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Stabilization of Vertically Modulated Pendulum with

Parametric Periodic Forces
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Abstract

With the application of Kapitza method of averaging for arbitrary periodic force, a vertically
modulated pendulum, with periodic linear forces is stabilized by minimizing its potential energy
function. These periodic linear forces are selected in range [-1, 1], further the corresponding stability
conditions are compared with that in case of harmonic modulation. Later, a parametric control
is defined on some periodic piecewise linear forces, and the nontrivial position is stabilized under
different conditions by just adjusting the parameter.
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1. Introduction

A simple pendulum that is suspended under the in-
fluence uniform gravitational field has versatile appli-
cations in Nonlinear Physics. The Mathematical Rela-
tionships and the differential equations associated with
pendulum plays an important role in the theory of solu-
tions, in the problem of super radiation, in quantum op-
tics and the theory of Josephson effects in weak super-
conductivity [1]. A simple pendulum has only one sta-
ble point i.e. vertically downward position, while a ver-
tically modulated pendulum with very high frequency,
has upward position also stable. This concept was ini-
tialized by Stephenson in 1908.[2, 3, 4]. In 1951, Pjotr
Kapitza explained experimentally such kind of extraor-
dinary behavior of pendulum in detail, and correspond-
ing experimental instrument is known as Kapitza Pen-
dulum [5]. In 1960 Landau et al. examined the stability
of this system driven by harmonic Force [6]. Later on,
Ahmad and Borisenok replaced harmonics force with
periodic kicking forces and modified Kapitza Method
for arbitrary periodic forces [7]. Ahmad also examined
the stability of the system excited by the symmetric
forces with comparatively low frequency of fast Oscilla-
tions [8]. Later on, the behavior and the stability of a
parametrically excited pendulum have been examined
[9, 10]. In 2013, Ahmad used parametric periodic lin-
ear forces for the horizontal modulated pendulum and
discussed its stability by minimizing the potential en-
ergy function [11]. In this paper, the stability criterion
for vertically modulated pendulum, driven by periodic
piecewise linear forces will be discussed.

2. Kapitza Method For
Periodic Arbitrary Forces
with Zero Mean

Consider one dimensional motion of a particle of mass
m in conservative system. If U is potential energy func-
tion, then its equation of motion is

F (x) =
−dU
dx

(1)

In this case the system has only one stable point. If
a periodic fast oscillating force with zero mean is in-
troduced, The system may have more than one stable
point. This fast oscillation means that if ω0 = 2π

T0
is the

frequency due to F1 and ω = 2π
T

is the frequency due
F2 then ω >> ω0. This fast oscillatory force has the
Fourier expansion as

F2(x, t) =
∞∑
k=0

[ak(x)cos(kwt) + bk(x) sin(kwt)] (2)

Here ak and bk are the Fourier coefficients. In Calculus,
mean value of a function f(t) is denoted by bar, if T is
the time period, then mean is defined as

−
f=

1

T

∫ T

0

f(x, t)dt (3)

The Fourier coefficient a0 is defined as

a0 =
2

T

∫ T

0

f2(x, t)dt (4)
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From equation 3 and 4, the mean value of a function is
equivalent to Fourier coefficient a0

−
f∼= a0(x) (5)

The other Fourier coefficients are

ak =
2

T

∫ T

0

f2(x, t)cos(kwt)dt

bk =
2

T

∫ T

0

f2(x, t) sin(kwt)dt

(6)

Ignoring friction, we can say that only two forces are
acting on the system, hence its equation of motion is

mẍ = F1(x) + F2(x, t) (7)

Due to these forces, two types of motion namely smooth
and small oscillations are observed. So we represent the
path of oscillations as the sum of smooth path X(t) and
small oscillation ξ(t)

x(t) = X(t) = ξ(t)

By averaging procedure, the effective potential energy
function can be expressed as

Ueff = U +
1

4mw2

∞∑
k=1

a2k + b2k
k2

(8)

For stability of the system, we have to minimize effec-
tive potential energy function given by 8

3. The Pendulum Driven by
Harmonic Force

Consider a pendulum whose pivot point is forced to vi-
brate vertically (see Figure 1), under the influence of
the harmonic force. The harmonic force is given as

f(t) = sin(wt) if 0 ≤ t ≤ T (9)

Figure 1: Kaptiza Pendulum with Vertical Oscilla-
tion

and shown in Figure 2

Figure 2: sin type force

And the force acting on the pendulum is

f2(φ, t) = mw2 sinφ× f(t) (10)

Its Fourier coefficient is a0 = 0 indicates that its mean
value is zero. By using 6, the other Fourier coefficients
are:

ak = 0

bk = mw2 sinφ
(11)

so the effective potential energy is obtained by using 8

Ueff = mgl(−cosφ+
w2

4gl
sin2 φ) (12)

The following results are obtained after minimizing
equation 12

• The downward position φ = 0, is always stable.

• Vertically upward position φ = π is stable if
w2 > 2gl.

• The position φ = arccos(− 2gl
w2 ) is unstable.

4. Vertically Modulated
Pendulum Driven by
Periodic Linear Forces

Now, replacing the harmonic force with some peri-
odic piece-wise linear forces within the range of har-
monic forces, Our aim is to stabilize the pendulum at
φ = π with low frequency as compared to harmonic
force. These periodic linear forces are T-periodical:
S(t + T ) ≡ S(t). These forces are considered as fol-
lowing.

f2(φ, t) = mw2 sinφ× S(t) (13)

Inclined Type Force: First of all consider an inclined
type force: E(t) = E(t+ T ), given by equation 14 and
illustrated in Figure 3

E(t) = − 2

T
t+ 1 if 0 ≤ t ≤ T (14)
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Figure 3: Inclined Type Force

The force acting on the particle is

f(t) = mw2 sinφ× E(t) (15)

The Fourier coefficient a0 = 0, indicates that
−
E= 0, the

other Fourier coefficients are

ak = 0

bk = mw2 sinφ(
2

kπ
)

(16)

So its potential energy function will be

Ueff = U +mw2 sin2 φ× 1

π2

∞∑
k=0

(
1

k4
)

= U + 0.1097mw2

sin2φ

(17)

Where φ = 0, π and arccos(−4.5579gl

w2
) are the ex-

tremum of 17. After minimizing 17, we have following
results.

• The downward position φ = 0, is always stable.

• Vertically upward position φ = π is stable if
w2 > 4.5579gl.

• The point φ = arccos(− 4.5779gl
w2 ) is unstable.

Quadratic Type force: Next, consider a quadratic
type force: Q(t) = Q(t+ T ) (shown is Figure 4), given
by equation 18

Q(t) =


1, 0 ≤ t < 3T

8
8

T
(
T

2
− t), 3T

8
≤ t < 5T

8

−1,
5T

8
≤ t < t

(18)

Figure 4: Quadratic type force

The force acting upon the particle is

f(t) = mw2 sinφ×Q(t) (19)

The fast oscillating force in Fourier expansion is given
as

Q(t) = mw2 sinφ

∞∑
k=1

(
2

kπ
+

8

π2k2
sin k

π

4
) sin k(wt)

With the following Fourier coefficients

ak = 0

bk = mw2 sinφ

∞∑
k=1

(
2

kπ
+

8

π2k2
sin k

π

4
)

(20)

So the effective potential energy function will be

Ueff = U +mw2 sin2 φ× 1

4

∞∑
k=1

1

k2
(

2

kπ
+

8

π2k2
sin k

π

4
)2

= U + 0.3856mw2

sin2φ

(21)

Where φ = 0, π and arccos(−1.2967gl

w2
) are the ex-

tremum of above system. With 21, the stability of the
system is given as

• The point φ = 0, is always stable.

• The point φ = π is stable if w2 > 1.2967gl.

• The nontrivial position φ = arccos(− 1.2967gl
w2 ) is

unstable.

So, it is observed that, the position φ = π is stabilized
at lower frequency as compared to harmonic force.

Rectangular Type Force: Let’s introduce the rect-
angular type force R(t) = R(t + T ), and the function
R(t) is T-periodic, given in 22, illustrated in Figure 5

R(t) =


1, 0 ≤ t < T

2

−1,
T

2
≤ t < T

(22)
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Figure 5: Rectangular type force

For vertical modulation, the force acting upon the par-
ticle is

f(t) = mw2 sinφ×R(t)

The Fourier coefficient a0 = 0 , shows that
−
f= 0, the

other coefficients are

ak = 0

bk = mw2 sinφ(
4

2k − 1
)

(23)

Using above coefficients, the Fourier expansion is

R(t) = mw2 sinφ
4

π

∞∑
k=1

1

(2k − 1)
sin(2k − 1)wt

The effective potential energy is

Ueff = U +mw2 sin2 φ× 1

4
(
16

π2
)2
∞∑
k=1

1

(2k − 1)2

= U + 0.4112mw2

sin2φ

(24)

With the extremum at φ = 0, π and arccos(−1.2159gl

w2
).

After minimizing 24, we have following results

• The point φ = 0, is always stable.

• The point φ = π is stable if w2 > 1.2159gl.

• The nontrivial position φ = arccos(− 1.2159gl
w2 ) is

unstable.

From the above examples, it is noticed that, at posi-
tion φ = π, the system is stabilized at lower frequency
as compared to previous cases. The above results are
summarized in Table 4.. It is also observed that, at
nontrivial position, as area under the curve increases,
the frequency of oscillation decreases. Harmonic and in-
clined type force has minimum area so they have maxi-
mum frequency as compared to rectangular type force.

5. Parametric Control

Next, a parametric control is defined on quadratic type
force, to control the non-trivial position φ = π. This
force is also T-periodic, Qε(t + T ) = Qε(t). The con-
trol is defined for 0 < ε < 1. This ε-parametric force is
defined as

Qε(t) =


1 0 ≤ t < 1− εT

2
1
ε
(−T

2
t+ 1)

1− εT
2

≤ t < 1 + εT

2

−1
1− εT

2
≤ t < T

(25)

and illustrated in Figure 6

Figure 6: parametric quadratic type force

For vertical modulation the force acting upon the par-
ticle is

f2(φ, t) = mw2 sinφ×Qε(t) (26)

From 25, the other Fourier coefficients are

ak = 0

bk = mw2 sinφ(
2

kπ
+

8

επ2k2
sin k

π

4
)

(27)

Fourier expansion of oscillating force is

f2(φ, t) = mw2 sinφ

∞∑
k=1

(
2

kπ
+

8

(επ2k2)
sin k

π

4
) sin kwtφ

(28)
So, the effective potential energy will be

Ueff = U +mw2 sin2 φ× 1

4π2

∞∑
k=1

4

k4
(1 +

1

εkπ
sin εkπ)2

= −mgl cosφ+mw2 sin2 φ.A

(29)

and

A =
1

π2

∞∑
k=1

1

k4
(1 +

1

εkπ
sin εkπ) (30)

The effective potential energy 29 has extremum at

φ = 0, π, arccos(− 0.5gl

w2.A
).

After minimizing 29, we have the following results

• The system is stable at point φ = 0.

• If w2 >
0.5gl

w2.A
, then the system will be stable at

φ = π.
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Table 1: Stability Comparison of different linear forces with harmonic force

External Force Position Stability Position
Stability
Condition

sin 0 always π w2 > 2gl
Inclined 0 always π w2 > 4.5579gl
Quadratic 0 always π w2 > 1.2969gl
Rectangular 0 always π w2 > 1.2159gl

Table 2: Stability condition of ε-parametric force at φ = π
0 < ε < 1 Sum A Stability Condition

0.9 0.1320 w2 > 3.7879gl
0.8 0.1607 w2 > 3.1114gl
0.7 0.1956 w2 > 2.5562gl
0.6 0.2357 w2 > 2.1213gl
0.5 0.2793 w2 > 1.7902gl
0.4 0.3239 w2 > 1.5437gl
0.3 0.3664 w2 > 1.3647gl
0.2 0.4029 w2 > 1.2400gl
0.1 0.4287 w2 > 1.1663gl

• The nontrivial position φ = arccos(− 0.5gl

w2.A
) is

unstable.

The stability of the system for different values of ε is
summarized in Table 2.
For ε = 0.9, the infinite sum A = 0.1320, and the effec-
tive potential energy function is

Ueff = −mglcosφ+ 0.132mw2 sin2 φ

At the position φ = π, the system is stable if the condi-
tion w2 > 3.7879gl is satisfied, and this value is much
greater than all previous results. Next for ε = 0.8,
the infinite sum A = 0.1606, and the point φ = π is
stable is w2 > 3.1114gl, which gives much better result.
Similarly, For ε = 0.1, the system is stabilized at the
same position with the condition w2 > 1.663gl, and
this result is better than all considered examples. From
above discussed cases, it can be observed that, with the
decrease in value of, infinite sum A is increased, thus
stabilizing the system at relatively lower frequency at
φ = π.

It is also observed that, as ε→ 1, the term A ∼= 0.1098
and the system is stabilized at the position π with
the condition w2 > 3.4.5537gl, and this frequency is
approximately equal to the inclined type force. Thus,
the quadratic type force approaches to inclined type
force as ε → 1, and the system is stabilized with much
greater frequency and is not stable.

However, as ε → 0, the term A ∼= 0.4386, and the
position φ = π is stable if the condition w2 > 1.14gl
is satisfied, and this frequency of oscillation is lower
than rectangular type force. Observe the Table 2, the
rectangular force fall between ε = 0.2 and ε = 0.1, and
for the parametric force with ε = 0.1, the frequency

of oscillation becomes lower than that in case of rect-
angular type force. Hence, by defining the parametric
control better results are achieved.

6. Conclusion

Using Kaptiza method of averaging for arbitrary pe-
riodic forces, the vertically modulated pendulum ex-
cited by periodic linear forces is stabilized at φ =
π with the frequency w, that was found to be suf-
ficiently less relative to the case of harmonic mod-
ulation. Moreover, the rectangular type force was
found to be the best. The stability conditions at non-
trivial position φ = π improves by defining a para-
metric control on some of the periodic piecewise lin-
ear forces. Hence, by adjusting the parameter, the
system is stabilized with less oscillating frequency.

Figure 7: Quadratic type force for different values
of ε
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Figure 8: Ueff is minimum at φ = πifw2 > 1.14gl

Figure 9: Ueff is always minimum at φ = 0
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