Issue 11 PP. 736 - 753, 2004.

[3] M. Szlenk “Formal-Semantics-Reasoning-UML-
Class-Diagram Dependability of Computer
Systems” , DepCos-RELCOMEX '06. International
Conference, vol., no., pp.51,59, 25-27 May 2006

[4] K. Anastasakis, B. Bordbar, G. Georg nd I. Ray,"On
challenges of model transformation from UML to
Alloy”, Software & Systems Modeling Volume 9,
Issue 1, pp 69-86 Springer, 2010

[5] M. Cadoli, D. Calvanese, G. De Giacomo and T.
Mancini, “Finate Satisfibaility of Uml Class
Diagram by Constraint Programming”, Proc. of the
2004 International Workshop on Description
Logics, volume 104 of CEUR Workshop
Proceedings. CEUR-WS.org, 2004

[6] H. Malgouyres, G. Motet, “A UML Model
Consistency Verification Approach Based on
Metamodeling Formalization”, SAC '06
Proceedings of the 2006 ACM symposium on
Applied computing Pages 1804-1809 ACM 2006

[7] M. Laaziri, S. Khoulji, K. Benmoussa, K. M. Larbi,
"Information System for the Governance of
University Cooperation", Engineering, Technology
& Applied Science Research, Volume 8, Issue:
5, Pages: 3355-3359, October 2018 ,
https://doi.org/10.48084/etasr.2156

[8] A. Gonzlez, J. Cabot, “Formal verification of static
software models in MDE: A systematic review”,
Information and Software Technology Volume 56,
Issue 8, Pages 821–838, Elsevier, 2014

[9] M. BALABAN, A. MARAEE “Finite Satisfiability
of UML Class Diagrams with Constrained Class
Hierarchy”, ACM Transactions on Software
Engineering and Methodology (TOSEM) - In
memoriam, fault detection and localization, formal
methods, modeling and design TOSEM Homepage
archive Volume 22 Issue 3, July 2013

[10] A. Artale, Diego Calvanese, Ang elica, “Full
Satisfiability of UML Class Diagrams, Conceptual
Modeling – ER” Lecture Notes in Computer Science
Volume 6412, 2010, pp 317-331, Journal 2010

[11] Asadullah Shaikh, and Uffe Kock Wiil, “A feedback
technique for unsatisfiable UMLOCL class
diagrams”, Software Practice and Experience Wiley
Journal, 2013

[12] Jordi Cabot, Ernest Teniente, “Incremental Integrity
Checking of UMLOCL Conceptual Schemas” ,
Journal of Systems and Software Volume 82, Issue
9, Pages 1459–1478, 2009

[13] I. Al Agha, O. El-Radie, "Towards Verbalizing
SPARQL Queries in Arabic", Engineering,
Technology & Applied Science Research,
Volume 6, Issue: 2 , Pages: 937-944 , April 2016,
https://doi.org/10.48084/etasr.630

[14] A. HAFEEZ, A. MUSAVI and A. REHMAN,
“Ontology-Based Verification of UML Class/OCL

Model”, Mehran University Research Journal of
Engineering and Technology, Volume 37, Issue 4,
pages 521-534, 2018

[15] A. Hafeez, S. Hyder, A. Rehman and A. Shaikh,
Ontology-Based Finite Satisfiability of UML Class
Model," IEEE Access, Volume 6, Pages 3040-3050,
2018. Doi: 10.1109/ACCESS.2017.2786781

[16] A. Hafeez, Abdul, S. Hyder Abbas Musavi, A.
Rehman, " Ontology-Based Transformation and
Verification of UML Class Model," IAJIT, Volume.
17, issue 5, 2020

[17] S. Asadullah, A. Hafeez, E. MA, A. Alghamdi, A.
Siddique and B. Shahzad "Ontology-Based
Verification of UML Class Model XOR Constraint
and Dependency Relationship Constraints.", in
intelligent automation and soft computing vol 27
issue 2, 2021

[18] A. Hafeez, A. Wagan , J. Samreen, H. Imtiaz. . "
Ontology-Based Transformation and Verification of
UML Qualified Association“, International Journal
of Advanced Trends in Computer Science and
Engineering, Volume 10 , issue 1 , Pages 164-167,
2021

https://doi.org/10.48084/etasr.2156
https://doi.org/10.48084/etasr.630

