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ABSTRACT 

Renewable energy and storage systems are widely discussed to minimise the impact of global 
warming. This study analyses the impact of probabilistic weather data on the design of renewable 
energy systems. The main objective is hereby the determination of the robustness of a recently 
state-of-the-art design process of a 100% renewable energy and storage system with varying 
probabilistic input data. The island of La Gomera, Canary Islands, is taken as a case study and 
simulated with EnergyPLAN for different probabilistic input time-series. Although all analysed 
systems show some variance in their annual economic and energetic results. The combination of 
vehicle-to-grid and power-to-hydrogen shows the best economic performance. Hereby, small 
island energy systems depending heavily on wind energy show higher variations than those with 
high shares of solar energy. This analysis illustrates clearly that the choice of one historical 
reference year is not suitable to determine the expected performance of an energy system. To 
learn about their sensitivity, synthetic probabilistic inputs as applied in this study are a good way 
to determine both the expected mean values and their variance.

1. Introduction

Renewable energy and storage systems are widely 
discussed to minimise the impact of global warming. In 
this context, special attention is put on islands (for 
further information see [1,2]). On the one hand, islands 
are particularly vulnerable regions that suffer from the 
effects of global warming and climate change. On the 
other hand, they are often analysed as blueprints and 
testbeds for technical solutions because of their isolation 
and the possibilities associated with this to evaluate the 
energetic and economic effects  (for further information 
see [2–5]). To meet the fluctuating generation of 
renewable energy systems such as wind turbines and 
solar photovoltaics (PV), the utilisation of energy storage 
technologies is indispensable. In this context, Lund et  

al. [6] show that the utilisation of all kinds of energy 
storage technologies and the understanding of a smart 
energy system on the whole including sector coupling 
have several advantages compared to a single focus on 
electricity systems and electricity storage technologies.

Recently, especially energy storage systems have 
been implemented and tested on islands. Well known 
and widely discussed examples are the Canary Island of 
El Hierro (for further information see [7–9]), the Azores 
island of Graciosa (for further information see [10,11]), 
the German island of Pellworm (for further information 
see [12]) and the Danish island Samsø (for further 
information see [13–15]). Furthermore, many scientific 
studies analyse the energy systems of several islands and 
archipelagos. The impact of electric vehicles on the 
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Due to this, the utilisation of synthetic, probabilistic 
input data that can reflect a wide variance of possible 
situations in combination with principles of Monte Carlo 
simulations are discussed in a few scientific articles. 
Arriagada et al. [30] discuss Monte Carlo methods for 
analysing the influence of probabilistic wind, solar and 
energy demand on an energy system in Northern Chile. 
Also, Dufo-López et al. [31] use probabilistic time-
series to optimise off-grid energy systems. In their first 
work the energy supply for a hospital in Congo is 
optimised [31], and the second paper deals with a 
stochastic-heuristic methodology to optimise the size of 
components and the system control [32]. Dunkelberg et 
al. [33] show an approach to generate probabilistic time-
series of industrial processes and, based on this 
discussion, the design of decentralised energy systems in 
the plastic processing industry. Meschede et al. [28] 
present a methodology to generate synthetic time-series 
of the energy demand of a hotel and use this as inputs to 
evaluate the robustness of a decentralised energy system 
for a hotel. In another study, Meschede [34] reflects on 
the impact of probabilistic weather data on the electric 
demand shifting potential of a water system on a small 
island. In all cases, the energy systems show high shares 
of renewables with fossil fuel driven auxiliaries.

Regarding this review it is shown that many studies 
analyse the energy transition on islands. Moreover, the 
topic of the temporal resolution of energy system 
simulation is widely discussed. Although some studies 
reflect the impact of probabilistic time-series on renewable 
energy systems for various applications, there is still a 
gap of knowledge to analyse the impact of these stochastic 
energy demand and weather data on the energy transition 
of medium sized islands. With regard to this, the presented 
paper analyses the impact of probabilistic weather data on 
the design of renewable energy systems. The main 
objective is hereby the determination of the robustness of 
a recently state-of-the-art design process of a 100% 
renewable energy and storage system with varying 
probabilistic input data. The island of La Gomera is taken 
as a case study. An earlier published study on hypothetical 
future energy system designs for La Gomera presented in 
[35] is the baseline. From this, the most promising three 
scenarios are analysed: vehicle-to-grid, hydrogen-based 
transport and a combination of both.  While in the 
baseline study only one set of input time-series of one 
reference year was used, the current paper goes further by 
analysing the impact of probabilistic inputs on the result. 
Furthermore, the research compares the designs of a 

overall energy system is discussed for the Åland islands 
in [16]. The authors conclude that battery electric 
vehicles are a key pillar for a 100% renewable energy 
system on these islands. An economically optimal 
design of a carbon neutral energy systems for the whole 
archipelago of the Canary Islands is analysed in [17] 
with focus on the interconnection of the islands. The 
results underline that a carbon neutral energy system is 
possible through sector coupling and extension of the 
transmission grid. A more detailed analysis of one 
particular interconnection between Tenerife and La 
Gomera is analysed in [18]. Here, the authors only 
consider the electricity system and determined that the 
interconnection of these islands leads to the lowest 
levelized cost of electricity. In addition, some studies 
also focus on large islands and entire island states such 
as Ireland in [19]. Blechinger et al. [5] and Meschede et 
al. [20] conducted global assessments of renewable 
energy systems on islands while further overviews of 
island specific studies are summarised in [21] and [22].

Regarding the scientific literature on energy system 
simulation, a lot of research analyses the temporal 
resolution. Commonly, one-hour resolution is seen as a 
good compromise between computational efforts and 
accuracy [23–26]. Nevertheless, smaller time steps than 
one hour show more accurate results in the field of short 
but high load peaks, which affect mainly grid stability 
[25]. In addition to the temporal resolution, also the 
chosen input data might have a strong impact on the 
performance of renewable energy systems, and energy 
storage systems in particular. Especially for smaller 
grids, such as those found on islands, high fluctuations 
in both the energy demand and energy supply time-
series can be observed.  These result in more unbalanced 
systems and influence the utilisation of and requirements 
for energy storage. Furthermore, as for example 
addressed by Østergaard et al. [27] for the Danish 
electricity sector, energy demand depends on the day of 
the week while weather data does not. Furthermore, 
Meschede et al. [28] analysed the different occupancies 
of a touristic facility and determined that, especially in 
summer, weekends and weekdays are highly different 
for the case of La Gomera. Therefore, fixed time-series 
of both energy demand and weather do not reflect all 
possible combinations within one dataset. Thus, the 
representation of further, probabilistic variances is 
missing. The uncertainty of the performance might 
further influence the economic risk of renewable energy 
systems as shown for a small hydro-plant in [29].  
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as a case study. La Gomera belongs to the Spanish 
Canary Islands located in the Atlantic Ocean approx. 
100 km west of the Moroccan coast. The archipelago 
consists of seven main islands, of which La Gomera is 
the second smallest. The population of this island is 
approx. 22,000 inhabitants while its annual electricity 
demand in 2016 was 71.63 GWh [39]. The demanded 
electricity is generated in a central diesel power plant of 
22.9 MW installed capacity. Furthermore, 9.4 GWh of 
fossil gas and 14.41 GWh fossil oil are used for cooking 
and heating. For the latter, decentral heating with small 
units is realised. District heating is not installed. For 
mobility 3,817 tons of diesel and 3,311 tons of petrol 
were used in 2014 [40].

Regarding possible future energy systems three 
different designs are analysed within this study:

1. Scenario 2030-H2
2. Scenario 2030-V2G
3. Scenario 2030-Combi
The scenario 2030-H2 analyses power-to-hydrogen 

technology to store surplus renewable energy. Hydrogen 
is used in both combined heat and power plants and in 
the mobility sector. Within this scenario, wind is the 
main renewable energy source to cover electricity 
demand. In addition to that, the scenario 2030-V2G 
focusses on the utilisation of battery electric vehicles 
(BEV) as the main storage solution for variable 
renewable energy supply. In contrast to the scenario 
2030-H2, solar PV is the main source for electricity. 
Finally, the scenario 2030-Combi combines both 
aspects, i.e. power-to-hydrogen as well as vehicle-to-
grid (V2G) participation. In this scenario, solar PV is 
the main source. Moreover, the installed capacities of 
all renewable energy sources are the highest for all 
three scenarios.

Summarised, all scenarios reduce the utilisation of 
fossil fuels to zero, hence only 100% renewable 
energy scenarios are simulated. In all three scenarios 
demand shifting is allowed. Regarding the 
consideration of demand side management, the 
assessment of the demand shifting potential in [34] 
visualises the limitations of the utilisation of fixed 
rates as the rate depends on the demand and weather 
data. In this study a mean value is therefore used. The 
scenarios and the determination of the plant’s nominal 
capacities were based on the work done in [35]. 
Moreover, the same cost assumptions as presented 
there are applied in this study. They are summarised 
in Table 1.

reference and a standard year to the results gained by 
using probabilistic years. In this context, a reference year 
is based on one specific historical year while a standard 
year is an average year built on observations of several 
historical years. The widely used tool EnergyPLAN is 
used to simulate the system.

2. Methodology

In this section both, the simulation tool EnergyPLAN as 
well as the chosen case study and the simulated scenarios 
are presented.

2.1. Simulation tool EnergyPLAN
To evaluate energy systems and 100% renewable energy 
systems in particular, simulation tools are indispensable 
to consider the different inputs and plants. Lund et al. 
[36] discuss various tools and classify them either as 
optimisation or simulation tools. Hereby, optimisation 
tools such as Homer have internal algorithms that 
minimise or maximise an objective function and hence 
the energy system design (i.e. plant size and capacities). 
In contrast, simulation tools such as EnergyPLAN allow 
the user to define the energy system design and thus these 
tools allow the mapping of different energy transition 
paths and scenarios [36]. Overviews of different tools, 
their advantages and case studies can be found in [36,37]. 

For this study EnergyPLAN is used for annual 
simulation of the energy system since this work is based 
on the previous energy systems presented in [35]. 
EnergyPLAN has been developing since 1999 at Aalborg 
University in Denmark and is widely used in scientific 
projects to simulate energy systems on national and 
regional scales. In this work version 12.5 of the tool and 
the MATLAB toolbox for EnergyPLAN version 1 are 
used.

In a nutshell, in EnergyPLAN different technologies 
can be considered to satisfy all thermal and electric 
energy demands (electricity, heat and transport sectors). 
Energy demand and weather are determined by hourly 
time-series for one year. Moreover, different energy 
storage options can be used to balance the energy system. 
Furthermore, EnergyPLAN offers the possibility to 
define energy imports and exports to and from the 
system. Detailed information on EnergyPLAN can be 
found in [38]. 

2.2. Case study and simulated scenarios
To analyse the impact of probabilistic input data on the 
energy system design, the island of La Gomera is chosen 
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The generated power of a wind turbine is simulated 
using a characteristic curve of the Enercon E-70 wind 
turbine with a nominal power of 2 MW [41]. Therefore, 
the wind speed at hub height is needed which is 
calculated using the Hellmann exponent g and an 
exponential extrapolation. 

Often historical data of one specific year is used. 
Nevertheless, this year cannot reflect all aspects and 
characteristics of the system. In this study three different 
reference years regarding input time-series for electricity 
demand and solar radiation as well as temperature are 
analysed, and the results are compared. In total, the 
years 2013, 2015, and 2016 are used. The load data is 
provided by [39], its temporal resolution is 10 minutes. 
Half-hourly solar irradiance and temperature time-series 
are provided by [42]. All other inputs (i.e. heat demand, 
wind power, traffic and water demand) are based on 
synthetic approaches and hence are not varied. This is 
especially true for the used wind data. Since the 
generated wind power is simulated with synthetic data, 
the identical time-series is used in all reference year 
scenarios. Some characteristics of the chosen years are 
summarised in Table 3.

(2)
 =  
 

g

H ref
ref

Hv v * H

An overview of the technical aspects of all scenarios 
can be found in Table 2. Hereby, the installed capacities 
represent the values observed for the minimum 
annualised energy cost in each scenario according to the 
analysis done in [35].

3. Data

Tools such as EnergyPLAN simulate energy systems for 
one specific year. Thereby, input time-series of various 
data characterise these systems. These inputs include 
time-series of, for example, power consumption, weather 
data or consumer behaviour. In the case of EnergyPLAN, 
the conversion of weather data to generated power is not 
possible within the tool. Indeed, EnergyPLAN needs 
time-series of generated power instead of weather data. 
Due to this, for PV and wind turbines weather time-
series like wind speed have to be converted into 
generated power in a pre-processing step using suitable 
simulation tools.

For this paper, the pre-processing is realised with 
simulation models in MATLAB/Simulink presented in 
[28]. The generated power of a PV plant is the product 
of the cell efficiency, the plant efficiency, the area and 
the irradiance.

PPV = ηcell* ηplant*A*I (1)

Table 1: Cost assumptions for 2030 (taken from [35])

Capex Opex Lifetime

Wind turbines 1300 €/kWel 2.5 of Capex/a 25 years

Photovoltaics 700 €/kWp 1% of Capex/a 30 years

Combustion power plants 900 €/kWel 1% of Capex/a 25 years

Electricity storage 150 €/kWhCap 5% of Capex/a 10 years

Hydrogen storage 200 €/kWhCap 0.5% of Capex/a 50 years

Table 2: Installed capacities in all scenarios

2030-V2G 2030-H2 2030-Combi

PV capacity in MW 52.5 37.5 62.5

Wind capacity in MW 12 20 12

Combustion engine (biofuel) capacity in MW 22.9 22.9 22.9

Stationary battery capacity in MWh – 13 -

V2G storage capacity in MWh 197.1 – 197.1

Electrolyser capacity in MW – 11.5 3.86

hydrogen storage capacity in MWh – 35 5
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irradiation to the long-time average monthly irradiation, 
is represented by a normal distribution for the case of La 
Gomera [28]. 

In contrast to this, wind speed time-series vwind (hoy) 
are generated through first-order Markov-chains, i.e. 
they depend on the wind speed of the last time step  
vwind (hoy-1). Thereby, the seasonal term is removed by 
setting up individual transition probability matrices 
TMP for each month month (hoy). A random number r 
is used to finally determine the current wind speed 
depending on the TPM and the previous value.

vwind (hoy) = f (TPM,month (hoy),vwind (hoy-1),r) (4)

For the generation of probabilistic traffic volumes 
the daily profile given in [43] for the case of Tenerife 
island is used as a basis and varied by a normally 
distributed random number with standard deviation of 
σ°=°= 0.1. The resulting range of the traffic volume and 
its daily distribution is shown in Figure 1. Hereby, the 
box represents 50% of the observations from the first 
quartile q1 to the third quartile q3 (i.e. from 25th to 75th 
percentile). The red line shows the median. Outliers are 
represented by red cross and defined as values below  
q1−1.5(q3−q1) and above q3+1.5(q3−q1). The profile 
shows a morning peak from 7 to 8 am and second, less 
sharp peak from 2 to 6 pm. The same probabilistic 
profile is used for every day, thus there is no 
differentiation of weekday, weekend or holiday. 
Nevertheless, the distribution shown in Figure 1 
implicates strong variations of the peak values and thus 
might be acceptable for a first estimation of the 
influence of the traffic volume on the energy system’s 
performance.

Thus, in total 12 combinations (3 scenarios à 4 
modifications each) are analysed. For the reference year 
there were 9 runs (3 years x 3 methods) and for each 
probabilistic input 100 runs are performed. In this study, 
neither additional runs nor any termination criteria are 

EnergyPLAN uses hourly time-series, hence the 
simulated power data have to be compressed. To do so, 
three different methods to reduce the data resolutions are 
applied. These methods are:

 – Mean:  The mean value of all observations within 
a certain hour is used.

 – Max:  The maximum value of all observations 
within a certain hour is used.

 – Min:  The minimum value of all observations 
within a certain hour is used.

In addition to different historical reference years, an 
infinite number of further probabilistic reference years 
exists. Hereby, “standard” years occur more often than 
extreme years. One aim of this paper is a sensitivity 
analysis of the design based on one historical reference 
year and its comparison to probabilistic years. Regarding 
this objective the generation of synthetic input data 
based on probability is crucial for the analysis. Based on 
previous studies with similar intentions the following 
time-series are seen as most critical:

 – Wind speed
 – Solar irradiance
 – Traffic volume

The approaches to generate probabilistic solar 
irradiance and wind speed profiles are presented in [28] 
and are applied in this study. Synthetic solar irradiance 
time-series I (hoy) are generated using the hourly clearness 
index kt (hoy), the relation of the daily irradiation to the 
average daily irradiation of the selected month Fd, and the 
ratio of the monthly irradiation to the long-time average 
monthly irradiance of the hour Fm. 

I (hoy) = Fd * Fm * kt (hoy) * G0 (hoy) (3)

The first two factors, i.e. the hourly clearness index 
and the relation of the daily irradiation to the average 
daily irradiation, are based on the case-specific 
probabilistic density function (PDF). In addition, the 
third determining factor, i.e. the ratio of the monthly 

Table 3: Characteristics of reference years

2013 2015 2016

Annual electricity demand in GWh 67.57 68.31 71.63

Peak electrical load in MW 12.1 12.4 12.2

Annual solar irradiation in kWh/m² 1954.6 1982.0 1988.8

Average wind speed at 60 m in m/s 6.66 6.66 6.66

Mean ambient temperature in °C 21.3 21.3 21.4
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with results of previous studies (e.g. [16] and [34]). The 
annual costs of Scenario 2030-H2 are always higher 
than those of both other scenarios. Regarding Scenario 
2030-V2G, the annual costs of the best case (i.e. the 
minimum value shown in Table 5) can reach the 
maximum costs in Scenario 2030-Combi. The results of 
the annual costs are summarised in Table 5.

In the following all three scenarios will be more 
deeply analysed. The marking of all different reference 
years in Figure 2, Figure 3 and Figure 4 underline that 
these (three respectively) nine different reference years 
show a wide variance of possible energy demand and 
supply characteristics. The analysis of the probabilistic 
weather data shows that both wind and solar data have 
even higher uncertainties resulting in a range of about 
6% of the baseline value. Furthermore, the results reflect 
that the combination of different technologies has nearly 
the same uncertainties of annual costs (standard deviation 
of 199.74) as vehicle-to-grid only (standard deviation of 
179.98). Thereby, the variances due to probabilistic 
wind profiles and probabilistic solar profiles are almost 
equal. In contrast, in the hydrogen-based transport 
scenario where wind turbines and electrolysers are key 
components, the choice of wind data is much more 

implemented. Table 4 summarises the varied input data 
analysed within this work.

4. Results and discussion

The choice of the reference year leads to significantly 
different economic and energetic results. The annual 
costs of the energy system vary between 10.87 and 
11.28 M€ if a combination of different technologies is 
chosen. This indicates that an under- and overestimation 
of up to 3.6% is possible due to the choice of reference 
year. Similar results and sensitivities for the choice of 
the reference year can be found in [28] for the case of a 
hotel where the uncertainty due to the choice of 
reference year is up to ±4.8%. Furthermore, also [31] 
shows for the case of a hospital a relative standard 
deviation of ±2.7% of the total costs of the optimised 
systems. Hence, both studies underline that the variance 
of the results of this study due to probabilistic input data 
is reasonable.

Nevertheless, the results in this study underline also 
that the technology mix represented by Scenario 2030-
Combi shows the lowest annual costs of all analysed 
scenarios as evaluated in [35]. This finding is also in-line 

Figure 1: Range of varied traffic volume for one day
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Table 4: Short description of varied input data

Number of runs Methodology

reference year 9 (3 × 3)
3 different reference years (2013, 2015 and 2016) based on 10-minute load data [39] and half-
hourly irradiation data [42]; 3 different methods to compromise load data to hourly data (i.e. 
mean, max, min)

probabilistic wind 100 Probabilistic wind profiles based on [28]

probabilistic solar 100 Probabilistic irradiation profiles based on [28]

probabilistic traffic 100 Traffic profile based on [43] with normally distributed hourly deviation (σ = 0.1)
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Higher electrical generation through variable renewable 
energy systems (i.e. wind and solar power) results in 
lower annual costs of the energy system due to the lower 
variable costs of biofuel. Nevertheless, the consumption 
of biofuel does not show the same intensity of correlation 
as is obvious in the right graphic of Figure 2, Figure 3 
and Figure 4. In both scenarios using power-to-hydrogen 
(i.e. Scenario 2030-H2 and Scenario 2030-Combi), the 

sensitive to the annual costs (total standard deviation of 
249.77, only regarding observations with probabilistic 
wind inputs results in standard deviation of 268.78). 
Regarding previous work a high sensitivity of renewable 
energy systems towards probabilistic wind speeds is also 
stated in [32], [34], and [44].

All scenarios show linear correlation of renewable 
energy systems electricity generation and annual costs. 

Table 5: Annual costs in k€ for different energy system designs with varying input data

Reference* Minimum Maximum Mean

Combi 10,892 10,796 11,553 11,091

   reference year 10,873 11,284 11,104

   probabilistic wind 10,796 11,490 11,119

   probabilistic solar 10,969 11,553 11,279

   probabilistic traffic 10,858 10,869 10,863

V2G 11,552 11,437 12,165 11,738

   reference year 11,535 11,882 11,734

   probabilistic wind 11,437 12,111 11,760

   probabilistic solar 11,622 12,165 11,913

   probabilistic traffic 11,541 11,547 11,544

H2 13,299 12,964 14,224 13,538

   reference year 13,307 13,564 13,428

   probabilistic wind 12,964 14,224 13,688

   probabilistic solar 13,511 13,921 13,737

   probabilistic traffic 13,299 13,299 13,299
* reference values for historical year 2016 based on [35]

Figure 2: Annual results of Scenario 2030-V2G: annual electric generation of renewable energy systems over annual costs (left) and annual 

biofuel consumption over annual costs (right) 
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inputs as well as for the reference years can be seen. In 
contrast, the observations show no clear correlation for 
probabilistic wind inputs. Nevertheless, the sensitivity 
of consumed biofuel is almost the same for both 
probabilistic weather inputs as well as for the reference 
years in both scenarios. In Scenario 2030-V2G the 
observations of the annual consumed biofuel result in 
standard deviations of 1.82 for using probabilistic solar 
data, 1.85 for using probabilistic wind data and 1.66 
for the reference years. Similar results can be found in 
Scenario 2030-Combi (standard deviations of 1.95, 

electrolyser operates independently of any varying 
inputs (see Figure 5). Hence, further balancing 
technologies like stationary batteries (Scenario 2030-
H2) or V2G (Scenario 2030-Combi) have to balance the 
annual generated electricity depending on the temporal 
distribution of supply and demand.

 In Figure 6, the sums of V2G charge are shown over 
the annual biofuel consumption for the scenarios 2030-
V2G (left) and 2030-Combi (right). In both graphics a 
clear linear correlation between the sum of charging 
and the consumption of biofuel for probabilistic solar 

Figure 3: Annual results of Scenario 2030-H2: annual electric generation of renewable energy systems over annual costs (left) and annual 

biofuel consumption over annual costs (right)
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Figure 4: Annual results of Scenario 2030-Combi: annual electric generation of renewable energy systems over annual costs (left) and 

annual biofuel consumption over annual costs (right)
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designs for the island of La Gomera. Therefore, the 
systems – optimised for one reference scenario – are 
stressed with various historical and probabilistic input 
time-series to analyse their sensitivities. To generate 
probabilistic time-series of different influencing 
variables, historical observations of several years are 
used in the cases of wind speed and solar irradiation. 
Furthermore, three historical reference years are used to 
reflect the electricity demand. The probabilistic traffic 
volume is generated based on an analysis of the traffic 
volume for the neighbouring island of Tenerife and the 
assumption of normal distributed traffic volume for each 
hour of the day.

1.92, and 1.99, respectively). Moreover, varying traffic 
inputs as assumed in this work seem to have no 
influence on the annual performance of an energy 
system although V2G and thus the temporal distribution 
of traffic volume are determining inputs for the hourly 
balancing of the system. This supports the positive 
assessments of this technology determined in different 
case studies, such as [16], [43], and [45].

5. Conclusion and outlook

The objective of this study is the assessment of the 
robustness of different 100% renewable energy system 

Figure 5: Sum of hydrogen production over biofuel consumption in Scenario 2030-H2 (left) and in Scenario 2030-Combi (right)
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Figure 6: Sum of V2G charge over biofuel consumption in Scenario 2030-V2G (left) and in Scenario 2030-Combi (right)
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[6] Lund H, Østergaard PA, Connolly D, Ridjan I, Mathiesen BV, 

Hvelplund F et al. Energy Storage and Smart Energy Systems. 

3-14 Pages / International Journal of Sustainable Energy 

Planning and Management, Vol 11 (2016) 2016. http://doi.

org/10.5278/ijsepm.2016.11.2.

[7] GdV. Gorona del Viento - El Hierro. [March 11, 2017]; 

Available from: http://www.goronadelviento.es/.

[8] Godina R, Rodrigues EMG, Matias JCO, Catalão JPS. Sustainable 

energy system of El Hierro Island: Unpublished; 2015.

[9] Hallam CRA, Contreras C. Evaluation of the Levelized Cost of 

Energy Method for Analyzing Renewable Energy Systems: A 

Case Study of System Equivalency Crossover Points Under 

Varying Analysis Assumptions. IEEE Systems Journal 

2015;9(1):199–208. http://doi.org/10.1109/JSYST.2013.2290339.

[10] Stenzel P, Schreiber A, Marx J, Wulf C, Schreieder M, Stephan 

L. Renewable energies for Graciosa Island, Azores – Life  

Cycle Assessment of electricity generation. Energy Procedia 

2017;135:62–74. http://doi.org/10.1016/j.egypro.2017.09.487.

[11] Arnhold O, Hlusiak M, Möhrke F, Breyer C. Mobility Concepts 

Using Excess Power from Proposed Renewable Energy Supply 

System on Graciosa Island, Azores Archipelago. In: 6th 

International Renewable Energy Storage Conference and 

Exhibition (IRES 2011); 2011.

[12] Hasselmann M, Beier C. Integrating Decentralized Electrically 

Powered Thermal Supply Systems into a Smart Grid. Energy 

Procedia 2015;73:317–23. http://doi.org/10.1016/j.egypro. 

2015.07.696.

[13] Jørgensen PJ, Hermansen S. Samsø – a Renewable Energy 

Island: 10 years of Development and Evaluation: Chronografisk; 

2007.

[14] Nielsen SN, Jørgensen SE. Sustainability analysis of a society 

based on exergy studies – a case study of the island of Samsø 

(Denmark). Journal of Cleaner Production 2015;96:12–29. 

http://doi.org/10.1016/j.jclepro.2014.08.035.

[15] Marczinkowski HM, Østergaard PA. Evaluation of electricity 

storage versus thermal storage as part of two different energy 

planning approaches for the islands Samsø and Orkney. Energy 

2019;175:505–14. http://doi.org/10.1016/j.energy.2019.03.103.

[16] Child M, Nordling A, Breyer C. The Impacts of High V2G 

Participation in a 100% Renewable Åland Energy System. 

Energies 2018;11(9):2206. http://doi.org/10.3390/en11092206.

[17] Gils HC, Simon S. Carbon neutral archipelago – 100% 

renewable energy supply for the Canary Islands. Applied 

Energy 2017;188:342–55. http://doi.org/10.1016/j.apenergy. 

2016.12.023.

[18] Ramos-Real FJ, Barrera-Santana J, Ramírez-Díaz A, Perez Y. 

Interconnecting isolated electrical systems. The case of Canary 

Islands. Energy Strategy Reviews 2018;22:37–46. http://doi.

org/10.1016/j.esr.2018.08.004.

The results underline the economic and energetic 
advantage of energy systems based on diversified 
supply and storage solutions. Although all analysed 
systems show some variance in their results, the 
combination of V2G and power-to-hydrogen as is 
realised in Scenario 2030-Combi shows the best 
economic performance. The total installed generation 
capacity in this scenario is higher than in both other 
scenarios. Nevertheless, the high electricity generation 
through renewable energy systems annualises the 
capital costs of these systems. Furthermore, it is 
shown that a system depending heavily on wind 
energy shows less robustness to probabilistic changes. 
In this analysis, especially the combination of wind 
dependent and less flexible electrolysers as are used 
in Scenario 2030-H2 shows higher variance on the 
energetic and economic performance of the system. 
Due to this, further research might focus on the 
analysis of flexible electrolysers and their performance 
with varying weather inputs.

Finally, this analysis illustrates clearly that the choice 
of one historical reference year is not suitable to 
determine the expected performance of an energy 
system. This might be even more relevant for small 
systems like islands. Larger systems like nationals and 
continental energy systems might show less fluctuations. 
The utilisation of standard reference years should be 
addressed to gain the expected mean values. Nevertheless, 
these standard reference years do not show the robustness 
of the system. To learn about their sensitivity, synthetic 
probabilistic inputs as applied in this study are a good 
way to determine both the expected mean values and 
their variance.
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