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ABSTRACT

Science Diliman (July-December 2004) 16:2, 12–16

Two Monte Carlo methods, simulated annealing and parallel tempering, were applied to a Verdier-
Stockmayer polymer. The efficiency of the two algorithms in exploring the lowest energy state possible
for the model polymers was measured by the number of energy-degenerate configurations (configurations
that have the same energy but are structurally different). Parallel tempering consistently explored more
energy-degenerate configurations as compared with simulated annealing.

INTRODUCTION

Monte Carlo (MC) methods are widely used in a
number of simulations in statistical physics (Liang &
Wong, 1997; Marinari & Parisi, 1992; Hansmann,
1997). This paper considers the applications and
limitations of two MC methods, simulated annealing
(SA) (Kirkpatrick et al., 1983) and parallel tempering
(PT) (Frenkel & Smit, 2002), applied to a two-
dimensional (2D) polymer that follows the Verdier-
Stockmayer (Verdier & Stockmayer, 1962; Gould &
Tobochnik, 1996) model.

The main task of numerical simulations on this matter
is to study the polymer’s low-energy conformations,
which depend on how the phase space is
comprehensively explored. However, systems of this
type have energy landscapes characterized by many
deep local minima separated by high-energy barriers.
At low temperatures, traditional Monte Carlo and
molecular-dynamics simulations tend to get “trapped”
in one of these minima, thereby hampering simulations
to explore the polymer’s ground-state configurations.
The two algorithms discussed in this paper, which are
modifications of the original Metropolis algorithm
(Metropolis et al., 1953), hope to alleviate the problem
by minimizing the probability of settling to these local

minima and continue to search for the global
minimum.

In SA, the temperature is initially high so that a
relatively large percentage of the random steps that
result in an increase in the energy will be accepted,
thus making the polymer move freely. The temperature
is then gradually lowered, hence the term annealing,
until the target temperature is reached and the polymer
is able to relax at its most stable conformation.

In PT, simulation is done over n systems at different
temperatures. Multiple copies of the polymer run in
parallel until a “swap” is imposed, hence the term
parallel tempering. Temperature differences are
relatively small enough to allow the occasional
swapping of two neighboring systems with different
temperatures.

METHODOLOGY

The polymer used in the simulation follows a 2D
Verdier-Stockmayer model. Each monomer occupies
one of the vertices in a 2D lattice. Initially, the polymer
is completely unfolded. Local movement is one
monomer at a time and self-avoiding. Figure 1
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illustrates the two types of movements: end move
(monomers 1 and 8) and corner move (monomers 4
and 7). Total energy will be computed as the sum of all
nonbonded nearest-neighbor interactions.

In both SA and PT, a trial move is done by randomly
selecting a monomer and moving it to a valid site
subject to the types of movements depicted in Fig. 1.
The move is accepted if a random number (0,1) is less
than the Boltzmann probability exp(–DE/T)
{Boltzmann factor set to unity}, where DE is the change
in total energy and T is the temperature. If the change
in energy is small enough or the temperature is high
enough, then there is a high probability of acceptance.
In PT, an additional trial move attempts to “swap”
neighboring temperature polymers. This trial move is
done by randomly selecting two neighboring
temperature polymers and attempting to swap their
configurations. The swap move is accepted if a random
number (0,1) is less than the probability exp[(Ei–Ej)(bi–
bj)], where b = 1/T. If there is enough overlap between
these two systems, then there is a high probability of
accepting the swap.

The annealing schedule for simulated annealing is
linear, every 5x105 MC steps, while the swapping ratio
adapted for PT is 90% MC moves: 10% swapping
moves (Frenkel & Smit, 2002). For a fair comparison,
both algorithms have the same steps per temperature
and the same total steps.

The experiment consists of two parts. The first part
had the interaction energies randomly generated [–4, –
2] and assigned to each monomer type (i.e., a

hypothetical polymer is generated by choosing a
sequence of N integers at random from the range 1–
20, corresponding to the 20 different possible amino
acids) and temperatures ranged [0.5,10] in increments
of 0.5 (Giordano, 1997) to determine the transition
region using both methods. The second part had the
interaction energies fixed to –2 and temperatures were
limited in the range [1,5] to investigate further the
ability of the two algorithms to explore the lowest
energy state possible. The lengths of the polymers used
were 15 and 30 monomer units.

RESULTS AND DISCUSSION

Determination of the transition region

Figures 2 and 3 show average energy and end-to-end
length of the 15-monomer chain using SA and PT. A
transition region is observed in the region around T~2,
both for the energy and end-to-end length graphs, as
seen in the sharp curves in the plots. Each point is an
average of 5x105 Monte Carlo steps. The polymer has
its lowest energy state at the lowest temperature.
Average end-to-end length decreases with temperature
as seen in Fig. 3. This means that the polymer has a
relatively greater degree of folding at low temperatures.
Note that in PT, each point in the graph, which is also
an average of 5x105 MC and swapping steps, is in a
different system. The fluctuations can be eliminated
by averaging more MC steps and performing more
experiments.
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Fig. 1. Possible movements of a polymer with eight
monomers. Initial position shown with solid lines and
unprimed monomer numbers; possible moves are indicated
by dotted lines and primed monomer numbers.
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Fig. 2. Average energy as a function of temperature.
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Investigation in the transition region

To further investigate the algorithm’s ability to explore
the lowest energy state configurations, we must be able
to easily identify different configurations in a region
where, expectedly, a large number of configurations
may occur. One way to do this is to fix the interaction
energies to some number, in this case –2 so there is a
high probability of acceptance, and limit the
thermodynamical states in the vicinity of the transition
region in the temperature range [1,5].

Figure 6 shows a 1x103 point representative of energies
using SA with interaction energies fixed to –2 and
temperatures annealed from T = 5 to T = 1 in increments
of 1 every 5x105 MC steps for a total of 2.5x106 MC

Fig. 3. Average end-to-end length as a function of temperature.
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Fig. 4. Energy at T = 1 using SA.
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Fig. 5. Energy at T = 1 using PT.
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Although the two methods produced very similar
results, they are different in terms of their ability to
explore the lowest energy states. Figures 4 and 5 show
a 5x103 points representative of the 5x105 energies
sampled at a temperature equal to 1 for the two
algorithms. Each point represents one energy state. In
Fig. 4, it is noticeable that some states are visited
repeatedly as shown by consistent values lined
horizontally in the graph even though we had initially
set the interaction energies randomly. The polymer is
somehow “trapped” at some states that it tends to
repeatedly fold at this configuration. This repeated visits
in some states are probable since the probability that
they are degenerate is small considering the short length
of the polymer. This is not seen in Fig. 5, as there are
more energy states represented at the low-energy states.

Fig. 6. 1x103 point representative of energies when interaction
is fixed to –2 using SA.

Temperature
1 2 3 4 5

-16

-14

-12

-10

-8

-6

-4

-2

0

En
er

gy



Tempering and Annealing

15

steps. One can clearly identify the nine possible energy
states from the plot with –16 as the lowest possible
energy. Figure 7 shows a similar pattern for parallel
tempering with –16 also as the lowest possible energy.
In Fig. 7, five systems with temperatures in the range
[1,5] are represented with 5x105 MC steps (including
the swaps) for each system.

With no distinct criteria for comparison on their ability
to explore the lowest energy states, we resort to
counting structural differences called energy-degenerate
configurations (EDC) explored in the lowest energy
state. Figure 8 shows six examples of EDCs in 15
monomers with eight nearest-neighbor interactions and
energy = –16.

Using the same parameters, Fig. 9 presents a
comparison of 20 independent experiments on the
number of EDCs explored by the two algorithms at T
= 1 in the simulation, where the energy of interaction
is fixed to –2 and temperature ranged [1,5]. Rotation
and mirror images are considered EDCs so the number
may be overestimated by a factor of 8 assuming all
types of configurations are sampled. As seen from the

graph, PT is consistently able to explore more distinct
configurations as compared with SA.

To verify the consistency of the performance in
exploring EDCs at the lowest energy state, we simulated
a longer polymer consisting of 30 monomer units. Trial
experiments showed, however, that the lowest energy
state is difficult to achieve using the two algorithms as
the polymer is considerably long, thus giving it a much
larger energy landscape and more local minima to
overcome. Figures 10 and 11 show a comparison of
two lowest energy configurations obtained from trial
simulations, which are –38 and –40. In Fig. 10,
experiment 4 using SA did not reach the energy state
equal to –38, while all experiments in PT did.

In Fig. 11, 9 out of 20 experiments in PT managed to
find the lowest energy state possible with the energy

Fig. 7. 1x103 point representative of energies when interaction
is fixed to –2 using PT.
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Fig. 8. Examples of energy-degenerate configurations (EDC)
in 15 monomers with energy = –16.
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Fig. 9. Comparison on the number of EDCs explored at the
lowest possible energy state (T = 1) in 15 monomers with
energy = –16.
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Fig. 10. Comparison on the number of EDCs explored at the
“second” lowest possible energy state (T = 1) in 30 monomers
with energy < –38.
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equal to –40 as compared with simulated annealing
which only had three. This further supplements the
advantage of PT as a better energy landscape explorer.

CONCLUSION

Information on the number of EDCs demonstrate to
be a useful criterion in comparing algorithms whose
objective is to study details of the energy landscape of
a system. Parallel tempering is consistently able to
search more EDCs at the lowest energy state as
compared with SA. However, both algorithms find it
difficult to find the lowest energy state for longer
polymers due to its larger energy landscape and more
local minima to overcome. Further investigations in
the annealing schedule and swapping ratio will be made.
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Fig. 11. Comparison on the number of EDCs explored at the
lowest possible energy state (T = 1) in 30 monomers with energy
= –40.
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