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The paper discusses how the variationally inspired perturbation theory (VIPT) scheme of approximation
in quantum mechanics can be improved convergencewise if one uses for variational trial functions the
perturbative series with variational parameter, so that one is effectively doing variational calculations
directly on the high-order perturbative series for energy. The result optimizes the high-order energy
directly and thus represents a significant improvement over the VIPT procedure. When applied to a
double potential in which even the VIPT is badly divergent, we saw that the result is still very much
convergent.

INTRODUCTION

In a recent article, a new approximation scheme for
time-independent problems was presented by You et
al. (1998) which improves upon the regular perturbation
approach by making use of a variational calculation to
obtain a more convergent split up of the Hamiltonian
into the unperturbed Hamiltonian and the perturbation.
They used this method to get the ground and first
excited states of the anharmonic oscillator problem and
the ground state of the helium problem. This scheme
was called the variationally improved perturbation
theory (VIPT) by Aitchison and Dudek (2002), who
applied it to the Coulomb plus linear potential

  .

The results are very encouraging, especially for large
perturbations for which the regular perturbation
approach has convergence problems. It is also
especially relevant for systems in which a good soluble
unperturbed Hamiltonian with a small perturbation

cannot be found. It is to these systems in which the
VIPT is divergent that we address the present paper.

In this paper, we shall pursue an alternate way of
perturbing the physical system with which we calculate
the coefficients of the perturbative series for wave
functions by a variational approach. We shall introduce
a system for which the VIPT diverges very badly and
show that the present technique, called variational
perturbation theory (VPT), allows us to calculate a real
eigenvalue of energy which is still very close to the
correct value.

This paper is organized as follows: In Sec. 2, we
introduced the anharmonic oscillator potential with a
negative harmonic term so that it represents a double-
well potential. The VIPT is then applied to this problem
for three different assignments of the strengths of the
strengths of the harmonic term, corresponding to
different depths of the double well.  In Sec. 3, we apply
the VPT with three variational parameters
corresponding to the strength of the mother
Hamiltonian, the harmonic perturbation, and the
anharmonic strengths. In Sec. 4, we summarize and
comment on what we have achieved.
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VARIATIONALLY INSPIRED
PERTURBATION THEORY

Consider a system under the Hamiltonian

  , (1)

where the part H
0
+V

1
 is soluble and V

2 
is normally

treated as a perturbation but the strength of V
2
 is so

large that the normal perturbation approach is
inapplicable. The VIPT handles the problem by using
Hp(s) = H

0
 + (1–s)V

1
 as the unperturbed Hamiltonian,

with s chosen variationally, treating

(2)

as the new perturbation. This judicious choice of s gives
a better first approximation to energy so that the new
perturbation approach will improve in convergence
property. The VIPT is done as follows: first, we
evaluate the expectation value of the total Hamiltonian
using eigenfunctions of Hp(s),

           , (3)

as trial functions to get the optimal value of s. Note
here that the unperturbed eigenvalues and
eigenfunctions actively depend on s. The meaning of
the optimal parent Hamiltonian means that we are
choosing the optimal value of the potential (1–s)V

1
 to

best approximate the true potential V
1
+V

2
 for the

particular eigenstate. Thus the optimal parent
Hamiltonian can be used as the unperturbed
Hamiltonian and the regular Schrodinger perturbation
theory can be applied with the perturbation given by
Eq. (2). The variational calculation actually gives the
energy up to first order. Higher-order perturbative
calculations for energy are calculated by regular
perturbation techniques.

For the potential we will investigate, we choose a
double well potential

, (4)

with the parameter W < 0 and l = 1. This form of the
potential is a double-well potential whose depth is
controlled by the value of W, i.e., the more negative W

is, the deeper the double well. In particular, we
investigate the potential for three values of the
parameter W, W = –1, –4, –10. The potential in Eq. (4)
is chosen because the matrix elements of the potential
is particularly simple. The results of perturbation
calculations, done to first and third orders, are given in
Tables 1 and 2 as follows:

0 1 2H H V V= + +

1 2'H V Vσ= +

( ) ( ) ( ) ( )0
n n nHp Eσ φ σ σ φ σ=

( )
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ωω λ= Ω +
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Table 1. First-order VIPT results for ground state.

ΩΩΩΩΩ σσσσσ0 E0,calc E0,exact Error

-1
-4

-10

-3.6712
-5.2876

-10.3370

0.5364
-0.0151
-1.9359

0.5148
-0.1304
-4.1358

0.0216
0.1253
2.1990

Table 2.  Third-order VIPT results for ground state.

ΩΩΩΩΩ σσσσσ0 E0,calc E0,exact Error

-1
-4

-10

-3.6712
-5.2876

-10.3370

0.5364
0.3820

34.3614

0.5148
-0.1304
-4.1358

0.0226
0.5124

37.50

We notice that when the wells deepen, i.e., as W
becomes more negative, convergence becomes bad. In
fact the case W = –10 is an extremely divergent case.

VARIATIONAL PERTURBATION THEORY

If perturbation theory converges, the results can be
obtained in a quick fashion by calculating the
expectation value of the Hamiltonian H with respect
to the normalized perturbative series for wave function

  , (5)

where the perturbation operator K can be obtained in
series form from the equation (Speisman, 1957)

 . (6)

It was shown that using K to order n gives an energy to
order 2n+1. Thus, using

(7)
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will give energy up to the third order. Since we are
dealing with the expectation value of H, we can
optimize the results by regarding the parameters s and
l as variational parameters. This modification can be
very advantageous if the results of applying VIPT turns
out to be divergent, the optimization process in VPT
could still give convergent results.

The first-order VPT is the same as the first-order VIPT
since in both cases it is s that is used as the variational
parameter. For third-order VPT, we use two variational
parameters S and L for the term H’ in Eq. (5) so that
now the trial wave functions depend on three
parameters:

(8)

(9)

with

          .            (10)

Substituting, we get

We noticed that instead of diverging, this third-order
result represents a tremendous improvement over the
first-order results. We shall also investigate the situation
for the first excited state in the next section.

HIGHER EXCITED STATES

In this section, we give the corresponding results for
the first excited state. For first-order VIPT and VPT
results we have:
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The results of third-order VPT is given in Table 3 as
follows:

Table 3.  Third-order VPT results for ground state.

ΩΩΩΩΩ σσσσσ0 E0,calc E0,exact Error

-1
-4

-10

-5.254
-6.569

-14.000

0.5151
-0.1263
-4.0475

0.5148
-0.1304
-4.1358

0.0003
0.0041
0.0883

ΣΣΣΣΣ

-5.657
-7.577
44.522

ΛΛΛΛΛ

1.0075
1.0321

-29.7200

Table 4.  First-order VIPT and VPT results for first excited
state.

ΩΩΩΩΩ σσσσσ0 E0,calc E0,exact Error

-1
-4

-10

-5.0000
-6.4235

-10.8490

2.0625
0.7878

-3.0317

2.0206
0.6614
-4.1191

0.0419
0.1264
1.0874

Table 5.  Third-order VIPT results for first excited state.

ΩΩΩΩΩ σσσσσ0 E0,calc E0,exact Error

-1
-4

-10

-5.0000
-6.4235

-10.8490

2.0334
0.9110

10.8930

2.0206
0.6614
-4.1191

0.0419
0.2494

15.0840

The third-order VIPT results are given in Table 5 as
follows:

Notice again that the result is very highly divergent for
W = –10. On the other hand, when the third-order VPT
is performed the results are as given in Table 6:

Table 6. Third-order VPT results for first excited state.

ΩΩΩΩΩ σσσσσ1 E1,calc E1,exact Error

-1
-4

-10

-6.1425
-7.9329
-12.733

2.0154
0.6660

-3.9138

2.0206
0.6614
-4.1191

0.0052
0.0046
0.2053

ΣΣΣΣΣ

-6.5036
-7.4540
-7.1704

∆∆∆∆∆

1.0622
1.0321
0.0000

Again, the convergence is much improved over first
order results.
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DISCUSSIONS AND CONCLUSIONS

We have observed in one particular example, in which
the ordinary perturbation or the improved VIPT results
were not convergent, that the use of VPT in which the
perturbed wavefunctions were used as variational trial
functions with variational parameters inserted for each
term in the perturbation series has been able to render
convergence to the results. The reason for the good
convergence property of the VPT lies in the fact that it
is a variational method. In a variational method, as one
increases the number of parameters, one is sampling
over greater numbers of trial functions, with the
consequence of always increasing the accuracy, and
therefore, in general, the higher the order of
perturbation, the more perturbation parameters would
be used, and the more accurate the result becomes.
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