
Volume 1 | No. 2 | July – December 2017

SJCMS | P-ISSN: 2520-0755 | E-ISSN: 2522-3003 © 2017 Sukkur IBA University – All Rights Reserved
66

Software Atom: An Approach towards Software Components

Structuring to Improve Reusability
Muhammad Hussain Mughal1, Zubair Ahmed Shaikh2

Abstract:
Diversity of application domain compelled to design sustainable classification scheme

for significantly amassing software repository. The atomic reusable software components are

articulated to improve the software component reusability in volatile industry. Numerous

approaches of software classification have been proposed over past decades. Each approach has

some limitations related to coupling and cohesion. In this paper, we proposed a novel approach

by constituting the software based on radical functionalities to improve software reusability. We

analyze the element's semantics in Periodic Table used in chemistry to design our classification

approach, and present this approach using tree-based classification to curtail software repository

search space complexity and further refined based on semantic search techniques. We developed

a Global unique Identifier (GUID) for indexing the functions and related components. We have

exploited the correlation between chemistry element and software elements to simulate one to

one mapping between them. Our approach is inspired from sustainability chemical periodic

table. We have proposed software periodic table (SPT) representing atomic software

components extracted from real application software. Based on SPT classified repository tree

parsing & extraction to enable the user to program their software by customizing the ingredients

of software requirements. The classified repository of software ingredients assists user to exploit

their requirements to software engineer and enables requirement engineer to develop a rapid

large-scale prototype with great essence. Furthermore, we would predict the usability of the

categorized repository based on feedback of users. The continuous evolution of that proposed

repository will be fine-tuned based on utilization and SPT would be gradually optimized by ant

colony optimization techniques. Succinctly would provoke automating the software

development process.

Keywords: Classification, Development, Prototyping, Extraction, Parsing, Re-usability,

Software, Software Periodic Table (SPT), Softwares Repository.

1. Introduction
Software industry is growing swiftly.

Computing devices are interacting with human

through software program. From personal

assistant to business management and

ubiquitous computation services, software

gives solution for everything by automation

that improves the efficiency and accuracy. In

this emerging technologically evolving world

significantly transformed the software

development and diversity of software

products, software organizations need to meet

1 Center for Research in Ubiquitous Computing, Department of Computer Science, Sukkur IBA University, Sukkur, Pakistan.
2 Center for Research in Ubiquitous Computing, Department of Computer Science, Muhammad Ali Jinnah University,

Karachi, Pakistan.

*Corresponding author: muhammad.hussain@iba-suk.edu.pk

the market and their client requirements within

short duration and with optimal quality. With

increase in magnitude and complexity of the

project the maintainability becomes

difficult[1]. Software reuse does not only saves

time and cost, but also give us reliable software

product by integrating tested and reliable

software components. We do not need to

develop software from scratch, we extract the

software components, which meet the

Muhammad Hussain Mughal (et al.) Software Atom: An Approach towards Software Components Structuring to

Improve Reusability (pp. 66- 77)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 1 No. 2 July – December 2017 © Sukkur IBA University

67

requirements, and the software is ready for use

in short compelled by industry pressure.

Software product line [2, 3] a family based

approach software contributed a lot for

reusability. Software industry acceleration is

not chaseable. There is huge collection of

software component developed already. To

reuse software artifacts, we need a

classification scheme to classify our software

repository from that enable developer easily

search and retrieve software artifacts based on

project requirements. We proposed

classification scheme based on domains,

attributes and, features and functions of

software system. Classification of software [4]

allows us to organize collections of software

artifacts into a efficient searchable structure. In

last decade, various techniques applied for

software artifacts classification.

Our motivation behind this work is the

“elements periodic table” in chemistry, where

all the atoms exist in this world are classified.

Everything that we see around us is either

compound or mixture of these atoms.

Similarly, through identification of the atomic

functionalities of existing software, and their

transition to other software by mutation of

their internal functional composition we can

develop a relation between software

components. We will develop general

classification scheme for software, and this

approach will revolutionize the software reuse

by identifying the pattern of basic

functionalities in a software. We can pick these

basic functionalities from our repository and

create new software from existing software.

Moreover, it will assist developer for RAD,

prototyping, and even user-developed

software.

The organization of remaining paper is as

below: In section II, explains the related work

and some classification schemes. Section III

defines problem statement. We will explain

our proposed approach in section IV. Section

V, implementation, and VI reflect the

integration of the semantic model approach

along with function coding scheme. Section

VII is conclusion of our work and its

limitations.

2. Related Work
Over the years, many researchers have

proposed different classification schemes for

software reuse. Following are some crucial

approaches, which we have covered in our

literature review.

Rajender Nath and Harish Kumar[5] used

the keyword base search for software reuse.

Their approach has three parts. For storage, the

software component is stored in the form of

component files, and an index is maintained

which has the keywords related to the

component. The authors in [6] proposed an

approach for efficient software component

retrieval for reuse. They suggested software

component retrieval system based on

ontology, metadata, and faceted classification

for storage and retrieval of components. [7]

Proposed an approach to use automatic

classification of software identifiers by using

text based classification algorithms such as N-

gram to split the identifiers and extract domain

knowledge concepts. They have reviewed

many text based classification algorithms and

proposed their own algorithm called sword.

The algorithm creates a set of candidate

splitting terms and matches these terms with

the list abbreviation found and analyzed in

source code, and a list of words from

dictionary. The terms, which are fully matched

are retained from the list and are ranked using

the score function from samurai algorithm [6].

Software reuse library is organized using

faceted classification[8] scheme. Search and

retrieval of different software artifacts and

library functions is very effective in this

system. It is very difficult to organize a

reusable software artifact that is why they have

used the faceted classification scheme. This

scheme gives higher level of accuracy and

flexibility in classification. The limiting factor

of technology used is its manual classification

nature. They have also put some limitations on

their reuse infrastructure. This paper has

important role of domain analysis. Integration

Muhammad Hussain Mughal (et al.) Software Atom: An Approach towards Software Components Structuring to

Improve Reusability (pp. 66- 77)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 1 No. 2 July – December 2017 © Sukkur IBA University

68

of reusable artifacts and their adaptation in the

system is very difficult unless a high-level

system is not proposed.

In [9], Lo, D. et al describes the technique

depending on software reusable components

are creation, management and extraction.

Identifications for software function for reuse

based on specification were used in[10].

Prieto-Diaz and Freeman [11] have proposed a

software reuse library system, which they

called Reuse Description Formalism (RDF),

improves organization of software

components. They have proposed two

concepts forming the core of RDF’s model:

instance and classes. Instances include

description of objects, which are reusable. Lo,

Cheng [12], the step towards reliability of

software using pattern mining techniques.

They introduce classifier to generalize the

failures and to identify the other unknown

failures of it. Zina Houhamdi [13] defined the

benefits of the software reuse, as it is a

promising strategy for improvements in

software quality, productivity and

maintainability as it provides for cost effective,

reliable, and accelerated. Software factories

were developed extracting the pattern keeping

in view critical axes of innovation from

abstraction to specification[14].

3. Problem Statement
Software reuse enhances productivity and

reliability of software product. It saves time

and cost as there is no prior testing required for

reusable software artifact. Our hypothesis is

“To design a sustainable semantic software

classification scheme that can incorporate the

existing softwares designed without intent of

reusability and support new software with

semantic arrangement and efficient retrieval.

From inspiration of “Element Periodic Table”

in chemistry, we proposed semantic

classification and retrieval.

3.1. Relation with Existing Approaches

In implementation of software

classification, we have followed different

research papers. Moreover, we found schemes

relevant to our approaches given:

3.2. Faceted Classification:
Faceted classification scheme

described by Gajala and Phanindra [4]presents

solution to the problem many researchers face

during classification. In faceted classification,

classes and modules are assembled together

and assigned predefined keywords from facets

lists. It provides higher accuracy and flexibility

in classification. Faceted classification scheme

improves search and retrieval of reusable

software artifacts and improves selection

process of reusable artifacts.

In our approach, the periodic table

and tree parsing are used for efficient

organization of software components. Well-

structured component improve accuracy of

search and retrieval of artifacts and make

flexible selection process of reusable artifacts.

3.3. Enumerative Scheme:

In this approach[4],all classes are

predefined. It is mostly used in school libraries

to arrange the books of different departments,

like biology chemistry, computer etc.

Librarian selects the books which best fit its

location which illustration can be Dewey[13]

Decimal system used to classify books.

In our project, we designed GUID

for efficient search and storage. However, this

scheme is one-dimensional with collision

bucket support, means if we get more than

massive similar reusable artifacts in with minor

variation in one place, we save that item with

collision number that would represent similar

item with minor variation. Otherwise, it would

not be scalable classification scheme. While in

tree based, we evade this problem by

determining the depth. Furthermore, we

allocate the same position with structured

metamorphosis of software component to

improved scalability.

3.4. Attribute Value:

 Gajala and Phanindra [4] uses set of

attributes to classify an artifact. For example,

different books in library have different

attributes, like title, author, publisher, ISBN

Muhammad Hussain Mughal (et al.) Software Atom: An Approach towards Software Components Structuring to

Improve Reusability (pp. 66- 77)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 1 No. 2 July – December 2017 © Sukkur IBA University

69

number, date, and a classification code in

Dewey decimal system.

In our proposed work, we used set of

attributes like version number, domain,

classes, projects, and functionalities for

transitional threshold to classify software

position in our proposed software periodic

table.

3.5. Free Text

Classification: Free text approach states that

search and retrieval is made using text in the

documents of artifacts. It is the keyword-based

search. However, there are disadvantages of

this approach. One is its ambiguous nature, and

second it may search many irrelevant objects.

 We have used keyword based search

approach in our implementation work to

search the particular software artifact from the

repository by generating a code of that

particular keyword that accelerates the search

efficiency.

4. Our Approach
We explored the dense literature related to

our study; we came up with a novel approach

of classifying software for reuse influenced by

chemical element periodic table. It arranges all

the known elements in an informative array.

Elements are arranged left to right and top to

bottom in order of increasing atomic number.

4.1. Mapping chemical elements to

Software elements

In this section, we are developing

relationship between software and software

elements. We mapped software function (set of

commands to compute) to chemical atom.

Molecule to program for example, molecules

of CO2 and CO both contains same type of

atoms, but due to difference in the number of

atoms, they exhibit different behavior. It is in

case of software where mutation single

function would change the behavior of

program interface. This simulate the variation

same genre of software. A combination of

basic functionalities of software with

computability heuristic is valid user program

compared to unstructured or invalid structure.

We can embed these valid tested function

and/or programs to develop software

component. We can identify the valid

programs from existing repository as well as

upcoming software collections.

 In Periodic table, the different rows of

elements are called periods. The period number

of an element signifies the highest energy level

an electron in that element occupies and

grouped based on semantic commonalities. We

have developed mapping relation in chemical

and periodic table characteristics as shown in

table 1.

 Software based on the functionality are

categorized in groups such system software,

application software, etc. People visualize

elements from organization pattern. By

examining an element's position on the periodic

table, one can infer the electron configuration.

Elements that lie in the same column on the

periodic table (called a "group") have identical

configurations and consequently behave in a

similar fashion chemically. For instance, all the

group 18 elements are inert gases. The periodic

table contains an enormous amount of

important information. People familiar with

how the table are structured can quickly

determine a significant amount of information

about an element[15]. From the software table

where software lie in groups based on the

functionality exhibited by software that

recursively from functions. .Therefore, in our

software repository, we are classifying the

software in groups based functionality and

represented by ontology supporting high

visibility. We designed coding scheme for

efficient retrieval.

Muhammad Hussain Mughal (et al.) Software Atom: An Approach towards Software Components Structuring to

Improve Reusability (pp. 66- 77)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 1 No. 2 July – December 2017 © Sukkur IBA University

70

5. Software Periodic Table (SPT)

Approach
We have merged two different aspects for

software classification into groups and

assigning codes for their position.

5.1. Categorization

Categorization is essential aspect software

periodic table. In which, we will classify the

software into groups (based on the grouping

semantic of periodic table). We utilize the

concept of periodic table in order to categorize

software’s according to their level of

complexities. As in periodic table, its elements

are categorized with their respective to

chemical properties, atomic number, and

electron configuration. Therefore, in SPT the

organization of the software’s according to

their category of respective functionality and

type features they provide. We assign the ID to

each category based on type of software. We

establish grouping scheme for top-level

hierarchy for reducing search space

complexity. Complexity of search space

directly referred to the repository size of a

particular dataset. It means for the software

enumeration problem, we should have

structure which traverse the repository easily

and at every level downward reduce

complexity. We should have the knowledge of

iteration for a particular search referring the

dataset; more precisely enumerator can point

directly our required search based on GUID

coding scheme. Our proposed structure can be

indexed at any level and based on segments

characteristic. This will increase the search

efficiency. Large set problem is broken down

in subset of category in order to reduce search

space. The detailed layout of the distribution of

the bits and calculations shown in the Figure 1.

We consider the realization of software search

problem as:

 All Software as a universal set S,

 Software Types (Application Software

and System Software,…) ST are subset

of S

 Software Category (For each in ST) are

Set SCA

Table-I: Mapping of Chemical
Elements and Software Attributes

CHEMICAL
ATTRIBUTES

SOFTWARE
ATTRIBUTES

Atomic Number:
The atomic number

indicates the number

of protons within the

core of an atom.

The atomic

number is an

important concept of

chemistry and

quantum mechanics.

An element and its

place within the

periodic table are

derived from this

concept [15].

We the version

number of software

has format Major,

Minor, Build. It

means release date

or year, also it means

some minor

updating in software

and major means

some major changes

in software, like

altering the design of

software.

Atomic Mass: the

name indicated the

mass of an atom,

expressed in atomic

mas units (amu).

Most of the mass of

an atom is

concentrated in the

protons and

neutrons in the

nucleus [15].

We can relate it

to the granularity of

the software. The

usability of software

according to

functionalities and

features it. It can

vary every time the

software updated.

Density: The

density of an

element indicated

the number or units

of mass of the

element that are

present in a certain

volume of the

medium.

In software

terms, it is related to

complexity of

software a measure

of resources

expended by a

system, interacting

with a piece of

software perform a

given task.

Muhammad Hussain Mughal (et al.) Software Atom: An Approach towards Software Components Structuring to

Improve Reusability (pp. 66- 77)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 1 No. 2 July – December 2017 © Sukkur IBA University

71

 SCS which are again subset of each

software type

 S ={ Set of All Softwares}

 ST={All Application Software,

System Software}

 SCA ={All software Categories of

Application Software }

 SCS ={All software Categories of

System Software }

 O ={ All software of other category }

 SCA= { ERP Solution, Grid solution,

realtime application,n}. Similarly,

SCA={Operating Systems, disk

utilities, device drivers.. n

 SCS ={All software Categories of

System Software }

 O ={ All software of other category }

Since SCA, SCS, and O etc, are disjoints set.

Therefore, search space is divided at each level

up to more than 50% finite number the

categories are explained as follows.

 SCA= { ERP Solution, Grid solution,

real-time application ...n}. Similarly,

SCA={Operating Systems, disk

utilities, device drivers.. n}

Now if we consider set of operating system

 OS ={ windows , Linux, mac, ..} and

disk utilities

 DU = {dr. disk, disk cleaner...} then

both OS and DU are disjoint set results

reduction in search space.

5.1.1. Software Node: This is top node.

Initially controled search pointer will be here as

shown in Fig. 2. Down to the hierarchy the

complexity of the search space will be reduced

gradually.

5.1.2. Software Type Node:
 This will be the second node in the software

enumerator. There major type nodes would be

assigned ID of 32 bit for each type. This

segment of 32 bits (From left to right bit 1 to bit

32) will contain the information for System

Software as per given below detail SCA={ERP

Solution etc } bits (From bit 9 to bit 16) will

be length of function, module, package, class

name as following classification.

 Software Project

 Package/release

 Software Module

 Software Sub-Module

 Software Class/Structure

5.2. GUID coding

Since the periodic table the elements are

being classified according to their atomic

number in the increasing order, we classify the

software with their GUID in SPT on some

particular location.

GUID for SPT is assigned on semantic of

software functionality bases groups in form of

classes as shown in figure 2. The evolved

software component with additional feature

and functionalities change its version number

to a higher one. For example, if we have a

software name A with have GUID, evolved

version will be stored by almost the same ID

but flipping a bit on collision bucket. We

design an enumerator in java programming

language that reads the name of the software

system, software project, package, module,

sub-module, class-name, and function then

generate the code for that in and if there are

more than one function with the same name

then C bit is set 1 for second 10 for third and

so on for counting collisions. The anomalies in

this scheme are that the sum of ASCII of

different function may result in the same code,

but there would be very few collision

comparative reducing to search complexity

less than O(logN).

This coding scheme is performed for

each of the following node. The binary format

for each part of 32 bits separated by: and

further divided in 2 parts that’s separated by

“.” The first part is further divided by - and part

left side of “-“is number of collision C and

right side of the”-“and before “.” is the length

L of that software system, software project,

package, module, sub-module, class-Struct-

name, function, and second part after “.” will

be the number of the function. Software

system, software project, package, module,

Muhammad Hussain Mughal (et al.) Software Atom: An Approach towards Software Components Structuring to

Improve Reusability (pp. 66- 77)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 1 No. 2 July – December 2017 © Sukkur IBA University

72

submodule, class-Struct-name, function. FN is

number code of that Function assign that is

generated base on summation of ASCII

character of the Function name. For example,

SUM =83+85+77= 245. Function/subroutine

the enumerator converts the each category

node (software project name, software

package name, software module name,

software sub-module name, software class-

struct and function name) into equivalent

binary code. Once the conversion is being

completed then enumerator looks the

repetition of each attribute in a file where the

binary code value for each function detail is

placed. If it finds the repetition then deals the

particular attribute as collision and makes

increment in the value by 1. Fig.1 represents

the detail of collision of attribute and it also

shows that how the binary value is represent in

scheme for each of above five categorization

nodes.

Figure 1: Layout of generating GUID for function

name

The all bits one’s represents absence

associations in upper & lower hierarchy.

Where the all bits zero represent absence of the

particular nodes or skip codes. All other codes

represent some node. The path root node to

desired category is established and required

source code file for the link is displayed to

user. In the case of skip code or multiple

version of same function or class multiple files

are shared to user. Tree based representation.

A tree is useful for exploring a large search

space and reduces search complexity. Now in

relation with our approach nodes in the tree are

considered to be the domains, sub-domains,

software, features, modules, classes etc.

Branches of nodes are disjoints and leaves here

would be the features, classes, modules, and

functions of the software. We have used tree to

show readers the flow of forthcoming software

component and their auto-placement in the tree

in their esteemed domain. The path from root

node to leaf represents the semantics of the

feature usability. Decision trees are very much

helpful structures in building and interpreting

because they are straightforward. The tree

representation is efficient visualization and

retrieval.

5.3. Software Quality

Quality of software is essential attribute in

the Software development processes. The

quality of the software has directed relation

with customer satisfaction and organization’s

reputation. Developer appraisals, scheduling,

and deadlines of release are affected by

magnitudes of bugs in software products. The

reusable software component enhance the

productivity [16] and quality by via tested

software component’s reusability[17].

Software quality classification techniques

described in [18]. The classification based

modeling technique have proven to be better in

achieving software quality facilitated the

developer most relevant and minimum

customize OTS component. The software

quality evaluation techniques include CART

(classification and regression tool)[19], S-

PLUS[20], C4.5 Algorithm[21, 22], Treedisc

algorithm[23], Sprint-sliq algorithm, logistic

regression, case-based reasoning.

6. Implementation
Now according to our approach we have

classified some of the real time software

categories. We have extracted some basic

functional components from GITHUB[24, 25]

the one of most popular open source projects

repository, collected from local industry and

generated for experiments. The software

component were stored in cloud based

repository and structure is defined in ontology

and data stored using xml format. The concept

Muhammad Hussain Mughal (et al.) Software Atom: An Approach towards Software Components Structuring to

Improve Reusability (pp. 66- 77)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 1 No. 2 July – December 2017 © Sukkur IBA University

73

was implemented and evaluated by designing

a system as shown in figure 3.

6.1. Functionalities based Classification

technique

In this technique, we have classified the

software functionalities present in our

software repository into different concerned

domains and sub-domains. It behaves like a

software tree in which at the first level the core

domain of that functionality/feature is present

and then at the next level its sub-domains are

discovered and further sublevel are identified

untill there are no more labels exists. Then on

selecting a particular sub-domain, a user will

then select their required functionalities from a

list of those present in software repository.

These nodes of functionalities behave like leaf

as in n-ary tree with n number of disjoint

categorization.

Figure 2: Classification of Software Components in

Successive Hierarchy

6.2. Keyword-based technique

In this technique, we have considered a

number of different keyword-based search

techniques in order to select required

functionalities. We applied keyword based

search on each node for exploring the number

similar function in the same domain. Further,

it supports user to exclude the restriction of

domain and exploring the repository on

keyword based on parent node hierarchy. For

optimization of search time the name of child

node are assigned a unique key from their

names ASCII sum. The collision are handled

and assigned codes and position adjacent to

colliding nodes.

Figure 3: Experimental System Description

6.3. Hybrid technique:

This technique is the combination of the

classification-based and keyword-based

technique. In this approach, we have divided

the softwares in different domains and sub-

domains in the same way we have done in the

classification-based technique. The element of

keyword-based technique comes into play

when user selects their required domain and

sub-domain and then at that point they specify

their required functionalities for that software

domain. As all of the above techniques require

us to maintain a repository for different

functionalities of softwares from different

domains, we have also considered in our

system using an online software repository

such as github[24] for accessing different

software functionalities to evaluate the owr

coding scheme. In this study, user simply

specifies the programming language (such as

java, C#) from which to obtain required

software functionalities and then names those

functionalities, and our system will fetch those

software codes from the website based search

narrow down by user. The distribution codes

in our repository in respect of programming

languages are shown in Table 2.

Muhammad Hussain Mughal (et al.) Software Atom: An Approach towards Software Components Structuring to

Improve Reusability (pp. 66- 77)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 1 No. 2 July – December 2017 © Sukkur IBA University

74

6.4. Semantic modeling approach

Semantic representation and

manipulation of huge repository of the

software component play essential role in

retrieving right information with support of

contextual flow to that particular components.

We grouped the elements based on semantic

resemblance characteristics as shown in figure

4.We developed a software repository to

evaluate semantic storage and retrieval of

different context software function, but with

the same name such as withdraw () is different

functionality in banking and university

management system. The keyword based

search will retrieve all functions with this

keyword but by using semantic approach the

right function will be reflected to software

developed depending on the domain

knowledge s/he working on the module,

package, project context. The available

functionality is provided to use and not

existing functionality will be appended to that

repository for later use, same or other software

organizations.

Table- II: Distribution Programming Language

Codes in Our Project

Ra

nk

Lang

uages

%Pro

jects

Ra

nk

Lang

uages

%Pro

jects

1 C++ 30% 6 ASP.

NET

5%

2 C 20% 7 CSS 5%

3 C# 10% 8 JavaS

cript

5%

4 PhP 5% 9 Java 10%

5 HTM

L

5% 10 Html

5

5%

6.5. Unique identification and representation.

Even domain, sub-domain and module

distribution leads towards the constant time

complexity. To improve more searching

efficiency and reducing computation

complexity we store the coding in binary.

 Furthermore, we will be plugin that

will parse the tree further reduce the number

collision. To resolve the issues of the same

computation but different naming would be

resolve using name aliasing feature of the

ontology development. Keyword based

scheme would be embedded to facilitate

exploration functionality of the system.

Figure 4: Semantic Periodic Table

7. Evaluation and Results:
We evaluated our software ontology to

validate the software structuring hierarchy and

information retrievals. The SPARQL[26, 27]

is used for querying and semantic consistency

validation. We configured apache jena fuseki

[28] server on our system to query using

SPARQL. We explored the software structure

using SPARQL queries and results are shown

in Fig.5. We hosted the software ontology and

extracted the results from ontology from

anywhere using, URL and adding prefix for

names spaces for ontology. We can query and

node, searching sub-tree form any particular

node. We can traverse top down from root

node to function leaves and vice versa. First

few results of query are shown in Fig.5.

Figure 5: SPARQL query language for

ontology

Muhammad Hussain Mughal (et al.) Software Atom: An Approach towards Software Components Structuring to

Improve Reusability (pp. 66- 77)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 1 No. 2 July – December 2017 © Sukkur IBA University

75

8. Conclusion
In our research, we have focused on the

methodologies that focus more on the reuse of

existing software components rather than

developing a system right from the scratch that

utilize a reasonable amount of efforts and

resources. We have proposed a novel approach

to classify software based on their basic

functionalities.

 In our proposed scheme, the software tree

is designed in a way that helps in organizing

software components in a hierarchical way,

which in turn facilitates an efficient reuse of

software components. The software tree is

designed in such a way that inputting new

software to this tree will prompt the process of

traversing that software through the hierarchy

of domains and sub-domains and finally

assigning it to an appropriate node. The aspect

of software periodic table in our methodology

is that the software in different domains are so

divided within the table that on adding some

additional functionality/feature within them

will promote them to become a new different

version of software within a domain or a sub-

domain.

9. Future work
The limitations regarding the proposed

methodologies involve the collection of large

amount of software for the software reuse

repository. They feature for searching through

different software available online because of

their availability in compressed folder/files.

 Our research work was an initiative towards

the classification of software like periodic

table. We will extend this research to design a

classification model where all the software can

be classified with sustainable structure

semantic of SPT. We will use feedback

mechanism to stabilize the position of software

atom in logically justified position in SPT.

Different genetic algorithm can be applied for

location optimization of software components

[29, 30]. Ant colony optimization [31] would

be used to assure the quality of software

component. We design and develop

programming IDE Add-In that crawls our

repository, facilitate developed available

feature for reusability of existing component

and update repository for custom build function

from users

ACKNOWLEDGEMENT
 We acknowledge the support of Sukkur

IBA University & Muhammad Ali Jinnah

University, Karachi for this research. We pay

thanks to the CRUC (Center for research in

Ubiquitous computing) team that provided us

the environment promoting such research

activities. We are thankful for github and,

industry for sharing the software samples.

REFERENCES:

[1] Hu, J., et al. (2015). Modeling the

evolution of development topics

using Dynamic Topic Models. in

Software Analysis, Evolution and

Reengineering (SANER), 2015 IEEE

22nd International Conference on.

2015. IEEE.

[2] Clements, P. and L. Northrop, (2002).

Software product lines: practices and

patterns.

[3] Linden, F.J., K. Schmid, and E.

Rommes, (2007). Software product

lines in action: the best industrial

practice in product line engineering.

Springer Science & Business Media.

[4] Gajala, G. and M. Phanindra. A Firm

Retrieval of Software Reusable

Component Based On Component

Classification.

[5] Rajender Nath, H.K.,(2009).

Building Software Reuse Library

with Efficient Keyword based

Search, International Journal of

Computing Science and

Communication Technologies, VOL.

2, NO. 1.

[6] Suresh Chand Gupta1,

P.A.K.,(2013). Reusable Software

Component Retrieval System,

International Journal of Application

or Innovation in Engineering &

Management (IJAIEM), Volume 2,

Issue 1.

Muhammad Hussain Mughal (et al.) Software Atom: An Approach towards Software Components Structuring to

Improve Reusability (pp. 66- 77)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 1 No. 2 July – December 2017 © Sukkur IBA University

76

[7] P. Warintarawej, M.H., M.

Lafourcade, A. Laurent , P.

Pompidor,(2014). Software

Understanding: Automatic

Classification of Software Identifiers,

Intelligent Data Analysis (IDA

Journal) 18(6) (2014) in press.

[8] Prieto-Diaz, R.,(1991). Implementing

Faceted Classification for Software

Reuse, Software Production

Consortium, Herndon, VA.: New

York, USA. p. 88-97.

[9] Shireesha P., S.S.V.N.S.,(2010).

Building Reusable Software

Component For Optimization Check

in ABAP Coding, International

Journal of Software Engineering &

Applications 1.3.

[10] Cimitile, A., A. De Lucia, and M.

Munro. (1995). Identifying reusable

functions using specification driven

program slicing: a case study. in

Software Maintenance, 1995.

Proceedings., International

Conference on. 1995. IEEE.

[11] Prieto-Diaz, R. and P. Freeman,

(1987). Classifying software for

reusability. IEEE software, 4(1): p. 6.

[12] Lo, D., et al. (2009). Classification of

software behaviors for failure

detection: a discriminative pattern

mining approach. in Proceedings of

the 15th ACM SIGKDD international

conference on Knowledge discovery

and data mining. 2009. ACM.

[13] Zina Houhamdi, S.,(2001).

Classifying Software for Reusability,

Courrier du Savoir: Algeria.

[14] Greenfield, J. and K. Short. (2003).

Software factories: assembling

applications with patterns, models,

frameworks and tools. in Companion

of the 18th annual ACM SIGPLAN

conference on Object-oriented

programming, systems, languages,

and applications. 2003. ACM.

[15] Greenwood, N.N. and A. Earnshaw,

(2012). Chemistry of the Elements.

Elsevier.

[16] Case, A.F., (1985). Computer-aided

software engineering (CASE):

technology for improving software

development productivity. ACM

SIGMIS Database, 17(1): p. 35-43.

[17] Tahir, M., et al., (2016). Framework

for Better Reusability in Component

Based Software Engineering. the

Journal of Applied Environmental

and Biological Sciences (JAEBS), 6:

p. 77-81.

[18] Khoshgoftaar, T.M. and N. Seliya,

(2004). Comparative assessment of

software quality classification

techniques: An empirical case study.

Empirical Software Engineering,

9(3): p. 229-257.

[19] Steinberg, D. and P. Colla, (2009).

CART: classification and regression

trees. The top ten algorithms in data

mining, 9: p. 179.

[20] Khoshgoftaar, T.M., E.B. Allen, and

J. Deng, (2002). Using regression

trees to classify fault-prone software

modules. Reliability, IEEE

Transactions on, 51(4): p. 455-462.

[21] Khoshgoftaar, T.M. and N. Seliya,

(2003). Software quality

classification modeling using the

SPRINT decision tree algorithm.

International Journal on Artificial

Intelligence Tools, 12(03): p. 207-

225.

[22] Quinlan, J.R., (2014). C4. 5:

programs for machine learning.

Elsevier.

[23] Khoshgoftaar, T.M. and E.B. Allen,

(2001). Controlling overfitting in

classification-tree models of software

quality. Empirical Software

Engineering, 6(1): p. 59-79.

[24] Dabbish, L., et al. (2012). Social

coding in GitHub: transparency and

collaboration in an open software

repository. in Proceedings of the

Muhammad Hussain Mughal (et al.) Software Atom: An Approach towards Software Components Structuring to

Improve Reusability (pp. 66- 77)

Sukkur IBA Journal of Computing and Mathematical Sciences - SJCMS | Volume 1 No. 2 July – December 2017 © Sukkur IBA University

77

ACM 2012 conference on Computer

Supported Cooperative Work. 2012.

ACM.

[25] Vasilescu, B., V. Filkov, and A.

Serebrenik, (2015). Perceptions of

diversity on GitHub: A user survey.

CHASE. IEEE.

[26] Harris, S., A. Seaborne, and E.

Prud’hommeaux, (2013). SPARQL

1.1 query language. W3C

recommendation, 21(10).

[27] Prud, E. and A. Seaborne, (2006).

SPARQL query language for RDF.

[28] Bansal, R. and S. Chawla, (2014). An

Approach for Semantic Information

Retrieval from Ontology in Computer

Science Domain. International

Journal of Engineering and Advanced

Technology (IJEAT), 4(2).

[29] Bouktif, S., H. Sahraoui, and G.

Antoniol. (2006). Simulated

annealing for improving software

quality prediction. in Proceedings of

the 8th annual conference on Genetic

and evolutionary computation. 2006.

ACM.

[30] Washizaki, H. and Y. Fukazawa,

(2005). A technique for automatic

component extraction from object-

oriented programs by refactoring.

Science of Computer programming,

56(1): p. 99-116.

[31] Srivastava, P.R. and T.-h. Kim,

(2009). Application of genetic

algorithm in software testing.

International Journal of software

Engineering and its Applications,

3(4): p. 87-96.

