
1. Introduction

Increased focus on electrified transportation has an
influence on power systems. Charging and discharging
of electric vehicles (EVs) could help power plants to
produce in a more steady pace, even though an
increased amount of fluctuating renewables are 
infuencing the system. Fortunately, optimising the
charging from the power system point of view often
corresponds to optimising from the vehicle owners
point of view. Hence, charging when experiencing high
amount of free power producing capacity and prices are
low and stop charging when low amount of free power
producing capacity and prices are high. With an
expected increase in EV penetration, we investigate the
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benefits of entering the market and charging
intelligently in response to market prices.

From the vehicle owners' point of view, optimising
the charging might include participating in the
regulating market, hence, bidding capacities for up- and
down regulation. This requires enough battery capacity
left for either up- or down regulation, and, thus, has an
influence on the planned charging at spot price.
However, when planning the charging of the vehicle, the
regulating prices are unknown and stochastic. We
envision a vehicle aggregator that can place bids for a
large group of vehicles. An aggregator can be compared
to a cell phone company, monitoring and charging for
the communication on the phone. These companies have
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ABSTRACT

This paper analyses di erent charging strategies for a fleet of electric vehicles. Along with
increasing the realism of the strategies, the opportunity for acting on the regulating market is also
included. We test the value of a vehicle owner that can choose when and how to charge; by
presenting a model of four alternative charging strategies. We think of them as increasing in
sophistication from dumb via delayed to deterministic and stochastic model-based charging. We
show that 29% of the total savings from dumb are due to delayed charging and that substantial
additional gains come charging optimally in response to predicted spot prices, and in some
settings additional gains from using the up and down regulating prices. Particularly, strategies are
chosen from uncontrolled charging through deterministic optimization, to modelling the charging
and bidding problem with stochastic programming. We show that all vehicle owners will benefit
from acting more intelligently on the energy market. Furthermore, the high value of the stochastic
solution shows that, in case the regulating price differs from the expected, the solution to the
deterministic problem becomes infeasible.
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a large amount of customers as would the aggregators.
The aggregator would bid for himself, however, the
benefit or at least some of it, will go to the vehicle
owner, e.g. in terms of an availability bonus. For
simplicity, we present our model for one vehicle only. 

Optimal bidding into the electricity market has been
the focus of many articles. Within the field of
mathematical programming, [4] focuses on optimal
sequential bidding in both the day-ahead market and
regulating market, considering uncertainty in regulating
prices. Other examples of bidding models are [8, 16].
These models are all considering price-taking electricity
producers and include details such as start-up costs,
ramping restrictions, and storage balances.

The charging of electric vehicles (EVs) has been a
focus area for a considerable number of articles. This
diverges from the challenges and benefits in the entire
energy system [12, 17] to optimal charging when driving
patterns are stochastic, e.g. [11]. In [15], a deterministic
model has been developed, showing incentives for
flexible charging. They have clustered the vehicles
depending on driving patterns, and show how optimal
charging primarily fills the valleys of electricity demand.

A few of the articles have focused on the electric
vehicles bidding in the power market. In [2], a
deterministic model with hourly time steps has been
used to optimise bidding on both the day-ahead market
and for secondary reserves. [6] provides a dynamic
approach to the bidding problem, focusing on regulating
reserves only. Here, the bidding is split into two time
periods; day 8-20 and night 20-8, and each bid counts
for an entire period. Furthermore, they argue that large
vehicle pools compensate for the stochastic variation.

Stochastic programming has been used by [14, 1, 19,
9]. [14] maximizes the revenue to the aggregator in a two
stage model, where bids are placed in the first stage and
realised in the second.  No discharging is allowed and the
day-ahead market is not included. Another two stage
model is developed in [1], where they mitigate risk by
coordinating bids on day-ahead market between wind
power, thermal power, and electric vehicles. Thereby,
they try to minimise the trading risks from market and
wind uncertainties. [19] also focus on two-stage
problems, where they focus on bidding in both markets
simultaneously and bidding in the day-ahead market only
followed by participation on the regulating market. For
regulating market only, they use rolling planning, hence,
a series of two stage problems, to optimise for each hour
of the day. The principle of rolling planning has been

extended in [9] by using a multi-stage model,
maximising probability that the regulation bid is
accepted. The focus is on plug-in hybrid vehicles,
resulting in the vehicles being able to drive even though,
the charging does not meet the target.

The contribution of this paper is to evaluate the
benefit of more sophisticated charging strategies for the
EV and whether the different types of vehicle owners
can benefit from participating on the regulating market.
Four different charging strategies are compared,
including deterministic and stochastic modelling. We
allow for both up and down regulation in terms of either
charging when not planned (down-regulation) and
stopping a planned charging (up-regulation). Hence, we
do not allow for discharging of the vehicles.

The article is structured as follows. Next section
introduces the market used in the model as well as the
charging schemes. Section 3 describes the model and
section 4 the case study. In section 5, the results are
presented. Section 6 discusses the approach and section
7 concludes.

2. Market and charging

In the modelling, we focus on energy markets similar to
the Nordic European countries, Norway, Sweden, and
Denmark. We include both the spot market and the
regulating market. The day-ahead market, also known as
the spot market, is the market for trading power for
delivery the coming day. The regulating market is a
market for balancing the difference between the planned
production and the actual demand. Trading is done one
hour before delivery [18]. We assume market prices can be
forecasted with sufficient precision at the time of bidding,
and simplify the model to capture the new information
obtained between day-ahead and intra-day trading.

We assume that the spot price is known when
planning the charging on this market. However, the
regulation prices are unknown and uncertain. Hence, we
are aiming to see if the increased details in modelling
and also the ability to bid on the regulating market will
create a value for the vehicle owners-either by bidding
themselves (we are aware that this might not be a
possibility, due to minimum bid sizes) or by having an
aggregator controlling a fleet of vehicle bidding into the
regulating market (also called the intra-day market).
According to energinet.dk [7], bid sizes are required to
be between 10 MW and 50 MW. This would call for a
parked fleet of approx. 1450 EVs. However, assuming



vehicle charging has no influence on prices, our results
scale to a number of vehicles. Our modelling allows us to
analyse the contribution of the single vehicles and, thus,
the benefits of different combinations of vehicles for an
aggregator.

When discussing up-regulation, we believe that it is
questionable whether the vehicle should be able to actually
discharge. However, a great deal of the up-regulation
could come from not charging when planned, hence,
giving back the amount not charged yet to the power
system (see [12]). For computational tractability, we 
confine ourselves to a linear representation of the
interactions between charging and the grid.

Furthermore, we assume that the vehicles are always
plugged in when parked. This might be too optimistic and,
hence, create too much flexibility. However, when owning
a  fleet, this often does not create a problem, because some
of the vehicles will be plugged at each time period. We
will consider this when interpreting the results.

For analysing the value of information, a number of
charging strategies are analysed. We are comparing the
following charging strategies:

• Uncontrolled charging In uncontrolled or
‘dumb’ charging, we assume that the EVs
charge their batteries as soon as they are
plugged in to the electricity grid, hence, as soon
as they return from a trip. Furthermore, we
assume that they always fill their batteries the
same amount as they have discharged while
driving, to keep the battery full and be ready for
the next trip. Hence, no information except the
driving pattern is needed for this type of
charging. Furthermore, this strategy means that
the vehicle owner will not act on the regulating
market.

• Delayed charging As with uncontrolled
charging. However, the charging is delayed from
when the EVs are plugged in. In this situation,
some kind of intelligence is needed, in order to
delay the charge, e.g. a timer setting the time for
the charge to begin. However, still no actions
can be taken on the regulating market.

• Deterministic charging The EVs optimise their
charging based on deterministic future
electricity prices. We optimise the EV charging
based on a forecast of future market prices on
the regulating market. The forecast is based on
historical data of, e.g. a 1 year period. Price
variations are, over a longer period, assumed to

be similar, thus, a charging strategy based on
these could add further value to the vehicle
owner. Hence, in this situation the vehicle
owners can place bids on the regulating market,
increasing the value of the EV. It is assumed that
the vehicle owners can act both on the up- and
down-regulating market. However, up-
regulation  can only be done in terms of stopping
or downscaling already planned demand, hence,
no discharging of the vehicles are performed.

• Stochastic charging As with the deterministic
charging, the EVs optimise their charging based
on expected future electricity prices. However,
here the market prices on the regulating market
are considered uncertain, and, thus, they will be
based on probabilities of future prices going up
or down. This is done, using a two stage
stochastic optimisation model. A number of
scenarios will be developed to represent
different possible price realizations. Charging
decisions are made before realising the actual
regulating price. Here, we are increasing the
details of information in terms of the variation in
historical price developments. This will be based
on stochastic optimisation and as with the
deterministic model, this enables bidding on the
regulating market.

Our hypothesis is that increasing the details in the
modelling the charging decisions will also increase the
benefits for the vehicle owner and decrease the costs of
electricity. However, the question is to which extend
and, hence, how advanced the decision support system
needs to be for the vehicle owner to benefit from these.
Furthermore, the extent to which the vehicle owner can
play an active role in the power system with benefits is
also expected to increase with increased information.

3. Modelling description

In the following, we are assuming the vehicle owner is a
price taker. We are focusing on one operation day,
namely a 24–hour time period. This will be divided into
24 time steps, where t = 1 represents the first hour, thus,
the one between 00:00 and 01:00. t = 0 represents the
time period before the calculation period.

3.1. Uncontrolled charging
The charging after each trip can be calculated using the
following formula.
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(1)

Where, Cht is the planned charging at time t in the
spot market, Chmax is the maximum charging within
each time step, and Drt is the driving at time t. τ is the
length of the trip, μ is the number of time steps the
vehicle has been charging continuously, and η is the
charging efficiency. The equation reflects the fact that if
the vehicle has used more power on the trip than can be
charged within the first hour due to grid connection, the
charging continues in the next hours, until fully charged.

Based on the above, the costs can be calculated by;

(2)

Where Pt
spot is the spot price.

3.2. Delayed charging
As with uncontrolled charging, this can be calculated by
multiplying spot price and charging. We are assuming
that the vehicles are charging at night, whenever
possible. Now, the charging equation will be;

(3)

Hence, the driving from the past 24 hours is summed,
and the vehicle is charged to be able to meet the next 24
hours. This equation hold from the starting time, e.g.
midnight, and until the vehicle is fully charged. Then the
charging starts over 24 hours later, e.g. at midnight.

3.3. Deterministic charging
For deterministic charging, we are minimising the costs
of charging the vehicles.

(4)

Where PEt
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down are the expected up and
down regulation prices respectively. λt
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the charging in the regulating market.
Storage, Stt, is balanced in each time period in order
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Charging has to be within the grid capacities;

(6)

Furthermore, restrictions are made in order to ensure,
that driving and charging cannot happen at the same
time.

(7)

Because of the assumed up-regulation not being an
actual discharge of the battery, also need to ensure that
the charging is always greater than λt

up.

(8)

And finally, we have the non-negativity constraints:

(9)

3.4. Stochastic charging
In stochastic charging, the regulating prices are
uncertain. Compared to the deterministic model, we have
introduced the scenarios, s, and probabilities for each
scenario to be realised, πs, in the  stochastic model. The
deterministic equivalent to the stochastic program is:

(10)
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Furthermore, we have introduced a constraint saying
that you cannot provide up regulation if down regulation
is needed and vice versa. This was needed, since in some
cases it could pay off to plan charging and then provide
up-regulation in these hours later - even though some
scenarios were generating worse prices.

As can be seen from the model, the second stage
decision (the up and down regulation) is decided upon
based on a span of future regulating prices, and the first
stage decision, hence the charging in the spot market, is
based on the specific realization of up and down
regulation. Scenario generation will be described in
section 4.4.

4. Case study

Our case study focuses on one vehicle type, namely
Nissan Leaf. Specifications are given in Table 1. Nissan
Leaf has two different battery use settings; long distance
using the battery 100% or long life using the battery
80% [10]. We are using the long distance and, hence,
assuming that 100% of the battery is available for
driving and charging. However, in our analyses, the
battery is never depleted below 20%. Thus, we might as
well use the long life.

4.1. Data and assumptions
We are assuming the vehicles are plugged to the
electricity grid whenever they are parked. Each vehicle
have an assumed connection with 3 phases 10 Amps,
resulting in a grid connection capacity of 6.9 kW.
Hence, maximum charging capacity in each hour is 6.9
kWh. Furthermore, we have assumed a charging 
efficiency of 0.9.

4.2. Driving patterns
We use the clustered driving patterns found in [15]. All
20 patterns are included in order to get an idea whether
there are driving patterns or life styles where more
sophisticated modelling is of greater value. This way we
can also analyse whether it is more beneficial to own a

fleet of vehicles with different driving patterns or a fleet
with the same driving patterns.

4.3. Spot prices
For our analyses, we have used historical hourly spot
prices from four days in four different seasons in 2014,
hence, January 1st, April 1st, July 1st, and October 1st.

4.4. Regulation prices
Forecasting differs for the different analyses. No
forecasting is needed for uncontrolled and delayed
charging. For the deterministic model, we are using an
average of the price deviation from spot to regulation
prices on an hourly basis, based on data from year 2013.
This corresponds to the average of the scenarios for the
stochastic analysis. Hence, the regulating price is
calculated based on the spot price plus/minus the
deviation, depending on whether it is up or down
regulation.

4.4.1. Scenario generation
Scenarios are based on data from year 2013. Regulation
price scenarios are generated by means of the heuristic
method described in [13]. The regulation price at each
hour of the day is modelled as an independent random
variable. The method uses marginal distributions for the
random variables and copulas to describe the
dependence between the marginal distributions.
Marginal distributions and copulas have been estimated
based on historical regulation prices.

5. Results

Results show decreasing costs with increasing
intelligence in the charging decision. Figure 1 shows
the total costs of charging the 20 different vehicle
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Table 1: Based on ([5])

Parameter unit value

Battery capacity kWh 24
Efficiency km/kWh 5.8
Total charging time hours 6–7
Max driving per charge km 199

January
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

April

Euro

July October

Uncontrolled
Delayed
Deterministic
Stochastic

Figure 1: Total costs for different charging schemes.



types (one of each). As seen from the figure, a large
decrease is experienced between uncontrolled and
delayed charging, hence, only moving charging to the
night time. However, another large decrease can be
found using either deterministic or stochastic
modelling, especially with the electricity prices in the
April data.

As for the gain of using stochastic modelling
instead of deterministic, we use the value of the
stochastic solution (VSS) described in [3].

However, when we try to solve the stochastic
problem using the first stage solution of the
deterministic, the problem becomes infeasible. This
has been tried both with the implemented scenarios
and another set of scenarios. Infeasibility of
E [z (x *, ξ)] is equivalent to a very high VSS. Hence,
the solution to the deterministic problem is not robust
towards slight changes in the regulation prices and,
thus, regulation possibilities.

This lack of robustness is partially due to some
inappropriate planning on the up-regulation side. If
we try to remove the possibility of up-regulation, we

get the following VSS for the total of all 20 vehicle
types:

January 9.762 €
April 613.594 €
July 584.433 €
October 145.585 €
The rather high values for April and July, is because

the stochastic solution only charges the vehicles on the
regulating market. Hence, we count on the need for
enough down regulation at some point during the day,
when the car is parked. Looking at the charging pattern
as well as up and down regulation, it is evident that
almost all of it is in the night time. Hence, most of the
vehicles will be parked and the assumption that vehicles
are plugged in when not driving, does not influence our
results much if at all.

In Figure 2, we see the cost average from the four 
seasons using the different clusters of driving patterns.
From the figure we can see that we experience a
decrease in costs between 40-60% when using the
stochastic solution. Furthermore, focusing on Figure 3
we see that the monetary saving is quite different for the
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different vehicle types - both because of the different
charging needs, but also due to the different timing
opportunities for charging.

Based on these analyses, we see that the savings for
vehicle types EV10, EV16, EV19, and EV20 are very
low. If an aggregator only has these vehicle groups in his 
fleet, the increment to act smart on the regulating market
is a lot smaller than with a fleet of, e.g. EV11.

6. Discussion

From the results we see that in general it is of great value
to introduce a stochastic model to optimise the charging
and bidding on the regulation market for electric
vehicles. The results could be scaled to a large number
of vehicles, imitating that of an aggregator. However,
we need to keep in mind that an increased number of
vehicles does not increase the expected savings
proportionally. The regulating market only needs a
certain amount of regulating power. However, having a
diversified fleet could enable bidding into the market at
most hours, increasing the expected earnings. 

The model developed in this article could be
enhanced to either include rolling planning for  more
details, or to develop a multi-stage stochastic model.
Hereby, the value of more sophisticated  modelling
could be studied as well as to which extend it is still
beneficial to increase the details.

Furthermore, one could argue that normally reserves
are not needed in the same direction throughout the
complete hour. However, the intra-day market works on
an hourly basis, but often does not allow for us to, e.g.
provide down regulation services for the complete hour.
Adjusting the modelling to take the uncertainty of the
amount of power to be available for regulation could
therefore, also be a subject of further research. Finally,
other devices in the power system can also provide the
same kind of demand response as the EVs and could
easily benefit from the detailed modelling as well. It
could, e.g. be interesting to look into the values for
electric heating, electric boilers, and electric cooling.

7. Conclusion

Using mathematical models for charging the electric
vehicles adds value to the vehicle owners or
aggregators. The value varies between the different uses
of the vehicles, for some the value is large, for others,
the planning most likely does not give a value great
enough for one actor to consider pooling with others and
implementing the necessary intelligence in the vehicle.

Results show decreasing costs with increasing
sophistication in the models. The increase going from
uncontrolled to delayed charging is expected due to the
lower power prices at night. Hence, the vehicle owners
can benefit from delayed charging. Moving further to
deterministic charging, gives another benefit, primarily
found in the good price windows for up- and down
regulation. However, we have to keep in mind, that not
all these prices windows are an option in the sense that
what seems a good up regulation price window could
turn out to be only a down regulation possibility and
vice versa. Moving further to the stochastic charging
strategy, a slight benefit is seen compared to the
deterministic model. The reason that the stochastic
strategy seems only slightly better than the deterministic
is that many of the good price windows are hard to
predict, and hence, the good benefits we saw in the
deterministic case are likely not as good as they seemed.

We have showed, that for acting on the regulating
market, the value of a stochastic model over a
deterministic model is very high (with an infeasible
stochastic solution to the deterministic first stage). Only
focusing on the day-ahead market with possibilities for
down regulation, also results in a rather large VSS.
Moving on to more detailed stochastic models might
increase the value even further.
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