
 
 

Vol. 1, No. 1 | Jan – June 2017 
   

 

SJCMS | P-ISSN: 2520-0755 | Vol. 1 | No. 1 | © 2017 Sukkur IBA  57 
 

A Fast Implementation of Minimum Spanning Tree Method 

and Applying it to Kruskal’s and Prim’s Algorithms 
 

Badri Munier, Muhammad Aleem, Muhammad Arshad Islam, Muhammad 

Azhar Iqbal  
Department of Computer Science, Capital University of Science and Technology, 

Islamabad 

badar_lucky83@yahoo.com, aleem@cust.edu.pk, arshad.islam@cust.edu.pk, 

azhar@cust.edu.pk   

 

Waqar Mehmood 

Department of Computer Science, COMSATS Institute of Information Technology, 

Wah Cantt 

drwaqar@ciitwah.edu.pk    

Abstract 

 In last decade, application developers attained improved performances by merely 

employing the machines based on higher-clocked processors. However, in 2003 multi-core 

processors emerged and eradicated the old processor manufacturing technology based on 

increasing processor’s clock frequencies. After emergence of new parallel processor 

architectures, serial applications must be re-engineered into parallel versions to exploit the 

computing power of the existing hardware. In this paper, we present an efficient parallel 

implementation of minimum spanning tree algorithm to take advantage of the computing power 

of multi-core machines. Computer network routing, civil infrastructure planning and cluster 

analysis are typically use-cases of spanning tree problem. The experimental results show that 

the proposed algorithm is scalable for different machine and graph sizes. The methodology is 

simple and can easily be implemented using different shared-memory parallel programming 

models. 

Keywords: Graph, Minimum spanning tree, Performance analysis, OpenMP.  

1. Introduction
 Today, multi-core processors have 

emerged as a viable source of processing 

power. The introduction of multi-core 

architecture was due to the power 

consumption and heat dissipation problems 

associated with high-clocked single-core 

processors [1]. A multi-core processor 

consists of several processing units known as 

cores [2]. On single core-processors, most of 

the applications were developed using 

sequential execution model. Applications 

executed on new processor architectures 

suffer performance degradations due to the 

stall in processor’s clock frequencies. To 

exploit the processing power of the underlying 

multi-cores, applications need to be re-

engineered and parallelised [3]. Computer 

network routing, civil infrastructure planning 

mailto:badar_lucky83@yahoo.com
mailto:aleem@cust.edu.pk
mailto:arshad.islam@cust.edu.pk
mailto:azhar@cust.edu.pk
mailto:drwaqar@ciitwah.edu.pk


B. Munier et al. A Fast Implementation of Minimum Spanning Tree Method and Applying it to Kruskal’s and Prim’s 

Algorithms                 (pp. 57 - 66) 

SJCMS | P-ISSN: 2520-0755 | Vol. 1 | No. 1 | © 2017 Sukkur IBA  58 
 

and cluster analysis are typical use-cases of 

spanning tree problem. A spanning tree can be 

defined as a subset of Graph G, where all the 

vertices are covered with minimum possible 

number of edges. Basic properties of a 

spanning tree are that it is in the form of a 

connected graph and does not contain any 

cycles. A Minimum Spanning Tree (MST) [4] 

connects vertices of a weighted graph such 

that the total weight is minimum. In this paper, 

we discuss the two famous MST algorithms 

known as Kruskal’s [5] and Prim’s [6] [7] 

algorithms. Major contributions of the paper 

are the development and benchmarking of 

parallel implementations of Kruskal’s and 

Prim’s algorithms. Moreover, we have 

evaluated the attained performance results 

using low-level hardware performance 

counters. 

 Kruskal’s [5] and Prim’s [6] [7] 

algorithms are the two basic techniques to 

solve the minimum spanning tree problem. An 

MST represents a sub-graph of an undirected 

graph such that the sub-graph spans (includes) 

all graph nodes, is connected, is acyclic, and 

has minimum total edge-weight. Both the 

Prim’s and Kruskal’s algorithms utilize 

undirected weighted graphs. Prim’s and 

Kruskal’s algorithms are considered as greedy 

algorithms and produce optimal solutions for 

the MST problem. Prim’s algorithm is similar 

to Dijkstra’s algorithm [8]; however, it 

records previous edge-weights instead of path 

lengths. 

 In this work, we present a shared 

memory-based parallel implementations of 

Kruskal’s [5] and Prim’s [6] [7] algorithms. 

To program shared memory parallel 

machines, two most-often-used methods are 

1) hand-coded parallel threads and 2) using 

serial code with compiler directives. Writing 

parallel program is a difficult task, especially 

if one is required to hand-code the parallel 

threads. To program shared memory parallel 

machines, today OpenMP [9] is the most 

widely used framework for parallelization of 

the serial code. All threading models typically 

involve a large overhead related to task 

parallelization and execution [10] [11]. 

OpenMP compared to threading method 

induces less parallelization and execution 

overhead [12]. Thread-pool model of 

OpenMP results in significantly less overhead 

during execution of a parallel program [13]. 

This paper presents an analysis and study of 

the parallel MST (Prim’s and Kruskal’s) 

programs executed using classical multi-

threaded and OpenMP-based execution 

models. 

 The rest of the paper is organized as 

follows: Section II presents the work related 

to parallelization of Prim’s and Kruskal’s 

algorithms. Section III discusses working of 

the Prim’s and Kruskal’s MST algorithms. 

Section IV looks at detailed insight of 

parallelization of these algorithms. Section V 

presents the experimental results and the low-

level performance analysis of the parallel 

executions. Section VI concludes the paper. 

 

2. Related Work 
 Authors in [14] have proposed a 

parallel Prim’s algorithm implementation on 

symmetric multiprocessors using cut property 

of an MST. The cut property can be defined as 

for any cut C in a graph, if the weight of an 

edge of cut C is strictly lesser than the weights 

Figure 1: Cut property of MST 



B. Munier et al. A Fast Implementation of Minimum Spanning Tree Method and Applying it to Kruskal’s and Prim’s 

Algorithms                 (pp. 57 - 66) 

SJCMS | P-ISSN: 2520-0755 | Vol. 1 | No. 1 | © 2017 Sukkur IBA  59 
 

of all others edges in the cut C, only then this 

edge belongs to all MSTs in the graph. Figure 

1 shows the CUT property of MST. Suppose, 

S = (a, b, c, d, e, f) Figure 1 shows the CUT 

property of MST. Different parallel tasks may 

initiate separate sub-trees simultaneously and 

then after merging these sub-trees, the final an 

MST is formed. Suppose, S = (a, b, c, d, e, f) 

a parallel task starts developing its tree by 

selecting the smallest weighted edge (a, b) in 

the portion of the graph assigned to it. Edges 

(b, e) and (d, e) also have the smallest weights 

with no circular paths, and are so included in 

the tree. Another parallel task starts from a 

different vertex (f) to form its part of the tree 

and finds edge (c, f) as the smallest of the 

assigned edges to this task. Now, for both the 

parallel tasks the next smallest weighted edge 

is (e, f) (and has no cycle.) At this point, both 

the tasks merge their sub-trees to build the 

final MST. 

 Another parallel implementation of 

Prim’s algorithm is proposed in [14]. The 

authors experimented using shred memory 

multi-processor machines. The presented 

parallel implementation arbitrarily selects a 

vertex and keeps it as the root-vertex. Each 

thread starts a distinct parallel tree. The 

threads have the ability to conduct 

asynchronous signals. In the meantime, when 

crash occurs, one of the threads sends signals 

to other executing threads using a merge tree 

operation. In the end, the first thread (thread-

0) will have the calculated MST. Authors in 

[14] employed a load-balanced thread 

scheduling to reduce make-span of the 

application. 

 In [15], authors proposed an efficient 

parallel implementation of Kruskal’s 

algorithm. The proposed implementation 

employed helper-thread technique. Kruskal’s 

algorithm is known for showing 

characteristically sequential features, because 

it strictly examines all the edges whether they 

are part of the minimum spanning forest [16] 

graph or not. However, parallel characteristics 

of Kruskal’s algorithm was exploited using 

helper threads which check each edge having 

maximum weight for the cycle. An edge is 

rejected if a cycle is found. The main thread 

only checks those edges which are not 

discarded by helper threads. Using the main 

and helper thread mechanism the proposed 

technique avoids any blocking or non-

blocking synchronization. 

 In [17], authors proposed a new 

approach to speed-up the minimum spanning 

forest algorithm. The accelerated performance 

was achieved by employing cache 

optimization and reduced synchronization 

overhead. The reduced random memory 

access behaviour resulted in improved speed-

up of Bor˚uvka-based implementation. 

Authors in [18] proposed a fast solution to the 

MST problem based on Bor˚uvka algorithm. 

 The proposed platform-independent 

implementation can be executed using 

multicore CPUs or GPUs. The authors [18] 

introduced a new and effective technique to 

perform a contraction of the graph. The 

contracted graph is obtained by merging 

vertices into super-vertices. To optimize data-

locality, the authors employed compressed 

sparse row format to build the contracted 

graph. Their implemented version achieved 

linear scalability up to 8 threads. 

 Another approach presented in [19] 

analyses two algorithms: Shiloach-Vishkin 

and Hirschberg-Chandra-Sarwate. Authors 

proposed a new parallel-randomized 

algorithm for calculating an MST. They 

employed a randomized greedy approach for 

the implementation. The employed greedy 

approach allows one processor to arbitrarily 

access another processor for work stealing if it 

finishes its assigned task earlier. 

 Compared to the helper-threading 

scheme mentioned in [14] and other 

techniques discussed in this section, our 

proposed parallelization technique is simpler 

and easily implementable. We create threads 

at runtime that reduces the cost of 

computation, (as compared to 14]). 

 



B. Munier et al. A Fast Implementation of Minimum Spanning Tree Method and Applying it to Kruskal’s and Prim’s 

Algorithms                 (pp. 57 - 66) 

SJCMS | P-ISSN: 2520-0755 | Vol. 1 | No. 1 | © 2017 Sukkur IBA  60 
 

3. Minimum Spanning Tree 

Methods 
 Prim’s and Kruskal’s algorithms are 

two well-known and most-used techniques 

used for the solution of a minimum spanning 

tree problem. Below sections present the 

detailed description of these algorithms. 
 A. Prim’s Algorithm: Prim’s is a 

memory-bound algorithm and its performance 

largely depends on the memory accesses 

pattern and memory organization [9]. After 

input is provided, Prim’s algorithm starts with 

an arbitrary vertex (let’s say vertex B in our 

example, see Figure 2) in the graph and marks 

it as visited. In the next step, the algorithm 

considers all the edges connected to this 

vertex (for example edges (B, A), (B, C) and 

(B, F)), finds the minimum weighted-edge (B, 

A) among them and adds its weight to the 

MST. The vertex on the other side connected 

to this minimum weighted-edge (vertex A) is 

now the visited one. Now all of the edges 

connected to this vertex are considered and the 

minimum one is selected and added to the 

MST if it does not form a circle. In this way, 

all the vertices connected by the minimum 

weighted acyclic edges are found, that form 

the MST. 

 B. Kruskal’s Algorithm: Kruskal’s 

algorithm is based on a greedy approach and 

is known for exhibiting inherently sequential 

characteristics. Kruskal’s algorithm strictly 

examines the edges whether they are part of 

the minimum spanning forest or not [16]. 

Kruskal’s algorithm sorts all edges in 

ascending order of their weights. It starts 

adding the minimum weighted-edges to the 

MST (edges not forming a cycle). 

  A typical implementation of the 

Kruskal’s algorithm starts with input from the 

user for the number of vertices and related 

weights for each edge of the graph. After 

reading all the edges, the program starts to find 

a minimum cost edge in the graph (1 less than 

the total vertices to avoid a loop). The 

minimum spanning tree is provided as output 

to the user, showing all the edges that generate 

a part of the MST. Vertices that do not have 

edges between them are indicated with 0 

values in Table I. 

 
Table 1: An Example Adjacency Matrix (for 

Figure 2) 

 

 A B C D E F 

A 0 2 0 0 3 6 
B 2 0 4 0 0 7 
C 0 4 0 3 0 5 
D 0 0 3 0 1 7 
E 3 0 3 1 0 4 
F 6 7 5 7 4 0 

 

4. Parallelization of Kruskal’s and 

Prim’s Algorithms 
 For parallelization of both the 

Kruskal’s and Prim’s algorithms, we 

employed a divide-and-conquer technique 

[20]. First, we divide the adjacency matrix 

into four equal parts considering both the rows 

and columns of the matrix. Figure 3 shows an 

example of symmetric matrix having 8 rows 

and 8 columns. The matrix can be divided into 

four parts: A, B, C, and D as shown in Figure 

3. Figure 3 shows that the matrix partitions B 

Figure 2: Example: An Undirected Weighted 

Graph 



B. Munier et al. A Fast Implementation of Minimum Spanning Tree Method and Applying it to Kruskal’s and Prim’s 

Algorithms                 (pp. 57 - 66) 

SJCMS | P-ISSN: 2520-0755 | Vol. 1 | No. 1 | © 2017 Sukkur IBA  61 
 

and C are the same and symmetric. Both of 

these partitions contain exactly the same set of 

edges. Any one of these two partitions (B or 

C) is enough to represent the graph. Therefore, 

we only employ three parts of the matrix (i.e., 

A, B, and D) for parallelization. As we have 

only three parts of the adjacency matrix to 

compute, we use the number of threads as a 

multiple of three. The strategy of using the 

part of the matrix reduces the computational 

cost considerably and results in improved 

performance. Each of the three selected parts 

of the matrix can be computed using a single 

or multiple computing threads. Each 

computing thread computes and finds a 

minimum weighted-edge within the assigned 

matrix part and returns its cost to the main 

program. After receiving all the minimum 

costs (for lower cost edges), the main program 

selects an edge with the lowest cost. After that, 

the lowest-cost edge is checked for a cycle in 

the graph and a cycle-free edge is added to the 

MST. The correctness of both the serial and 

parallel versions are ensured by comparing the 

produced results. 

 A. Kruskal’s Parallelization 

The proposed parallelization of the Kruskal’s 

algorithms is performed using the following 

steps: 

 Step-1: Partition the input N × N 

adjacency matrix of a graph G into 4 equal 

fragments as shown in Figure 2. As we assume 

that input is an undirected simple graph, 

fragments B and C are symmetric and same. 

Using this strategy, we have to compute only 

3 parts of the matrix, which reduces the overall 

computational cost of the parallel version; 

 Step-2: Using p = 3× i threads are 

created to compute an MST T by employing 

the 3 partitions i.e., ith threads for each 

partition. Each thread sorts the matrix 

representing the edge weights. In case of more 

employed processors, one matrix part can be 

computed using multiple threads;  

 Step-3: Tree generation is initiated 

by iterating over the sorted edge-list obtained 

in step 2; 

 Step-4: An edge (u, v) is inserted 

into the MST; if it does not create cycles, i.e., 

(u, v) ∪ T ⇐⇒ T’ does not contain cycles; 

 Step-5: Step 4 is repeated till node 

Count (G) ≠ node Count (T). 

 B. Prim’s Parallelization 

The proposed parallelization of the Prim’s 

algorithms is performed using the following 

steps: 

 

Figure 3: Division of a Symmetric Matrix 

 Step-1: Partitioning approach for 

Prim’s implementation is similar to the 

Kruskal’s implementation presented in this 

work. Following are the detailed steps for the 

parallelization of Prim’s algorithm; 

 Step-2: p = (3 × i) +1 threads are 

created to compute the MST T from the 3 

partitions, i.e., ith threads for each partition. In 

case of more employed processors, one matrix 

part can be computed using multiple threads. 

The additional thread, i.e., main thread, is 

employed to coordinate among the rest of the 

threads; 

 Step-3: Every thread pi where i≤n 

finds minimum weight edge ei within a row of 

the adjacency matrix; 

 Step-4: Every thread pi sends its 

unmarked minimum ei edge to the main 

thread. The main thread identifies the global 



B. Munier et al. A Fast Implementation of Minimum Spanning Tree Method and Applying it to Kruskal’s and Prim’s 

Algorithms                 (pp. 57 - 66) 

SJCMS | P-ISSN: 2520-0755 | Vol. 1 | No. 1 | © 2017 Sukkur IBA  62 
 

minimum edge from the received edges emin, 

adds it to the MST and broadcasts it to all 

other threads; 

 Step-5: A computing thread marks 

corresponding vertices connected by emin as 

belonging to the MST and updates their 

assigned part of row i.e. Steps 4 and 5 are 

repeated till node Count(G) ≠ node Count(T). 

5. Results and Discussion 
 A. Experimental Setup: For 

experimentations, we employ two nodes or 

multi-core machines, N1 and N2 parts of our 

computational cluster. The N1 multicore 

machine is based on quad-core Intel Q6600 

2.4Ghz processor with 8MBs of L2 cache 

memory. The second multicore machine 

named N2 was based on Intel core i5-4460 

quad-core processor. The processor has a 

clock speed of 3.2 GHz with turbo-boost 

option up to 3.4 GHz clock-rate. The 

processor has a shared L3 cache of size 6 

MBs. The implementation of the serial version 

was done in C++ programming language. The 

parallel versions were implemented using a 

threading library of C++ and an industry 

standard for shared memory parallel 

programming called OpenMP [13], [21]. Six 

different graph sizes were used for the 

experimentation i.e., 256, 512, 1024, 2048, 

4096, and 8192 node graphs (having density 

of 0.87). The parallel versions were evaluated 

up to 12 parallel tasks on the shared machine. 

To understand the achieved performances, we 

measure low-level hardware performance 

counters [22].  Hardware performance 

counters are employed for originating micro-

architecture level execution profiles. Some of 

the employed low-level performance counters 

are L1 data loads, L1 cache misses, last-level 

cache loads, last-level cache misses, time-

elapsed, etc. 

 B. Kruskal’s Results: Figure 4 shows 

the experimental results of the Kruskal’s 

algorithm. The experimental results 

conducted on N1 multicore node are shown in 

Figure 4(a). Larger (graph and machine-size) 

experiments were conducted on N2 multi-core 

machine are shown in Figures 4(b) and 4(c). 

As shown in Figure 4(a), we can observe that 

the execution time of the Kruskal’s parallel 

implementation (based on 3 parallel tasks) has 

reduced significantly. The parallel version 

was implemented using C++ multi-threaded 

API (named as POSIX execution) and 

consumes 44.28% less execution time for 

graph of 256 nodes. For the graph with 512 

nodes, the multithreaded implementation 

performs 13.63% better in terms of execution 

speed compared to the serial version of the 

kruskal’s implementation. For the largest 

problem size (graph of 1024 nodes), the 

parallel implementation achieves 69.14% less 

execution time. The OpenMP based parallel 

implementation of the Kruskal’s algorithm 

scales better than the POSIX based parallel 

implementation (as shown in Figure 4(a)). The 

parallel version implemented using OpenMP 

API consumes 46.78% less time for graph size 

256. For the graph (with 512 nodes), the 

OpenMP based implementation performs 5.5× 

better compared to the serial implementation. 

 For the largest problem size (graph of 

1024 nodes), the OpenMP based parallel 

implementation achieves 23.27 times less 

execution time. Figure 4(b) shows the 

Kruskal’s parallel implementation using a 

C++ based multi-threaded API. The 

experiment was conducted using 3, 6, 9, and 

12 parallel threads. For this experiment, we 

employ different graph sizes i.e., 256, 512, 

1024, 2048, 4096, and 8192 node graphs. The 

multi-threaded executions based on 3−12 

threads show exceptional scalability of the 

proposed parallel technique of the Kruskal’s 

algorithm. 

 Figure 4(c) shows execution results 

of multi-threaded andOpenMP based parallel 

executions. For this experiment, 256, 512, 

1024, 2048, 4096, and 8192 node graphs were 

employed and executed using 6 parallel tasks 

(using both the C++ multi-threaded and 

OpenMP based frameworks). As shown in 

Figure 4(c), our proposed parallel 

implementation of Kruskal’s algorithm 



B. Munier et al. A Fast Implementation of Minimum Spanning Tree Method and Applying it to Kruskal’s and Prim’s 

Algorithms                 (pp. 57 - 66) 

SJCMS | P-ISSN: 2520-0755 | Vol. 1 | No. 1 | © 2017 Sukkur IBA  63 
 

achieves commendable scalability for all 

graph sizes (256−8192). The implementation 

is more scalable for large graph sizes i.e., 4096 

and 8192 node graphs (as shown in Figure 

4(c)). This experiment shows that the 

OpenMP based implementation achieves 

more improved performance compared to the 

multi-threaded execution. The better 

performance by the openMP based 

implementation is due to the decreased 

threading overhead (because of a thread-pool 

mechanism of OpenMP). 

 C. Prim’s Results: Figure 5 shows 

the experimental results of the Prims’ 

algorithm. The experimental results 

conducted on N1 multicore node are shown in 

Figure 5(a). Larger graph and machine size 

based experiments were conducted on N2 

machine and are shown in Figures 5(b) and 

5(c).  

Figure 5(a) shows that the execution time of 

the Prim’s parallel implementation is 

significantly low compared to the serial 

implementation of the algorithm. The multi-

threaded parallel implementation of the 

algorithm consumes 40% less time for graph 

of 256 nodes. For the graph of 512 nodes, the 

multi-threaded implementation performs 

23.8% better compared to the serial  

Fig. 4: Kruskal’s algorithm - experimental 

results. 

Fig. 5: Prim’s algorithm - experimental 

results. 

 For 1024 node graph, the parallel 

multi-threaded implementation achieves 

15.15% less execution time compared to the 

serial implementation. Figure 5(a) also shows 

the performance results of the OpenMP based 

implementation of the algorithm. The 

OpenMP based execution consumes 40% less 

   
 

    
 

    
 

 

   
  

   
  

   
  

Figure 4: Kruskal’s Algorithm - Experimental Results 

Figure 5: Prim’s Algorithm - Experimental Results 



B. Munier et al. A Fast Implementation of Minimum Spanning Tree Method and Applying it to Kruskal’s and Prim’s 

Algorithms                 (pp. 57 - 66) 

SJCMS | P-ISSN: 2520-0755 | Vol. 1 | No. 1 | © 2017 Sukkur IBA  64 
 

time for graph of 256 nodes. For 512 node 

graph, the OpenMP based implementation 

performs 3× better compared to the serial 

version. For the larger graph (1024 nodes), the 

parallel implementation achieves 1.37 times 

less execution time. 

Figure 5(b) shows the Prims’ parallel 

implementation using a C++ based multi-

threaded API. The experiment was conducted 

using 3, 6, 9, and 12 parallel threads and 

different graph sizes i.e., 256, 512, 1024, 

2048, 4096, and 8192 node graphs. The multi-

threaded executions based on 3−12 threads 

show excellent scalability of the proposed 

parallel technique of the Prims’ algorithm. 

Figure 5(c) shows execution results of multi-

threaded and OpenMP based parallel 

executions. For this experiment, 256, 512, 

1024, 2048, 4096, and 8192 node graphs were  

Employed and executed using 6 parallel tasks 

(using both the C++ multi-threaded and 

OpenMP based frameworks). As shown in 

Figure 5(c), our proposed parallel 

implementation of Prims’ algorithm achieves 

excellent scalability for all graph sizes 

(256−8192). The implementation is more 

scalable for large graph sizes i.e., 4096 and 

8192 node graphs (as shown in Figure 5(c)). 

This experiment shows that the OpenMP 

based implementation achieves more 

improved performance compared to the multi-

threaded execution. Due to the OpenMP’s 

thread-pool mechanism, less threading-

overhead results in improved performances 

for the OpenMP based executions. 

 Tables II and III show measurements 

of the low-level hardware performance 

counters. We can observe several consistent 

trends in both tables. In the majority cases, the 

OpenMP based executions observe lower 

number of cache loads and cache misses 

(approximately 10.3% less compared to the 

multi-threaded execution). The low number of 

cache misses result in on average better 

performance of the OpenMP based 

implementations. 

Table 2: Kruskal’s implementations’ low-level Performance Analysis 

Table 3: Prim’s implementations’ low-level performance analysis 



B. Munier et al. A Fast Implementation of Minimum Spanning Tree Method and Applying it to Kruskal’s and Prim’s 

Algorithms                 (pp. 57 - 66) 

SJCMS | P-ISSN: 2520-0755 | Vol. 1 | No. 1 | © 2017 Sukkur IBA  65 
 

6. Conclusions and Future Work 
 In this paper, we proposed and 

evaluated performance of parallel MST 

methods (Kruskal’s and Prim’s algorithms). 

The proposed parallel algorithms were 

evaluated for their scalability by employing 

different graph and machine sizes. The 

experiments showed that the Kruskal’s 

achieves 23× better results in terms of 

execution time compared to the serial version 

of the algorithm. For the prim’s algorithm, we 

attained up to 3× better performances 

compared to the serial version of the 

algorithm. Moreover, the OpenMP based 

implementations of both algorithms showed 

excellent performance and scalability 

compared to the simple multi-threaded based 

implementations. Our future work includes 

large-scale experiments on compute Clouds 

such as Amazon EC2 and Microsoft Azure 

platforms. 

References 
[1] D. Geer, “Chip makers turn to multicore 

processors,” Computer, vol. 38, no. 5, pp. 11–13, 

2005. 

[2] D. E.  Lenoski and W.-D. Weber, 

Scalable shared-memory multiprocessing. Elsevier, 
2014. 

[3] M. Aleem, R. Prodan, and T. Fahringer, 

“The javasymphony extensions for parallel gpu 

computing,” in 2012 41st International Conference 

on Parallel Processing. IEEE, 2012, pp. 30–39. 

[4] P. Jayawant and K. Glavin, “Minimum 

spanning trees,” Involve, a Journal of Mathematics, 
vol. 2, no. 4, pp. 439–450, 2009. 

[5] C. Zhong, M. Malinen, D. Miao, and P. 

Franti, “A fast minimum¨ spanning tree algorithm 

based on k-means,” Information Sciences, vol. 295, 

pp. 1–17, 2015. 

[6] S. Manen, M. Guillaumin, and L. Van 

Gool, “Prime object proposals with randomized 

prim’s algorithm,” in Proceedings of the IEEE 

International Conference on Computer Vision, 

2013, pp. 2536–2543. 

[7] W. Guttmann, “Relation-algebraic 

verification of prim’s minimum spanning tree 

algorithm,” in International Colloquium on 

Theoretical Aspects of Computing. Springer, 2016, 
pp. 51–68. 

[8] M. Yan, “Dijkstra’s algorithm,” 

Massachusetts Institute of Technology. regexstr, 
2014. 

[9] J. Adams and E. Shoop, “Teaching 

shared memory parallel concepts with openmp,” 

Journal of Computing Sciences in Colleges, vol. 30, 
no. 1, pp. 70–71, 2014. 

[10] A. M. Castaldo and R. C. Whaley, 

“Minimizing startup costs for performance-critical 

threading,” in Parallel & Distributed Processing, 

2009. IPDPS 2009. IEEE International Symposium 
on. IEEE, 2009, pp. 1–8. 

[11] X. Ding and J. Shan, “Diagnosing 

virtualization overhead for multithreaded 

computation on multicore platforms,” in 2015 

IEEE 7th International Conference on Cloud 

Computing Technology and Science (CloudCom). 
IEEE, 2015, pp. 226–233. 

[12] A. Muddukrishna, P. A. Jonsson, A. 

Podobas, and M. Brorsson, “Grain graphs: Openmp 

performance analysis made easy,” in Proceedings 

of the 21st ACM SIGPLAN Symposium on 

Principles and Practice of Parallel Programming. 

ACM, 2016, p. 28. 

[13] C. Iwainsky, S. Shudler, A. Calotoiu, A. 

Strube, M. Knobloch, C. Bischof, and F. Wolf, 

“How many threads will be too many? on the 

scalability of openmp implementations,” in 

European Conference on Parallel Processing. 

Springer, 2015, pp. 451–463. 

[14] R. Setia, A. Nedunchezhian, and S. 

Balachandran, “A new parallel algorithm for 

minimum spanning tree problem,” in Proc. 

International Conference on High Performance 

Computing (HiPC), 2009, pp. 1–5. 

[15] A. Katsigiannis, N. Anastopoulos, K. 

Nikas, and N. Koziris, “An approach to parallelize 

kruskal’s algorithm using helper threads,” in 

Parallel and Distributed Processing Symposium 

Workshops & PhD Forum (IPDPSW), 2012 IEEE 

26th International. IEEE, 2012, pp. 1601–1610. 



B. Munier et al. A Fast Implementation of Minimum Spanning Tree Method and Applying it to Kruskal’s and Prim’s 

Algorithms                 (pp. 57 - 66) 

SJCMS | P-ISSN: 2520-0755 | Vol. 1 | No. 1 | © 2017 Sukkur IBA  66 
 

[16] S. Nobari, T.-T. Cao, P. Karras, and S. 

Bressan, “Scalable parallel minimum spanning 

forest computation,” in ACM SIGPLAN Notices, 
vol. 47, no. 8. ACM, 2012, pp. 205–214. 

[17] G. Cong, I. Tanase, and Y. Xia, 

“Accelerating minimum spanning forest 

computations on multicore platforms,” in European 

Conference on Parallel Processing. Springer, 2015, 
pp. 541–552. 

[18] C. da Silva Sousa, A. Mariano, and A. 

Proenc¸a, “A generic and highly efficient parallel 

variant of boruvka’s algorithm,” in 2015 23rd 

Euromicro International Conference on Parallel, 

Distributed, and Network-Based Processing. IEEE, 
2015, pp. 610–617. 

[19] D. A. Bader and G. Cong, “A fast, 

parallel spanning tree algorithm for symmetric 

multiprocessors,” in Parallel and Distributed 

Processing Symposium, 2004. Proceedings. 18th 
International. IEEE, 2004, p. 38. 

[20] M. Danelutto, T. De Matteis, G. 

Mencagli, and M. Torquati, “A divide-and-conquer 

parallel pattern implementation for multicores,” in 

Proceedings of the 3rd International Workshop on 

Software Engineering for Parallel Systems. ACM, 
2016, pp. 10–19. 

[21] T. Cramer, D. Schmidl, M. Klemm, and 

D. an Mey, “Openmp programming on intel r xeon 

phi tm coprocessors: An early performance 

comparison,” in Proceedings of the Many-core 

Applications Research Community (MARC) 

Symp. at RWTH Aachen University. RWTH 

Achen University, 2012, pp. 38–44. 

[22] X. Xie, H. Jiang, H. Jin, W. Cao, P. Yuan, 

and L. T. Yang, “Metis: a profiling toolkit based on 

the virtualization of hardware performance 

counters,” Human-centric Computing and 
Information Sciences, vol. 2, no. 1, pp. 1–15, 2012. 

 


