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Abstract 

 Plug-in Electric Vehicles (PEVs) are becoming the more prominent solution compared 

to fossil fuels cars technology due to its significant role in Greenhouse Gas (GHG) reduction, 

flexible storage, and ancillary service provision as a Distributed Generation (DG) resource in 

Vehicle to Grid (V2G) regulation mode. However, large-scale penetration of PEVs and growing 

demand of energy intensive Data Centers (DCs) brings undesirable higher load peaks in 

electricity demand hence, impose supply-demand imbalance and threaten the reliability of 

wholesale and retail power market. In order to overcome the aforementioned challenges, the 

proposed research considers smart Distributed Power System (DPS) comprising conventional 

sources, renewable energy, V2G regulation, and flexible storage energy resources. Moreover, 

price and incentive based Demand Response (DR) programs are implemented to sustain the 

balance between net demand and available generating resources in the DPS. In addition, we 

adapted a novel strategy to implement the computational intensive jobs of the proposed DPS 

model including incoming load profiles, V2G regulation, battery State of Charge (SOC) 

indication, and fast computation in decision based automated DR algorithm using Fast 

Performance Computing resources of DCs. In response, DPS provide economical and stable 

power to DCs under strict power quality constraints. Finally, the improved results are verified 

using case study of ISO California integrated with hybrid generation.  

Keywords: Smart Distributed Power System, Plug-in Electric Vehicles (PEVs), Demand 

Response (DR), Data Centers, Renewable Energy 

1. Introduction 
  Transport sector is one of the major 

contributor in rising energy demand, 

environmental pollution, GHG emissions, and 

fuel consumption as presented Figure 1. 

Likewise, growing trend towards internet 

traffic, e-commerce, big data, increasing 

digital contents enlarged the workload and 

ultimately maximize the power consumption 

of DCs [1]. Besides the Residential, 

Commercial, and Industrial (RCI) load, 
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combine PEVs fleet charging, and massive 

energy consumption of DCs brings higher load 

peaks in overall electricity demand.  

  This massive power demand 

increases the stress on power system hence, 

disturb the balance and reliability of power 

system. First, we proceed with the detailed 

description regarding impact and role of PEVs 

in power system. PEVs are recently the 

emerging paradigm that provide undeniable 

socio-economic benefits, Greenhouse Gas 

(GHG) reduction, and replace gasoline fuels 

dependency with electricity, without violating 

the consumer preferences [2]. Besides, PEVs 

have the potential to offer reliable 

performance, safety, versatility, energy 

storage, and bidirectional power flow 

operation within smart grid.  

 

Despite the facilitating nature, large scale 

pervasion of PEVs increase peak load demand 

that further provoke considerable load impact 

on DPS if not properly managed and 

controlled [4]. However, optimal power 

consumption in charging of PEV’s fleet 

become a challenge for modern researchers. 

Therefore, the authors in [5] presented 

gamming algorithm and real time load 

management approach [6] to optimize power 

consumption in PEV’s charging. Likewise, 

optimization algorithms concerned with peak 

load demands of bulky EVs are presented in 

[7], and [8]. While, virtual power player based 

simulation technique is applied to accomplish 

DSM and V2G operations [9]. While, the 

authors in [10] incorporated DR scheduling 

policy for energy management of PEVs.  

  Secondly, another big challenge is 

the massive energy consumption of DCs 

including; Google, Microsoft, Amazon, 

Apple, and Facebook DCs. Just a single 

renowned Google DCs utilize more than 260 

MW power, which can satisfy the power 

demand of 100,000 to 200,000 people. 

Likewise, Microsoft DC in Quincy, 

Washington utilize 48 MW electricity that is 

enough to fulfil the power demand of 40,000 

homes [11]. In 2013, the power consumption 

of DCs in U.S. was approximated 91 billion 

Kilowatt-hours. While, the future 

consumption is expected to reach 140 billion 

Kilo-Watt hours in 2020 and annually 100 

million metric tons of carbon is created due to 

DC power utilization [12].  

  The literature review suggests that 

power system researchers are independently 

implementing various control schemes and 

optimization algorithms to minimize the 

distributed power consumption [13], [14].  

  Correspondingly, DC operators are 

individually using optimization strategies to 

minimize the operational cost and maximize 

the overall revenue. In the proposed work, we 

present a novel solution to utilize the online 

computing services of DC to solve the 

complex and computational intensive 

functions of DPS in smart grid like; a) fast 

computational response in DR services, b) fast 

information and communications flow 

between user and ISO, c) online large flexible 

volatile storage availability, and d) fast 

performance of optimization algorithm for 

selecting the appropriate available resource to 

meet the desired load demand. To the best of 

our knowledge, this holistic vision has not 

been explored in the power system domain. 

The main contributions of our work are: 
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 Initially, we modelled fixed and 

controllable loads, and mix-generation 

resources connected to utility grid/ISO, 

 The decision theory based multi-

objective constrained optimization 

algorithm based on proposed model is 

implemented on ISO California, which 

constitutes about 71,823 MW generation 

capacity and have 28,000 MW peak load 

demand for a typical day in May 2016, 

 We consider both PEVs and DCs load as 

prosumers, these are not only act as 

electric load but also provide ancillary 

services to the proposed DPS model, 

 Grid supply and demand balance is 

sustained by using time and incentive 

based DR strategies (scheduling, shifting, 

and curtailment of load), 

 Data center computational services are 

encouraged to accomplish fast 

computations to sustain the reliability of 

overall power system hence, fast and 

reliable services encourage customers to 

participate in DR programs. 

  The rest of the paper is organized as 

follows: Section II describe the multi-

objective model of the proposed system 

design. In this section, we implemented 

decision based theory algorithm. Later, 

performance evaluation and the impact of 

ancillary services of data center on power 

system reliability and also revenue model of 

data center is analyzed in section III. Section 

IV concludes the paper with a brief summary 

and proposal enhancement of the current 

work. 

2. System Model Design 
 In order to accommodate large-scale 
deployment of distributed RES and EVs 
penetration, unlike traditional deterministic 
optimization approaches, we are dealing with 
load/generation multi-criteria patterns hence, 
static scalar optimization is not optimal 

solution. However, to overcome the 
limitations, we formalize a constrained multi 
objective optimization problem that can be 
solved by any following non-linear 
programming techniques e.g. goal-attainment 
method, normal boundary injection, strength 
Pareto evolutionary algorithm, modified fuzzy 
based evolutionary algorithm. As, the 
abovementioned algorithms work perfectly 
when input parameters are determined. 
 However, in our work input conditions are 
uncertain hence, upgraded modified 
algorithms are required to incorporate data 
uncertainties in real time systems. The system 
architecture is demonstrated in Figure 2. 

Service Aggregator ISO / Utility Company

Fleet of Electric Vehicles
V2G operation

 

Figure. 2: System Architecture of the 

Proposed Model Design 

 In the proposed methodology, the desired 
objective is to maximize the revenue for both 
the utility/ISO and its customers. Customer’s 
revenue is maximized by encouraging their 
participation in DR programs in order to 
reduce the power consumption and electric 
bills as presented in (1); 

 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = ∑ 𝑃𝐹(𝑡)
𝑇
𝑡=1 ∑ 𝐿𝑖(𝑡)

𝑁
𝑖 +

𝐶𝑠𝑒𝑙 ∑ (∑ 𝐿𝑖(𝑡) − 𝑋
𝑁
𝑖=1 )

2
𝑇
𝑡=1                       (1)  
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   𝐿𝑖(𝑡) = 𝐿𝑖
𝐹(𝑡) + 𝐿𝑖

𝐶(𝑡) + 𝐿𝑖
𝐸𝑉(𝑡) +

𝐿𝑖
𝐷(𝑡),   ∀ 𝑡 𝑎𝑛𝑑 𝑖                                         (2)  

       𝑋 = (1/𝑇)∑ ∑ 𝐿𝑖(𝑡)
𝑁
𝑖=1

𝑇
𝑡=1                (3)  

Where 

𝑃𝐹(𝑡)    total power consumption by fixed  
 load at time 𝑡; 
 𝐿𝑖(𝑡)     sum of all fixed and controllable 

 loads at time 𝑡;  
𝑋 average daily power consumption of user 𝑖  
   at time 𝑡  

𝐿𝑖
𝐹(𝑡)    total Fixed load of user 𝑖 at time 𝑡 
𝐿𝑖
𝐶(𝑡)    total controllable load of user 𝑖 at time 

𝑡 
𝐿𝑖
𝐸𝑉(𝑡)  total electric vehicle load of user 𝑖 at 

time 𝑡 
𝐶𝑠𝑒𝑙    C-select ranges [0:1] and describe 

dynamic of uncertain load  

As, the above problem is comprised of two 

objective functions hence, the model can be 

re-written as; 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝐹1 + 𝐹2  where, 

     𝐹1 = ∑ 𝑃𝐹(𝑡)
𝑇
𝑡=1 ∑ 𝐿𝑖(𝑡)

𝑁
𝑖   ,     

Figure. 3: Flow of Information between ISO and End-Customers 
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  𝐹2 = 𝐶𝑠𝑒𝑙 ∑ (∑ 𝐿𝑖(𝑡) − 𝑋
𝑁
𝑖=1 )

2
𝑇
𝑡=1 ,  

The generalized representation of the 
proposed optimization problem is modelled in 
(4) 

{
 
 
 
 

 
 
 
 𝑚𝑖𝑛

𝑥
      𝛼𝐹1

𝐹1(𝑥)

𝐹1
+    𝛼𝐹2

𝐹2(𝑥)

𝐹2
            

𝑠. 𝑡.    𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑆𝑂𝐶(0) = 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑆𝑂𝐶(𝑇),

   𝑃𝐺𝑅𝐼𝐷(𝑡) + 𝑃𝐷𝑅𝐸𝑆(𝑡) ≥ 𝑃𝐿𝑖(𝑡)                     

  𝑃
𝐿𝑖
𝐶(𝑡)

= 0      ∀  𝑡 𝜖 [𝑇𝑂𝑁  , 𝑇𝑂𝐹𝐹] 

  𝑃𝐺𝑅𝐼𝐷(𝑡)𝑚𝑖𝑛 < 𝑃𝐺𝑅𝐼𝐷(𝑡) < 𝑃𝐺𝑅𝐼𝐷(𝑡)𝑚𝑎𝑥

∑ 𝐿𝐵 𝑖
𝑁
𝑖=1 < ∑ 𝑥 𝑖

𝑁
𝑖=1 < ∑ 𝑈𝐵 𝑖

𝑁
𝑖=1

 

(4) 

𝑃
𝐿𝑖
𝐶(𝑡)

      power consumption of controllable 

load of user 𝑖 at time 𝑡 
𝑇𝑂𝑁          Start time of the DR event duration 

𝑇𝑂𝐹𝐹          Stop time for the DR event duration 

𝑆𝑂𝐶(0)  initial state of the charge of the 

storage battery 𝑆𝑂𝐶(𝑇)   final state of the 

charge of the storage battery 

  The proposed optimization model 

in (4) perform the revenue maximization 

in the presence of defined constraints. The 

optimized outputs contain DR time vector, 

dynamic load profiles, and available 

generation profiles to sustain DPS’s 

reliability and balance between the 

demand and supply.  The customers are 

able to schedule their electric load by 

participating time based and price based 

DR programs. In this way, customers 

maximize their revenue by reducing 

electric consumptions and bills. Likewise, 

when users minimize their consumption 

then high peaks will be flattened by valley 

filling and reliability of proposed DPS 

further improve. The flowchart of overall 

system is presented in Figure 3.  

3. Performance Evaluation 
3.1. Case Study 

 Worldwide, US is leading in sales of 

PEVs and particularly largest number of sales 

and registration of EVs are observed in 

California State as presented in Figure 4 [15]. 

Therefore, we consider the case study of ISO 

California (CAISO) and collected it data for 

simulation purpose to analyze the impact of 

PEVs penetration on real power market. Total 

mixed installed generation capacity of ISO 

California energy sources is observed 71,823 

MW while, the average peak load demand of 

May 2016 is 28,000 MW. The total 50,000 

EVs are considered with annual mileage of 

14,600 miles per day for each EV. In this 

work, the major contributions are based on 

large scale integration of RES and PEV’s 

fleet. However, the ISO California is rich in 

RES and capable of dealing large number of 

EVs as demonstrated in Figure 5 hence, the 

state perfectly matches the proposed 

objective. 

 

 

Figure. 4: Worldwide Sales of EVs from 2010 – 

2016 [15] 

In California, more than 50% of PEVs sales 

are analyzed. As, large scale integration of 

PEVs desire large storage bank hence, PEV 

fleet can provide large storage to intermittent 

RES.Meanwhile, combine charging of fleet of 

PEVs also impose adverse effect on grid 
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Figure 5: Contribution of California State in 

Total US Sales of PEVs [15] 
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overload, which is further elaborated in this 

paper. 

3.2. Supply and Demand of ISO 

California 
 The total generation capacity and 

average load demand of ISO California is 

presented in Figure 6. While, net renewable 

generation capacity is illustrated in Figure 7. 

In this case, the grid is not overloaded because 

of large scale renewable potential of 

California. While, the state is perfectly suit to 

analyze the impact of PEVs charging on 

power system. 

 

Figure. 4: Installed generation and average 

load demand of ISO California 

 

Figure. 5: Average RES Generation of ISO 

California in Typical Day May 2016 

3.3. Behavior of Uncontrolled EV 

charging on Load Profiles 
 In this research, we introduced three 

charging scenarios of 50,000 EVs. However, 

the impact of each scenario is evaluated. In 

first scenario, the owners are interested to 

charge their EVs just after coming back to 

home from evening to late night. However, the 

combine charging of EVs at same time 

increase average residential load and brings 

undesirable higher peaks in overall load 

demand as shown in Figure 8. Furthermore, 

without any proper control the peak demand 

in residential load is almost doubled, which 

necessitate the increase in base load 

generation, increased power losses, and 

disturbed the sustainability and reliability of 

power system.  

 

Figure. 6: Impact of Uncontrolled EVs on 

load demand in Scenario 01 

While in the second scenario, the EV’s owners 

are interested to charge their EVs in midnight 

hours when the prices are low. The impact of 

the charging of all EVs in these hours increase 

the load peaks for shorts hours Figure 9. In DR 

programs section, we overwhelmed these 

large peaks in load demand.   
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Figure. 7: Impact of Uncontrolled EVs on 

load demand in Scenario 2 

PEV’s owners are interested to charge their 

EVs in early morning hours. The combined 

charging effect is analyzed in Figure 10 while, 

next section proceeded with DR 

implementation to minimize this effect.  

 

Figure. 8: Impact of Uncontrolled EVs on 

load demand in Scenario 3 

3.4. EV Charging Controlled using DR 

Programs 
 DR is referred to the changes adopted 

by the customers in order to minimize the 

power consumption, when power system is 

jeopardized. PEVs are considered as the cheap 

promising DR resource to enhance power 

system reliability by minimizing the load 

fluctuations [16]. DR programs are basically 

divided into two main groups namely; a) 

Incentive based Programs (IBPs), and b) Price 

Based Programs (PBPs). PBPs are further 

categorized into Time of Use (TOU), Real 

Time Pricing (RTP), and Critical Peak Pricing 

(CPP). In PBPs, usually the electricity prices 

are more during higher peak demand and less 

during low peaks [17]. While, IBPs are 

offered to customers who show willingness to 

participate in DR programs through credit bill 

or discount rate. In this work, we incorporated 

PBPs to select the pricing policies for the 

incoming load profiles and IBPs are employed 

in order to get benefit from ancillary services 

of PEVs in V2G operating mode in higher 

peak hours. RTP DR strategy in scenario 01 

verify load reduction and minimize spinning 

reserves and base load generation as presented 

in Figure 11. 

 In Figure 12, TOU pricing scheme is 

presented (Not to scale) while, comparative 

results with Figure 9 declare the huge 

reduction in peak load demand from 28 (unit 

MW) to 20 (unit MW). However, this is a big 

achievement and it allow the flexibility to 

accommodate more EVs.   

 

Figure. 9: Load Reduction Using RTP DR Scheme 

in Scenario 1 
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Figure. 10: Load distribution using TOU 

pricing scheme in Scenario 2 

Likewise, CPP DR event is called when the 

residential demand exceeded 20 thousand 

MW as illustrated in Figure 13. During CPP 

event, the prices are high so customers 

schedule or shift their load in peak hours and 

power system balance maintained due to load 

curtailment.  

 

Figure. 11: Implementation of CPP DR Strategy 

in Scenario 3 

3.5. Ancillary Services of Green Data 

Centers 
 In this work, the power hungry data 

centers are not only considered as an electrical 

load but also as an opportunity, because smart 

grid need fast computational infrastructure to 

visualize, monitor, manage, and control its 

applications. The holistic approach of this 

paper declares that the incorporation of fast 

parallel cloud computing services of data 

center enhance introduce the concept of 

virtualization in power system by providing; 

a) volatile flexible economical energy storage 

capacity, b) decrease the computational time 

of the tasks of proposed DPS, c)  improve 

reliability of the system in term of service 

evaluations, and d) power system do not need 

to install large computational infrastructure, 

hence cost and revenue optimization is 

achieved in the proposed work, the ancillary 

services of cloud data center are highlighted in 

Figure 14. In this paper, we implemented 

decision based theory optimization algorithm 

to accomplish enhanced reliability of power 

system by using DR programs. 

 The simulation model is then 

evaluated through Amazon EC2 cloud in order 

to ensure the computational intelligence of the 

proposed model. In the presence of fast 

computing services of the data center the 

convergence and scheduling time of the DPS 

jobs/tasks is reduced and improved
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Figure.14: Cloud computing features for Power 

System 
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reliability. In the light of data center services, 

the average residential load without DR and 

with DR are depicted in Figure 15. However, 

it is cleared from the results and discussion 

that EVs are cheap controllable sources for 

DR. In this case study almost 10 (thousand 

MW) reduction (scheduling, shifting, and 

curtailment) is ensured using DR schemes. 

Moreover, this paper successfully achieved 

the 50,000 EVs penetration for ISO California 

and declared that PEVs are the optimal 

solution to increase storage capacity for 

surplus power and plays important role in 

V2G regulation in peak times.  

3.6. Impact of Ancillary Services of 

Data Center on DPS  
 The importance and key 

contributions of the fast computational 

resources of the data center are already 

explained. Furthermore, the outcomes of data 

center’s incorporation in proposed DPS are 

presented below: 

 Computational Time: Computational 

time in power system prospective is the 

most important factor, particularly in job 

scheduling, resource allocation, and OPF 

convergence to satisfy the balance 

between supply and demand in power 

system and also avoid the system from 

threats and outages.  

 Batch Job/task: In addition to large 

typical workload, data center is 

responsible to execute the power system 

jobs on first priority basis. 

 In order to sustain optimal power 

consumption, data center divide the 

proposed DPS jobs in three categories: (a) 

Longest Job First (LJF), (b) Shortest Job 

First (SJF), and (c) Shortest Remaining 

Time First (SRTF) and the comparison of 

all scheduling techniques are presented in 

Figure 16. 

 

Figure 136: Cloud Computing DR 

Scheduling Techniques Implemented on DPS 

 In proposed DPS, it is noticed that in 

the morning hours and the time of low peak 

demand, the behavior of all schemes is similar 

while, the major difference is observed in the 

time of peak load demand. 

4. Conclusion 
 This paper proposed the decision 

based optimization model for the proposed 

model comprising uncertain distributed RES 

integration, large scale PEV deployment and 
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V2G regulation mode of PEVs. Moreover, 

three different behaviors of PEV’s charging 

patterns are considered for simulation. In 

order to optimize power consumption, optimal 

scheduling strategy selection is performed by 

decision based algorithm. Later, the selected 

DR strategy is implemented on 

abovementioned three scenarios of charging 

patterns. For each scenario, individual results 

are calculated with significant load reduction, 

shifting, and shaping is envisioned. Moreover, 

cloud computing data centers offered fast 

computations services on prioritized basis to 

perform the power system jobs like DR 

programs, V2G regulation etc. In response, 

power system provides stable and economic 

power to data center which is the basic need of 

data center.  

 In future, the objective is to enhance 

this work by including Optimal Power Flow 

calculation using Newton Raphson method in 

the light of data center ancillary services. 

Furthermore, the simulations results will be 

performed in term of timespan, job 

preemptions, and makespan. 
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