The Jordan Canonical Form of a Product of Elementary S-unitary Matrices

Erwin J. Gonda
Agnes T. Paras ${ }^{*}$
Institute of Mathematics and
Natural Sciences Research Institute
University of the Philippines Diliman

Abstract

Let S be an n-by-n, nonsingular, and Hermitian matrix. A square complex matrix Q is said to be S-unitary if $Q^{*} S Q=S$. An S-unitary matrix Q is said to be elementary if $\operatorname{rank}(Q-I)=1$. It is known what form every elementary S-unitary can take, and that every S-unitary can be written as a product of elementary S-unitaries. In this paper, we determine the Jordan canonical form of a product of two elementary S-unitaries.

Keywords: elementary S-unitary matrix, Hermitian matrix, Jordan canonical form

INTRODUCTION

Let M_{n} be the set of all n-by- n matrices with entries in the complex field \mathbb{C} and let $G L_{n}$ be the set of all nonsingular matrices in M_{n}. Let $S \in G L_{n}$ be Hermitian. A $Q \in M_{n}$ is said to be S-unitary if $Q^{*} S Q=S$, where Q^{*} is the conjugate transpose of Q (Gohberg et al. 2005). If $S=I$, then the set of S-unitary matrices in $G L_{n}$ coincides with the set of unitary matrices. Let U_{S} be the set of all S-unitary matrices. Observe that U_{s} is nonempty since $I \in U_{s}$. If $Q \in U_{S}$, then Q_{-1} is similar to Q^{*}, |det $Q \mid=1$, and $\alpha Q \in U_{S}$ for all $\alpha \in \mathbb{C}$ with modulus 1 . Moreover, U_{S} is a group under multiplication and consists of all matrices in M_{n} that preserve the scalar product $[\mathbf{u}, \mathbf{v}]_{S}=\mathbf{u} * S \mathbf{v}$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{C}^{\mathrm{n}}$.

An $H \in U$ s is called elementary if $\operatorname{rank}(H-I)=1$. Let H_{s} be the set of all elementary S-unitary matrices. When S is Hermitian, $H_{S}=K_{S} \cup L_{S}$, where

$$
K_{S}=\left\{K_{\mathbf{x}, r}=I+i r \mathbf{x} \mathbf{x}^{*} S: \mathbf{x} \in \mathbb{C}^{n} \backslash\{0\}, \mathbf{x}^{*} S \mathbf{x}=0, \text { and } r \in \mathbb{R} \backslash\{0\}\right\}
$$

and

$$
L S=\left\{L_{\mathbf{x}, \varphi}=I+\frac{\left(e^{i \varphi}-1\right)}{\mathbf{x}^{*} S \mathbf{x}} \mathbf{x} \mathbf{x}^{*} S: \mathbf{x} \in \mathbb{C}^{n}, \mathbf{x}^{*} S \mathbf{x} \neq 0, \varphi \in \mathbb{R}, \text { and } e^{\mathrm{i} \varphi} \neq 1\right\}
$$

[^0](Catbagan 2015). If $\mathbf{v} \in \mathbb{C}^{n}$ such that $\mathbf{v}^{*} S \mathbf{v} \neq 0$, the Λ_{s}-Householder matrix $S \mathbf{v}=1-\frac{2}{\mathbf{v}^{*} S \mathbf{v}} \mathbf{v} \mathbf{v}^{*} S$ generalizes the Householder matrix of \mathbf{v}, which is equal to $L_{\mathbf{v}, \pi}$ for $S=I$ (Merino et al. 2011; Horn and Johnson 2013). If $K_{\mathrm{x}, r} \in K_{S}$, then $K_{\mathrm{x}, r}{ }^{-1}=K_{\mathrm{x},-r}$ and $K_{\mathrm{x}, r}$ is similar to $I_{n-2} \oplus J_{2}$ (1). If $L_{\mathrm{x}, \varphi} \in L_{s}$, then $L_{\mathrm{x}, \varphi}-1=L_{\mathrm{x},-\varphi}$ and $L_{\mathrm{x}, \varphi}$ is similar to $I_{n-1} \oplus[e i \varphi]$. Hence $H \in H_{s}$ if and only if $H^{-1} \in H_{S}$. Thus, I is a product of two elements of H_{S}. Moreover, if $A \in U_{S}$, then A can be written as a product of elements of H_{s} (Catbagan 2015). Thus, the elements of H_{s} generate the group U_{S}. Since there are two types of elements of H_{s}, there are three types of products of two elements of H_{s} up to similarity. We wish to determine which Jordan canonical forms arise for each possibility, since the Jordan canonical form of a matrix reveals a lot of information such as its rank, nullity, eigenvalues, and their algebraic and geometric multiplicities. Analogous results for symplectic matrices and J-Householder matrices can be found in de la Rosa et al. (2012).

PRELIMINARIES

If $S=P^{*} P$ for some $P \in G L_{n}$, then $\mathbf{x}^{*} S \mathbf{x}>0$, when $0 \neq \mathbf{x} \in \mathbb{C}^{n}$; and $Q \in U_{S}$ if and only if $P Q P^{-1} \in U_{r}$. Hence when S is positive definite, $H_{S}=L_{S}$, and every S-unitary is similar to a unitary matrix. Since $U_{S}=U_{-S}$, from now on we only consider S that is *-congruent to $I_{k} \oplus-I_{n-k}$ for $0<k<n$, that is $S=P^{*}\left(I_{k} \oplus-I_{n-k}\right) P$, for some $P \in G L_{n}$.

Let n be a positive integer such that $n \geq 2$, and $T \subseteq \mathbb{C}^{n}$ be nonempty. Let T^{s} be the S-perpendicular subspace of T defined by

$$
T^{S}=\left\{\mathbf{z} \in \mathbb{C}^{n} \mid \mathbf{x}^{*} S \mathbf{z}=0, \text { for all } \mathbf{x} \in T\right\} .
$$

Then $\operatorname{dim} T^{S}=n-\operatorname{dim}(\operatorname{span} T)$, since $T^{S}=(S(\operatorname{span} T))^{\perp}$, which is the orthogonal complement of $S(\operatorname{span} T)$ with respect to the usual inner product on \mathbb{C}^{n}, and $\mathbb{C}^{n}=W \oplus W^{\perp}$ for any subspace W of \mathbb{C}^{n}. Let $H_{x^{\prime}}, H_{y} \in H_{s}$ and $A=H_{x} H_{y}$. Then $H_{x}=I+$ $\alpha \mathbf{x x}^{*} S$ and $H_{y}=I+\beta \mathbf{y} \mathbf{y}^{*} S$, for some nonzero $\alpha, \beta \in \mathbb{C}$. If $\{\mathbf{x}, \mathbf{y}\}$ is linearly dependent, then $\mathbf{y}=\delta \mathbf{x}$, for some $\delta \in \mathbb{C}$. This implies

$$
A=I+\alpha \mathbf{x} \mathbf{x}^{*} S+\beta \mathbf{y} \mathbf{y}^{*} S+\alpha \beta \mathbf{x} \mathbf{x}^{*} S \mathbf{y} \mathbf{y}^{*} S=I+\left(\alpha+\beta|\delta|^{2}+\alpha \beta|\delta|^{2} \mathbf{x}^{*} S \mathbf{x}\right) \mathbf{x} \mathbf{x}^{*} S .
$$

Hence $A=I+\mu \mathbf{x x}^{*} S$, where $\mu=\alpha+\beta|\delta|^{2}+\alpha \beta|\delta|^{2} \mathbf{x}^{*} S \mathbf{x} \in \mathbb{C}$. If $\mu=0$, then $A=I$, which implies $H_{\mathrm{x}}=H_{\mathrm{y}}{ }^{-1}$. If $\mu \neq 0$, then $\operatorname{rank}(A-I)=1$, and since $A \in U_{S}$, we have $A \in H_{s}$.

Suppose $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent. Let $\mathbf{z} \in \mathbb{C}^{n}$ be given. Suppose $\mathbf{z} \in \operatorname{ker}(A-I)$, that is, $A \mathbf{z}=\mathbf{z}$. Then

$$
\mathbf{0}=\left(A-\eta \mathbf{z}=\left(\alpha \mathbf{x}^{*} S \mathbf{z}\right) \mathbf{x}+\left(\beta \mathbf{y}^{*} S \mathbf{z}\right) \mathbf{y}+\alpha \beta\left(\mathbf{x}^{*} S \mathbf{y}\right)\left(\mathbf{y}^{*} S \mathbf{z}\right) \mathbf{x} .\right.
$$

Since $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent, and α, β are nonzero, we have $\mathbf{y}^{*} S \mathbf{z}=0$ and it follows that $\mathbf{x}^{*} S \mathbf{z}=0$. Thus, $\mathbf{z} \in\{\mathbf{x}, \mathbf{y}\}^{\text {s. }}$. Conversely, suppose $\mathbf{z} \in\{\mathbf{x}, \mathbf{y}\}^{\text {S }}$. Then $\mathbf{x}^{*} S \mathbf{z}=$ $\mathbf{y}^{*} S \mathbf{z}=0$ and so

$$
(A-l) \mathbf{z}=\alpha\left(\mathbf{x}^{*} S \mathbf{z}\right) \mathbf{x}+\beta\left(\mathbf{y}^{*} S \mathbf{z}\right) \mathbf{y}+\alpha \beta\left(\mathbf{x}^{*} S \mathbf{y}\right)\left(\mathbf{y}^{*} S \mathbf{z}\right) \mathbf{x}=\mathbf{0},
$$

that is, $\mathbf{z} \in \operatorname{ker}(A-I)$. Therefore $\operatorname{ker}(A-I)=\{\mathbf{x}, \mathbf{y}\}^{s}$.
Lemma 1. Let $S \in G L_{n}$ be Hermitian and let $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$ be nonzero. Suppose $H_{x}, H_{y} \in H_{s}$ and $A=H_{x} H_{y}$. If $\{\mathbf{x}, \mathbf{y}\}$ is linearly dependent, then $A=I$ or $A \in H_{S}$. If $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent, then $\operatorname{ker}(A-I)=\{\mathbf{x}, \mathbf{y}\}^{5}$.

If $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent, an immediate consequence of Lemma 1 is that $\operatorname{dim}(\operatorname{ker}(A-I))=\operatorname{dim}\left(\{\mathbf{x}, \mathbf{y}\}^{S}\right)=n-2$. Thus, there are $n-2$ Jordan blocks corresponding to 1 in the Jordan canonical form of A.

For completeness, we include the following lemma, which is used several times in the paper and can be readily verified. If $A=\left[a_{i j}\right] \in M_{n}$, the trace of A is defined to be $\operatorname{tr} A=\sum_{j=1}^{n} a_{j j}$.

Lemma 2. Let $A, B \in M_{2}$ be given such that neither is a scalar matrix. Then A and B are similar if and only if $\operatorname{tr} A=\operatorname{tr} B$ and $\operatorname{det} A=\operatorname{det} B$.

Let $\{\mathbf{x}, \mathbf{y}\}$ be a linearly independent subset of \mathbb{C}^{n}. We consider each of the three possibilities (i) $H_{x}, H_{y} \in K_{s}$, (ii) $H_{x}, H_{y} \in L_{s}$, or (iii) $H_{x} \in K_{s}$ and $H_{y} \in L_{s}$, and determine the Jordan canonical form of the product $H_{x} H_{y}$.
$H_{x^{\prime}}, H_{y} \in K_{s}$
Let $\{\mathbf{x}, \mathbf{y}\}$ be a linearly independent subset of \mathbb{C}^{n} such that $H_{x^{\prime}} H_{y} \in K_{S}$, i.e., $H_{x}=I+i r_{x} \mathbf{x} \mathbf{x}^{*} S$ and $H_{y}=I+i r_{y} \mathbf{y} \mathbf{y}^{*} S$, where $\mathbf{x}^{*} S \mathbf{x}=\mathbf{y}^{*} S \mathbf{y}=0$, and $r_{x^{\prime}}, r_{y}$ are nonzero real numbers. If $A=H_{x} H_{y}$, then

$$
A=I+i r_{x} \mathbf{x x}^{*} S+i r_{y} \mathbf{y y}^{*} S-r_{x} r_{y}\left(\mathbf{x}^{*} S \mathbf{y}\right) \mathbf{x} \mathbf{y}^{*} S .
$$

Either $\mathbf{x}^{*} S \mathbf{y}=0$ or $\mathbf{x}^{*} S \mathbf{y} \neq 0$.

Case 1: If $\mathbf{x}^{*} S \mathbf{y}=0$, then $A=I+i r_{x} \mathbf{x x}^{*} S+i r_{y} \mathbf{y} \mathbf{y}^{*} S$. Note that $\{\mathbf{x}, \mathbf{y}\}^{S}=\{\mathbf{x}\}^{S} \cap\{\mathbf{y}\}^{S}$, which is of dimension $n-2$. If $n>2$, then there exists $\mathbf{z} \in\{\mathbf{y}\}^{5}$ but $\mathbf{z} \notin\{\mathbf{x}\}^{5}$. Hence, $(A-I) \mathbf{z}=i_{x}\left(\mathbf{x}^{*} S \mathbf{z}\right) \mathbf{x} \neq \mathbf{0}$. Since $\mathbf{x}^{*} S \mathbf{x}=\mathbf{y}^{*} S \boldsymbol{y}=\mathbf{x}^{*} S \mathbf{y}=0$, we have $(A-I)^{2}=0$. Since $A-I \neq 0$, the minimal polynomial of A is $(x-1)^{2}$ and so the largest Jordan block corresponding to 1 is of size 2 . The number of Jordan blocks corresponding to 1 of size 1 is $\operatorname{rank}(A-I)^{0}-2 \operatorname{rank}(A-I)+\operatorname{rank}(A-I)^{2}=n-2(2)+0=n-4$. Since 1 is the only eigenvalue of A and there are $n-2$ Jordan blocks corresponding to $1, A$ is similar to $I_{n-4} \oplus J_{2}(1) \oplus J_{2}(1)$. If $n=2$, then $\mathbf{x}^{*} S \mathbf{y} \neq 0$, otherwise $\mathbf{x}^{*} S \mathbf{x}=\mathbf{y}^{*} S \mathbf{y}=$ $\mathbf{x}^{*} S \mathbf{y}=0$ and $\{\mathbf{x}, \mathbf{y}\}$ linearly independent imply $\mathbb{C}^{2}=\{\mathbf{x}, \mathbf{y}\}^{5}$ is of dimension $n-2=0$, which is a contradiction.

Case 2: Suppose $\mathbf{x}^{*} S \mathbf{y} \neq 0$. We find any remaining eigenvalues of A. The images of \mathbf{x} and \mathbf{y} under A are

$$
A \mathbf{x}=\mathbf{x}+i r_{x}\left(\mathbf{x}^{*} S \mathbf{x}\right) \mathbf{x}+i r_{y}\left(\mathbf{y}^{*} S \mathbf{x}\right) \mathbf{y}-r_{x} r_{y}\left(\mathbf{x}^{*} S \mathbf{y}\right)\left(\mathbf{y}^{*} S \mathbf{x}\right) \mathbf{x}=\left(1-r_{x} r_{y}\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2}\right) \mathbf{x}+i r_{y}\left(\mathbf{y}^{*} S \mathbf{x}\right) \mathbf{y}
$$

and

$$
A \mathbf{y}=\mathbf{y}+i r_{x}\left(\mathbf{x}^{*} S \mathbf{y}\right) \mathbf{x}+i r_{y}\left(\mathbf{y}^{*} S \mathbf{y}\right) \mathbf{y}-r_{x} r_{y}\left(\mathbf{x}^{*} S \mathbf{y}\right)\left(\mathbf{y}^{*} S \mathbf{y}\right) \mathbf{x}=\mathbf{y}+i r_{y}\left(\mathbf{x}^{*} S \mathbf{y}\right) \mathbf{x} .
$$

Hence $\operatorname{span}\{\mathbf{x}, \mathbf{y}\}$ is invariant under A. Consider the restriction of A to $\operatorname{span}\{\mathbf{x}, \mathbf{y}\}$ and its matrix representation

$$
M=\left[\begin{array}{cc}
1-r_{x} r_{y}\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2} & i r_{y}\left(\mathbf{x}^{*} S \mathbf{y}\right) \\
i r_{y}\left(\mathbf{y}^{*} S \mathbf{x}\right) & 1
\end{array}\right]
$$

with respect to the ordered basis $\{\mathbf{x}, \mathbf{y}\}$. Since $\mathbf{x}^{*} S \mathbf{x}=\mathbf{y}^{*} S \mathbf{y}=0$ and $\mathbf{x}^{*} S \mathbf{y} \neq 0$, we have $\mathbb{C}^{\mathrm{n}}=\operatorname{span}\{\mathbf{x}, \mathbf{y}\} \oplus\{\mathbf{x}, \mathbf{y}\}^{\text {s }}$. Thus A is similar to $M \oplus I_{n-2}$ and 1 is not an eigenvalue of M. Note that $\operatorname{det}(M)=1$ and $\operatorname{tr}(M)=2-r_{x} r_{y}\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2} \in \mathbb{R}$. Since $A \in U_{s}$ has determinant 1 and M is not a scalar matrix, we see that M is similar to one of the following: $\operatorname{diag}\left(e^{i \theta}, e^{-i \theta}\right)$, where $\theta \in \mathbb{R}$ such that $e^{i \theta} \neq \pm 1 ; J_{2}(-1)$; or $\operatorname{diag}\left(\lambda, \lambda^{-1}\right)$, where $\lambda \in \mathbb{R}$ and $|\lambda|>1$. We determine if the preceding three possibilities for the Jordan canonical form of M occur.

Let $\theta \in \mathbb{R}$ such that $e^{i \theta} \neq \pm 1$. If we choose $r_{x}, r_{y} \in \mathbb{R}$ such that $r_{x} r_{y}=\frac{2(1-\cos \theta)}{\left|\mathbf{x}^{*} \operatorname{Sy}\right|^{2}} \neq 0$, then $\operatorname{det}(M)=1=\operatorname{det}\left(\operatorname{diag}\left(e^{i \theta}, e^{-i \theta}\right)\right)$ and $\operatorname{tr}(M)=2 \cos \theta=\operatorname{tr}\left(\operatorname{diag}\left(e^{i \theta}, e^{-i \theta}\right)\right) . \operatorname{By}$ Lemma $2, M$ is similar to $\operatorname{diag}\left(e^{i \theta}, e^{-i \theta}\right)$.

If we choose $r_{x}, r_{y} \in \mathbb{R}$ such that $r_{x} r_{y}=\frac{4}{\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2}}$, then $\operatorname{tr}(M)=-2=\operatorname{tr}\left(J_{2}(-1)\right)$ and $\operatorname{det}(M)=1=\operatorname{det}\left(J_{2}(-1)\right)$. By Lemma $2, M$ is similar to $J_{2}(-1)$.

Let $\lambda \in \mathbb{R}$ such that $|\lambda|>1$. If we choose $r_{x^{*}}, r_{y} \in \mathbb{R}$ such that $r_{x} r_{y}=\frac{\left(2-\lambda-\lambda^{-1}\right)}{\left|\mathbf{x}^{*} S \mathbf{S}\right|^{2}} \neq 0$, then we have $\operatorname{det}(M)=1=\operatorname{det}\left(\operatorname{diag}\left(\lambda, \lambda^{-1}\right)\right)$ and $\operatorname{tr}(M)=-2=\operatorname{tr}\left(\operatorname{diag}\left(\lambda, \lambda^{-1}\right)\right)$. Since $\lambda \neq \lambda^{-1}$, we have that M is similar to $\operatorname{diag}\left(\lambda, \lambda^{-1}\right)$.

Theorem 3. Let $S \in G L_{n}$ be indefinite Hermitian and $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$ be given. If $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent and $H_{x^{\prime}}, H_{y} \in K_{S}$, then the product $H_{x} H_{y}$ is similar to one of the following:
a. $\quad I_{n-4} \oplus J_{2}(1) \oplus J_{2}(1)$
b. $\quad I_{n-2} \oplus J_{2}(-1)$
c. $\quad I_{n-2} \oplus \operatorname{diag}\left(e^{i \theta}, e^{-i \theta}\right)$, where $\theta \in \mathbb{R}$ such that $e^{i \theta} \neq \pm 1$
d. $\quad I_{n-2} \oplus \operatorname{diag}\left(\lambda, \lambda^{-1}\right)$, where $|\lambda|>1$ and $\lambda \in \mathbb{R}$.
$H_{x}, H_{y} \in L_{s}$
We now consider the product of two elements of L_{S}. Let $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$ such that $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent and $H_{x}, H_{y} \in L_{S}$ that is, $H_{x}=1+\frac{e^{i \alpha}-1}{\mathbf{x}^{*} S \mathbf{x}} \mathbf{x} x^{*} S$ and $H_{y}=I+\frac{e^{i \beta}-1}{\mathbf{y}^{*} S \mathbf{y}} \mathbf{y} \mathbf{y}^{*} S$, where $\mathbf{x}^{*} S \mathbf{x}$ and $\mathbf{y}^{*} S \mathbf{y}$ are nonzero, and $\alpha, \beta \in \mathbb{R}$ such that $e^{i \alpha} \neq 1$ and $e^{i \beta} \neq 1$. Since $H_{y}=H_{a y}$ for all nonzero $a \in \mathbb{C}$, we can assume that $\mathbf{x}^{*} S \mathbf{x}$, $y^{*} S y \in\{1,-1\}$. If $A=H_{x} H_{y}$, then

$$
A=I+\frac{e^{i \alpha}-1}{\mathbf{x}^{*} S \mathbf{x}} \mathbf{x} \mathbf{x}^{*} S+\frac{e^{i \beta}-1}{\mathbf{y}^{*} S \mathbf{y}} \mathbf{y} \mathbf{y}^{*} S+\frac{e^{i \alpha}-1}{\mathbf{x}^{*} S \mathbf{x}} \frac{e^{i \beta}-1}{\mathbf{y}^{*} S \mathbf{y}}\left(\mathbf{x}^{*} S \mathbf{y}\right) \mathbf{x} \mathbf{y}^{*} S .
$$

Case 1: If $\mathbf{x}^{*} S \mathbf{y}=0$, then $A=1+\frac{e^{i \alpha}-1}{\mathbf{x}^{*} S \mathbf{x}} \mathbf{x} \mathbf{x}^{*} S+\frac{e^{i \beta}-1}{\mathbf{y}^{*} S \mathbf{y}} \mathbf{y} \mathbf{y}^{*} S$. Observe that $A \mathbf{x}=\mathbf{x}+\left(e^{i \alpha}-1\right) \mathbf{x}=e^{i \alpha} \mathbf{x}$. Hence, \mathbf{x} is an eigenvector of A corresponding to $e^{i \alpha}$. Similarly, \mathbf{y} is an eigenvector of A corresponding to $e^{i \beta}$. Since $\mathbf{x}^{*} S \mathbf{x}$ and $\mathbf{y}^{*} S \mathbf{y}$ are nonzero and $\mathbf{x}^{*} S \mathbf{y}=0$, we have $\mathbb{C}^{n}=\operatorname{span}\{\mathbf{x}, \mathbf{y}\} \oplus\{\mathbf{x}, \mathbf{y}\}^{s}$. Hence A is similar to $I_{n-2} \oplus \operatorname{diag}\left(e^{i \alpha}, e^{i \beta}\right)$.

Case 2: Suppose $\mathbf{x}^{*} S \mathbf{y} \neq 0$. We find any remaining eigenvalues of A. The images of \mathbf{x} and \mathbf{y} under A are

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{x}+\left(e^{i \alpha}-1\right) \mathbf{x}+\frac{e^{i \beta}-1}{\mathbf{y}^{*} S \mathbf{y}}\left(\mathbf{y}^{*} S \mathbf{x}\right) \mathbf{y}+\frac{e^{i \alpha}-1}{\mathbf{x}^{*} S \mathbf{x}} \frac{e^{i \beta}-1}{\mathbf{y}^{*} S \mathbf{y}}\left(\mathbf{x}^{*} S \mathbf{y}\right)\left(\mathbf{y}^{*} S \mathbf{x}\right) \mathbf{x} \\
& =\left(e^{i \alpha}+\frac{e^{i \alpha}-1}{\mathbf{x}^{*} S \mathbf{x}} \frac{e^{i \beta}-1}{\mathbf{y}^{*} S \mathbf{y}}\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2}\right) \mathbf{x}+\left(\frac{e^{i \beta}-1}{\mathbf{y}^{*} S \mathbf{y}}\left(\mathbf{y}^{*} S \mathbf{x}\right)\right) \mathbf{y}
\end{aligned}
$$

and

$$
\begin{aligned}
A \mathbf{y} & =\mathbf{y}+\frac{e^{i \alpha}-1}{\mathbf{x}^{*} S \mathbf{x}}\left(\mathbf{x}^{*} S \mathbf{y}\right) \mathbf{x}+\frac{e^{i \beta}-1}{\mathbf{y}^{*} S \mathbf{y}}\left(\mathbf{y}^{*} S \mathbf{y}\right) \mathbf{y}+\frac{e^{i \alpha}-1}{\mathbf{x}^{*} S \mathbf{x}} \frac{e^{i \beta}-1}{\mathbf{y}^{*} S \mathbf{y}}\left(\mathbf{x}^{*} S \mathbf{y}\right)\left(\mathbf{y}^{*} S \mathbf{y}\right) \mathbf{x} \\
& =e^{i \beta} \mathbf{y}+\left(e^{i \beta} \mathbf{x}^{*} S \mathbf{y} \frac{e^{i \alpha}-1}{\mathbf{x}^{*} S \mathbf{x}}\right) \mathbf{x} .
\end{aligned}
$$

Hence $\operatorname{span}\{\mathbf{x}, \mathbf{y}\}$ is invariant under A. Consider the restriction of A to $\operatorname{span}\{\mathbf{x}, \mathbf{y}\}$ and its matrix representation

$$
L=\left[\begin{array}{cc}
e^{i \alpha}+\frac{e^{i \alpha}-1}{\mathbf{x}^{*} S \mathbf{x}} \frac{e^{i \beta}-1}{\mathbf{y}^{*} S \mathbf{y}}\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2} & e^{i \beta} \mathbf{x}^{*} S \mathbf{y} \frac{e^{i \alpha}-1}{\mathbf{x}^{*} S \mathbf{x}} \\
\frac{e^{i \beta}-1}{\mathbf{y}^{*} S \mathbf{y}}\left(\mathbf{y}^{*} S \mathbf{x}\right) & e^{i \beta}
\end{array}\right]
$$

with respect to the ordered basis $\{\mathbf{x}, \mathbf{y}\}$.
Note that $a \mathbf{x}+b \mathbf{y} \in\{\mathbf{x}, \mathbf{y}\}^{S}$ for some $a, b \in \mathbb{C}$ if and only if $\mathbf{x}^{*} S(a \mathbf{x}+b \mathbf{y})=0$ and $\mathbf{y}^{*} S(a \mathbf{x}+b \mathbf{y})=0$, that is $\left[\begin{array}{ll}\mathbf{x}^{*} S \mathbf{x} & \mathbf{x}^{*} S \mathbf{y} \\ \mathbf{y}^{*} S \mathbf{x} & \mathbf{y}^{*} S \mathbf{y}\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Since $\mathbf{x}^{*} S \mathbf{x}, \mathbf{y}^{*} S \mathbf{y} \in\{1,-1\}$, we have $\{\mathbf{x}, \mathbf{y}\}^{S} \cap \operatorname{span}\{\mathbf{x}, \mathbf{y}\}=\{\mathbf{0}\}$ if and only if $\mathbf{x}^{*} S \mathbf{x}$ and \mathbf{y}^{*} Sy have opposite signs or $\left|x^{*} S y\right| \neq 1$.

If $\mathbf{x}^{*} S \mathbf{x}=\mathbf{y}^{*} S \mathbf{y} \in\{ \pm 1\}$ and $\left|\mathbf{x}^{*} S \mathbf{y}\right|=1$, then $\mathbf{x}, \mathbf{y} \notin\{\mathbf{x}, \mathbf{y}\}^{5}$ and

$$
\{\mathbf{x}, \mathbf{y}\}^{S} \cap \operatorname{span}\{\mathbf{x}, \mathbf{y}\}=\operatorname{span}\left\{\left(\mathbf{x}^{*} S \mathbf{y}\right) \mathbf{x}-\left(\mathbf{x}^{*} S \mathbf{x}\right) \mathbf{y}\right\} .
$$

Hence $\operatorname{span}\{\mathbf{x}\} \oplus\{\mathbf{x}, \mathbf{y}\}^{S}$ is of dimension $n-1$ and contains $\operatorname{span}\{\mathbf{x}, \mathbf{y}\}$. Now $A \mathbf{x}$ can be rewritten as $A \mathbf{x}=e^{i(\alpha+\beta)} \mathbf{x}-\left(e^{i \beta}-1\right)\left(\mathbf{y}^{*} S \mathbf{x}\right)\left[\left(\mathbf{x}^{*} S \mathbf{y}\right) \mathbf{x}-\left(\mathbf{x}^{*} S \mathbf{x}\right) \mathbf{y}\right]$. This implies that span $\{\mathbf{x}\}$ $\oplus\{\mathbf{x}, \mathbf{y}\}^{5}$ is invariant under A. Since $\operatorname{det} A=e^{i(\alpha+\beta)}$ and $\operatorname{rank}(A-I)=2$, we have that A is similar to $I_{n-3} \oplus J_{2}(1) \oplus\left[e^{i(\alpha+\beta)}\right]$, if $e^{i(\alpha+\beta)} \neq 1$; or $I_{n-3} \oplus J_{3}(1)$, if $e^{i(\alpha+\beta)}=1$.

If $\mathbb{C}^{n}=\operatorname{span}\{\mathbf{x}, \mathbf{y}\} \oplus\{\mathbf{x}, \mathbf{y}\}^{s}$, then A is similar to $I_{n-2} \oplus L$ and 1 is not an eigenvalue of L. Observe that det $L=e^{i(\alpha+\beta)}$ and $\operatorname{tr} L=e^{i \alpha}+e^{i \beta}+\frac{e^{i \alpha}-1}{\mathbf{x}^{*} \mathbf{S} \mathbf{x}} \frac{e^{i \beta}-1}{\mathbf{y}^{*} S \mathbf{y}}\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2}$.

Since $A \in U_{S}$ and L is not a scalar matrix, then L is similar to one of the following: $\operatorname{diag}\left(e^{i \theta}, e^{i \phi}\right)$, where $\theta, \phi \in \mathbb{R}$ such that $e^{i \theta}, e^{i \phi}$ are distinct and both are not equal to 1 ; $J_{2}(\lambda)$, where $|\lambda|=1$ but $\lambda \neq 1$; or diag $\left(\lambda, \overline{\lambda^{-1}}\right)$, where $|\lambda|>1$.

It suffices to determine whether the last two possibilities for the Jordan canonical form of L occur. But first we need to determine the possible nonzero values of $\mathbf{x}^{*} S \mathbf{y}$, when $\mathbf{x}^{*} S \mathbf{x}, \mathbf{y}^{*} S \mathbf{y} \in\{1,-1\}$ and $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent. Let $\mathbf{e}_{i} \in \mathbb{C}^{n}$ denote the column with ith entry 1 and 0 elsewhere. Suppose $c \in \mathbb{C}$ is nonzero and $S=P^{*}\left(I_{k} \oplus-I_{n-k}\right) P$, for some nonsingular P and integer $0<k<n$. If $|c|>1$, we can take $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$ such that $P \mathbf{x}=\mathbf{e}_{1}$ and $P \mathbf{y}=c \mathbf{e}_{1}+\sqrt{|c|^{2}-1} \mathbf{e}_{k+1}$, so that $\mathbf{x}^{*} S \mathbf{x}=1, \mathbf{y}^{*} S \mathbf{y}=$ $|c|^{2}-\left(|c|^{2}-1\right)=1$, and $\mathbf{x}^{*} S \mathbf{y}=c$. Thus, if $|c|>1$, there exists a linearly independent set $\{\mathbf{x}, \mathbf{y}\}$ such that $\mathbf{x}^{*} S \mathbf{x}=\mathbf{y}^{*} S \mathbf{y}$ and $\mathbf{x}^{*} S \mathbf{y}=c$. If $c \in \mathbb{C}$ is nonzero and we take $\mathbf{x}, \mathbf{y} \in$ \mathbb{C}^{n} such that $P \mathbf{x}=\mathbf{e}_{1}$ and $P \mathbf{y}=c \mathbf{e}_{1}+\sqrt{|c|^{2}-1} \mathbf{e}_{k+1}$, then $\mathbf{x}^{*} S \mathbf{x}=1, \mathbf{y}^{*} S \mathbf{y}=|c|^{2}-\left(|c|^{2}+1\right)$ $=-1$ and $\mathbf{x}^{*} S \mathbf{y}=c$. Hence every nonzero $c \in \mathbb{C}$ can be realized as $\mathbf{x}^{*} S \mathbf{y}$ by a linearly independent set $\{\mathbf{x}, \mathbf{y}\}$ such that $\mathbf{x}^{*} S \mathbf{x}=-\mathbf{y}^{*} S \mathbf{y}$, when S is ${ }^{*}$-congruent to $I_{k} \oplus-I_{n-k}$.

Let $\alpha=\beta \in \mathbb{R}$ such that $\alpha \neq k \pi$, for all $k \in \mathbb{Z}$. If $a=\operatorname{Re}\left(e^{i \alpha}\right)$, then $\frac{-4 e^{i \alpha}}{\left(e^{i \alpha}-1\right)^{2}}=\frac{2}{1-a}>1$. If we take $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$ such that $\mathbf{x}^{*} S \mathbf{x}=1=\mathbf{y}^{*} S \mathbf{y}$ and $\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2}=\frac{-4 e^{i \alpha}}{\left(e^{i \alpha}-1\right)^{2}}$, then $\operatorname{tr} L=2 e^{i \alpha}+\left(e^{i \alpha}-1\right)^{2}\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2}=-2 e^{i \alpha}$ and $\operatorname{det} L=e^{i 2 \alpha}$. Since L is not a scalar matrix, it follows from Lemma 2 that L is similar to $J_{2}\left(-e^{i \alpha}\right)$, where $e^{i \alpha} \neq \pm 1$.

If we take $e^{i \alpha}=e^{-i \beta}=i$, and $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$ such that $\mathbf{x}^{*} S \mathbf{x}=1=-\mathbf{y}^{*} S \mathbf{y}$ and $\left|\mathbf{x}^{*} S \mathbf{y}\right|=1$, then $\operatorname{tr} L=-2$ and $\operatorname{det} L=1$. Since L is not a scalar matrix, L is similar to $J_{2}(-1)$.

Let $\lambda=r e^{i \theta}$, where $r>1$ and $\theta \neq 2 k \pi$ for all $k \in \mathbb{Z}$. Then $-\frac{e^{i \theta}(r-1)^{2}}{\left(e^{i \theta}-1\right)^{2} r}$ is positive.

If we take $\alpha=\beta=\theta$, and $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$ such that $\mathbf{x}^{*} S \mathbf{x}=1=-\mathbf{y}^{*} S \mathbf{y}$ and $\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2}=$ $-\frac{e^{i \theta}(r-1)^{2}}{\left(e^{i \theta}-1\right)^{2} r}$, then $\operatorname{tr} L=2 e^{i \theta}-\left(e^{i \theta}-1\right)^{2}\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2}=e^{i \theta}\left(r+r^{-1}\right)=\lambda+\overline{\lambda^{-1}}$ and $\operatorname{det} L=e^{i 2 \theta}=\lambda \overline{\lambda^{-1}}$. Hence L is similar to $\operatorname{diag}\left(\lambda, \overline{\lambda^{-1}}\right)$.

Let $\lambda=r$, where $r>1$. Let $\beta=-\alpha$ and $\alpha \in \mathbb{R}$ such that $\operatorname{Re}\left(e^{i \alpha}\right)=r^{-1}$. Since $\frac{(r-1)^{2}}{r}$ >0, we have $\frac{r-r^{-1}}{2\left(1-r^{-1}\right)}>1$. If we take $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{\mathrm{n}}$ such that $\mathbf{x}^{*} S \mathbf{x}=1=\mathbf{y}^{*} S \mathbf{y}$ and $\left|\mathbf{x}^{*} \operatorname{S} \mathbf{y}\right|^{2}=\frac{r-r^{-1}}{2\left(1-r^{-1}\right)}$, then $\operatorname{tr} L=2 r^{-1}+2\left(1-r^{-1}\right)\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2}=r+r^{-1}$ and det $L=1$. Hence L is similar to $\operatorname{diag}\left(r, r^{-1}\right)$.

Theorem 4. Let $S \in G L_{n}$ be indefinite Hermitian and $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$ be given. If $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent such that $H_{x}, H_{y} \in L_{s}$, then the product $H_{x} H_{y}$ is similar to one of the following:
a. $\quad I_{n-2} \oplus \operatorname{diag}\left(e^{i \theta}, e^{i \phi}\right)$, where $\theta, \phi \in \mathbb{R}$ such that $e^{i \theta}, e^{i \phi} \neq 1$
b. $\quad I_{n-3} \oplus J_{2}(1) \oplus\left[e^{i \theta}\right]$, where $\theta \in \mathbb{R}$ and $e^{i \theta} \neq 1$
c. $\quad I_{n-3} \oplus J_{3}(1)$
d. $\quad I_{n-2} \oplus J_{2}(\lambda)$, where $|\lambda|=1$ and $\lambda \neq 1$
e. $\quad I_{n-2} \oplus \operatorname{diag}\left(\lambda, \overline{\lambda^{-1}}\right)$, where $|\lambda|>1$.
$H_{x} \in K_{s}$ and $H_{y} \in L_{S}$
Lastly, we consider the product of an element of K_{s} and of L_{S} If $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$ are nonzero such that $H_{x} \in K_{s}$ and $H_{y} \in L_{S}$, then $H_{x}=I+i r \mathbf{x} \mathbf{x}^{*} S$, where $r \in \mathbb{R} \backslash\{0\}$, and $\mathbf{x}^{*} S \mathbf{x}=0$, and $H y=I+\frac{e^{i \alpha}-1}{\mathbf{y}^{*} S \mathbf{y}} \mathbf{y} \mathbf{y}^{*} S$, where $e^{i \alpha} \neq 1$. Note that $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent since $\mathbf{x}^{*} S \mathbf{x}=0 \neq \mathbf{y}^{*} S \mathbf{y}$. If $A=H_{x} H_{y}$, then

$$
A=I+i r \mathbf{x} \mathbf{x}^{*} S+\frac{e^{i \alpha}-1}{\mathbf{y}^{*} S \mathbf{y}} \mathbf{y} \mathbf{y}^{*} S+i r \frac{e^{i \alpha}-1}{\mathbf{y}^{*} S \mathbf{y}}\left(\mathbf{x}^{*} S \mathbf{y}\right) \mathbf{x y}^{*} S .
$$

Case 1: If $\mathbf{x}^{*} S \mathbf{y}=0$, then $A=I+i r \mathbf{x} \mathbf{x}^{*} S+\frac{e^{i \alpha}-1}{\mathbf{y}^{*} S \mathbf{y}} \mathbf{y} \mathbf{y}^{*} S, A \mathbf{x}=\mathbf{x}$, and $A \mathbf{y}=e^{i \boldsymbol{x}} \mathbf{y}$. Since $\mathbf{x}^{*} S \mathbf{y}=0$ and $\mathbf{x}^{*} S \mathbf{x}=0$, we have $(A-I)^{2}=\frac{\left(e^{i \alpha}-1\right)^{2}}{\mathbf{y}^{*} S \mathbf{y}} \mathbf{y} \mathbf{y}^{*} S$ and $(A-I)^{3}=\frac{\left(e^{i \alpha}-1\right)^{3}}{\mathbf{y}^{*} S \mathbf{y}} \mathbf{y} \mathbf{y}^{*} S$.

Observe that $\operatorname{rank}(A-I)=2$ and $\operatorname{rank}(A-I)^{2}=\operatorname{rank}(A-I)^{3}=1$, which imply that 2 is the size of the largest Jordan block corresponding to 1 , and the number of Jordan blocks of size 2 corresponding to 1 is $\operatorname{rank}(A-I)-2 \operatorname{rank}(A-I)^{2}+\operatorname{rank}(A-I)^{3}=$ $2-2(1)+1=1$. Since there are $n-2$ Jordan blocks corresponding to 1 and $\operatorname{det} A=e^{i \alpha}$, we have that A is similar to $I_{n-3} \oplus J_{2}(1) \oplus\left[e^{i \alpha}\right]$.

Case 2: Suppose $\mathbf{x}^{*} S \mathbf{y} \neq 0$. The images of \mathbf{x} and \mathbf{y} under A are

$$
\begin{aligned}
& A \mathbf{x}=\mathbf{x}+\frac{e^{i \alpha}-1}{\mathbf{y}^{*} S \mathbf{y}}\left(\mathbf{y}^{*} S \mathbf{x}\right) \mathbf{y}+i r \frac{e^{i \alpha}-1}{\mathbf{y}^{*} S \mathbf{y}}\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2} \mathbf{x} \\
& =\left(1+i r \frac{e^{i \alpha}-1}{\mathbf{y}^{*} S \mathbf{y}}\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2}\right) \mathbf{x}+\frac{e^{i \alpha}-1}{\mathbf{y}^{*} S \mathbf{y}}\left(\mathbf{y}^{*} S \mathbf{x}\right) \mathbf{y}
\end{aligned}
$$

and

$$
A \mathbf{y}=\mathbf{y}+i r\left(\mathbf{x}^{*} S \mathbf{y}\right) \mathbf{x}+\left(e^{i \alpha}-1\right) \mathbf{y}+i r\left(e^{i \alpha}-1\right)\left(\mathbf{x}^{*} S \mathbf{y}\right) \mathbf{x}=i r e^{i \alpha}\left(\mathbf{x}^{*} S \mathbf{y}\right) \mathbf{x}+e^{i \alpha} \mathbf{y} .
$$

Hence $\operatorname{span}\{\mathbf{x}, \mathbf{y}\}$ is invariant under A. Consider the restriction of A to $\operatorname{span}\{\mathbf{x}, \mathbf{y}\}$ and its matrix representation

$$
K=\left[\begin{array}{cc}
1+i r \frac{e^{i \alpha}-1}{\mathbf{y}^{*} S \mathbf{y}}\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2} & i r e^{i \alpha}\left(\mathbf{x}^{*} S \mathbf{y}\right) \\
\frac{e^{i \alpha}-1}{\mathbf{y}^{*} S \mathbf{y}}\left(\mathbf{y}^{*} S \mathbf{x}\right) & e^{i \alpha}
\end{array}\right]
$$

with respect to the ordered basis $\{\mathbf{x}, \mathbf{y}\}$. Since $\mathbb{C}^{n}=\operatorname{span}\{\mathbf{x}, \mathbf{y}\} \oplus\{\mathbf{x}, \mathbf{y}\}^{s}, A$ is similar to $I_{n-2} \oplus K$ and 1 is not an eigenvalue of K. Note that $\operatorname{det} K=e^{i \alpha} \neq 1$ and $\operatorname{tr} K=e^{i \alpha}$ $+1+\operatorname{ir} \frac{e^{i \alpha}-1}{\mathbf{y}^{*} S \mathbf{y}}\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2}$. Since A is S-unitary, K is similar to one of the following: $\operatorname{diag}\left(e^{i \theta}, e^{i \phi}\right)$, where $\theta, \phi \in \mathbb{R}$ such that $e^{i \theta}, e^{i \phi}$ are distinct with both not equal to 1 , and $e^{i(\theta+\phi)}=e^{i \alpha}$; or $\operatorname{diag}\left(\lambda, \overline{\lambda^{-1}}\right)$, where $|\lambda|>1$ and $\lambda \neq \pm 1$.

We now determine whether the three possibilities for the Jordan canonical form of K occur.

Let $\theta, \phi \in \mathbb{R}$ such that $e^{i \theta}$, $e^{i \phi}$, and $e^{i(\theta+\phi)}$ are not equal to 1 , and $e^{i \theta} \neq e^{i \phi}$. If $\alpha=\theta+\phi$, choose $r \in \mathbb{R}$ such that $r\left(e^{i \alpha}-1\right)=\frac{\left(\mathbf{y}^{*} S \mathbf{y}\right)\left(1-e^{i \theta}\right)\left(e^{i \phi}-1\right)}{i\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2}}$. This has a solution since $\frac{\left(1-e^{i \theta}\right)\left(e^{i \phi}-1\right)}{e^{i \alpha}-1}=-1+\frac{e^{i \theta}+e^{i \phi}-2}{e^{i \alpha}-1}$ is nonzero and the real part of $\frac{e^{i \theta}+e^{i \phi}-2}{e^{i \alpha}-1}$ is 1. Then $\operatorname{det} K=e^{i(\theta+\phi)}=\operatorname{det}\left(\operatorname{diag}\left(e^{i \theta}, e^{i \phi}\right)\right)$ and $\operatorname{tr} K=e^{i \theta}+$ $e^{i \phi}=\operatorname{tr}\left(\operatorname{diag}\left(e^{i \theta}, e^{i \phi}\right)\right)$. Thus K is similar to $\operatorname{diag}\left(e^{i \theta}, e^{i \phi}\right)$.

Let $\lambda=t e^{i \gamma}$, where $t, \gamma \in \mathbb{R}$ such that $t>1$ and $e^{i 2 \gamma} \neq 1$. Choose $\alpha=2 \gamma$ and $r \in \mathbb{R}$ such that $r\left(e^{i \alpha}-1\right)=\frac{\left(\mathbf{y}^{*} S \mathbf{y}\right)\left(1-t e^{i \gamma}\right)\left(t^{-1} e^{i \gamma}-1\right)}{i\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2}}$. This has a solution since $\frac{\left(1-t e^{i \gamma}\right)\left(t^{-1} e^{i \gamma}-1\right)}{e^{i \alpha}-1}$ $=-1+\frac{\left(t+t^{-1}\right) e^{i \gamma}-2}{e^{i \gamma \gamma}-1}$ is nonzero and the real part of $\frac{\left(t+t^{-1}\right) e^{i \gamma}-2}{e^{i \gamma \gamma}-1}$ is 1 . Then det $K=\lambda \overline{\lambda^{-1}}=\operatorname{det}\left(\operatorname{diag}\left(\lambda, \overline{\lambda^{-1}}\right)\right)$ and $\operatorname{tr} K=\left(t+t^{-1}\right) e^{i \gamma}=\operatorname{tr}\left(\operatorname{diag}\left(\lambda, \overline{\lambda^{-1}}\right)\right) . \operatorname{By}$ Lemma $2, K$ is similar to $\operatorname{diag}\left(\lambda, \overline{\lambda^{-1}}\right)$.

Let $\lambda=e^{i \beta}$, where $\beta \in \mathbb{R}$ and $\lambda \neq \pm 1$. Choose $\alpha=2 \beta$ and $r \in \mathbb{R}$ such that $r=\frac{(1-\lambda) \mathbf{y}^{*} S \mathbf{y}}{i(\lambda+1)\left|\mathbf{x}^{*} S \mathbf{y}\right|^{2}}$. This has a solution since $\frac{1-\lambda}{\lambda+1}=-1+\frac{2}{\lambda+1}$ and the real part of $\frac{2}{\lambda+1}$ is 1 . Then $\operatorname{det} K=\lambda^{2}=\operatorname{det} J_{2}(\lambda)$ and $\operatorname{tr} K=2 \lambda=\operatorname{tr} J_{2}(\lambda)$. Since K is not a scalar matrix, K is similar to $J_{2}(\lambda)$.

Theorem 5. Let $S \in G L_{n}$ be indefinite Hermitian and $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n}$ be given. If $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent such that $H_{x} \in K_{s}$ and $H_{y} \in L_{s}$, then the product $H_{x} H_{y}$ is similar to one of the following:
a. $\quad I_{n-3} \oplus J_{2}(1) \oplus\left[e^{i \alpha}\right]$, for some $\alpha \in \mathbb{R}$ such that $e^{i \alpha} \neq 1$
b. $\quad I_{n-2} \oplus \operatorname{diag}\left(e^{i \theta}, e^{i \phi}\right)$, where $\theta, \phi \in \mathbb{R}$ such that $e i^{\theta}, e^{i \phi}, e^{i(\theta+\phi)}$ are all not equal to 1 , and $e^{i \theta} \neq e^{i \phi}$
c. $\quad I_{n-2} \oplus \operatorname{diag}\left(\lambda, \overline{\lambda^{-1}}\right)$, where $|\lambda|>1$ and $\lambda \notin \mathbb{R}$
d. $\quad I_{n-2} \oplus J_{2}(\lambda)$, where $|\lambda|=1$ but $\lambda \neq \pm 1$.

ACKNOWLEDGMENTS

The work of A.T. Paras was supported by the Natural Sciences Research Institute (NSRI) Project MAT-18-1-05.

REFERENCES

Catbagan K. 2015. On the Λs-polar decomposition and the Λ_{s}-elementary matrices [B.S. thesis]. Philippines: University of the Philippines Diliman.
de la Rosa KL, Merino DI, Paras AT. 2012. The J-Householder matrices. Linear Algebra Appl. 436(5):1189-1194.

Gohberg I, Lancaster P, Rodman L. 2005. Indefinite linear algebra and applications. Basel: Birkhäuser.

Horn RA, Johnson CR. 2013. Matrix analysis. 2nd ed. New York: Cambridge University Press.
Merino DI, Paras AT, Teh TD. 2011. The Λ_{S}-Householder matrices. Linear Algebra Appl. 436:2643-2664.

Erwin J. Gonda is a B.S. Mathematics graduate of University of the Philippines Diliman and is currently working in the insurance industry.

Agnes T. Paras agnes@math.upd.edu.ph is a professor of Mathematics at University of the Philippines Diliman

[^0]: * Corresponding Author

