The Jordan Canonical Form of a Product of Elementary *S*-unitary Matrices

Erwin J. Gonda Agnes T. Paras[•] Institute of Mathematics and Natural Sciences Research Institute University of the Philippines Diliman

ABSTRACT

Let *S* be an *n*-by-*n*, nonsingular, and Hermitian matrix. A square complex matrix *Q* is said to be *S*-unitary if $Q^*SQ = S$. An *S*-unitary matrix *Q* is said to be elementary if rank(Q - I) = 1. It is known what form every elementary *S*-unitary can take, and that every *S*-unitary can be written as a product of elementary *S*-unitaries. In this paper, we determine the Jordan canonical form of a product of two elementary *S*-unitaries.

Keywords: elementary S-unitary matrix, Hermitian matrix, Jordan canonical form

INTRODUCTION

Let M_n be the set of all *n*-by-*n* matrices with entries in the complex field \mathbb{C} and let GL_n be the set of all nonsingular matrices in M_n . Let $S \in GL_n$ be Hermitian. A $Q \in M_n$ is said to be *S*-unitary if $Q^*SQ = S$, where Q^* is the conjugate transpose of Q (Gohberg et al. 2005). If S = I, then the set of *S*-unitary matrices in GL_n coincides with the set of unitary matrices. Let U_s be the set of all *S*-unitary matrices. Observe that U_s is nonempty since $I \in U_s$. If $Q \in U_s$, then Q_{-1} is similar to Q^* , $|\det Q| = 1$, and $\alpha Q \in U_s$ for all $\alpha \in \mathbb{C}$ with modulus 1. Moreover, U_s is a group under multiplication and consists of all matrices in M_n that preserve the scalar product $[\mathbf{u}, \mathbf{v}]_s = \mathbf{u}^* S \mathbf{v}$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{C}^n$.

An $H \in U_s$ is called elementary if rank(H - I) = 1. Let H_s be the set of all elementary *S*-unitary matrices. When *S* is Hermitian, $H_s = K_s \cup L_s$, where

$$K_{S} = \{K_{\mathbf{x}r} = I + ir\mathbf{x}\mathbf{x}^{*}S : \mathbf{x} \in \mathbb{C}^{n} \setminus \{\mathbf{0}\}, \mathbf{x}^{*}S\mathbf{x} = 0, \text{ and } r \in \mathbb{R} \setminus \{\mathbf{0}\}\}$$

and

$$LS = \{L_{\mathbf{x},\varphi} = I + \frac{(e^{i\varphi} - 1)}{\mathbf{x}^* S \mathbf{x}} \mathbf{x} \mathbf{x}^* S : \mathbf{x} \in \mathbb{C}^n, \mathbf{x}^* S \mathbf{x} \neq 0, \varphi \in \mathbb{R}, \text{ and } e^{i\varphi} \neq 1\}$$

^{*} Corresponding Author

(Catbagan 2015). If $\mathbf{v} \in \mathbb{C}^n$ such that $\mathbf{v}^*S\mathbf{v} \neq 0$, the Λ_s -Householder matrix $S\mathbf{v} = I - \frac{2}{\mathbf{v}^*S\mathbf{v}}\mathbf{vv}^*S$ generalizes the Householder matrix of \mathbf{v} , which is equal to $L_{\mathbf{v},\pi}$ for S = I (Merino et al. 2011; Horn and Johnson 2013). If $K_{\mathbf{x},r} \in K_s$, then $K_{\mathbf{x},r}^{-1} = K_{\mathbf{x},-r}$ and $K_{\mathbf{x},r}$ is similar to $I_{n-2} \bigoplus J_2$ (1). If $L_{\mathbf{x},\varphi} \in L_s$, then $L_{\mathbf{x},\varphi} - 1 = L_{\mathbf{x}-\varphi}$ and $L_{\mathbf{x},\varphi}$ is similar to $I_{n-1} \bigoplus [ei\varphi]$. Hence $H \in H_s$ if and only if $H^{-1} \in H_s$. Thus, I is a product of two elements of H_s . Moreover, if $A \in U_s$, then A can be written as a product of elements of H_s (Catbagan 2015). Thus, the elements of H_s generate the group U_s . Since there are two types of elements of H_s , there are three types of products of two elements of H_s up to similarity. We wish to determine which Jordan canonical forms arise for each possibility, since the Jordan canonical form of a matrix reveals a lot of information such as its rank, nullity, eigenvalues, and their algebraic and geometric multiplicities. Analogous results for symplectic matrices and J-Householder matrices can be found in de la Rosa et al. (2012).

PRELIMINARIES

If $S = P^*P$ for some $P \in GL_n$, then $\mathbf{x}^*S\mathbf{x} > 0$, when $0 \neq \mathbf{x} \in \mathbb{C}^n$; and $Q \in U_s$ if and only if $PQP^{-1} \in U_r$. Hence when S is positive definite, $H_s = L_s$, and every S-unitary is similar to a unitary matrix. Since $U_s = U_{-s}$, from now on we only consider S that is *-congruent to $I_k \bigoplus -I_{n-k}$ for 0 < k < n, that is $S = P^* (I_k \bigoplus -I_{n-k}) P$, for some $P \in GL_n$.

Let *n* be a positive integer such that $n \ge 2$, and $T \subseteq \mathbb{C}^n$ be nonempty. Let T^s be the *S*-perpendicular subspace of *T* defined by

$$T^{s} = \{ \mathbf{z} \in \mathbb{C}^{n} \mid \mathbf{x}^{*} S \mathbf{z} = 0, \text{ for all } \mathbf{x} \in T \}.$$

Then dim $T^s = n - \text{dim}(\text{span}T)$, since $T^s = (S(\text{span}T))^{\perp}$, which is the orthogonal complement of S(spanT) with respect to the usual inner product on \mathbb{C}^n , and $\mathbb{C}^n = W \bigoplus W^{\perp}$ for any subspace W of \mathbb{C}^n . Let H_x , $H_y \in H_s$ and $A = H_x H_y$. Then $H_x = I + \alpha \mathbf{x} \mathbf{x}^* S$ and $H_y = I + \beta \mathbf{y} \mathbf{y}^* S$, for some nonzero $\alpha, \beta \in \mathbb{C}$. If $\{\mathbf{x}, \mathbf{y}\}$ is linearly dependent, then $\mathbf{y} = \delta \mathbf{x}$, for some $\delta \in \mathbb{C}$. This implies

$$A = I + \alpha \mathbf{x} \mathbf{x}^* S + \beta \mathbf{y} \mathbf{y}^* S + \alpha \beta \mathbf{x} \mathbf{x}^* S \mathbf{y} \mathbf{y}^* S = I + (\alpha + \beta |\delta|^2 + \alpha \beta |\delta|^2 \mathbf{x}^* S \mathbf{x}) \mathbf{x} \mathbf{x}^* S.$$

Hence $A = I + \mu \mathbf{x} \mathbf{x}^* S$, where $\mu = \alpha + \beta |\delta|^2 + \alpha \beta |\delta|^2 \mathbf{x}^* S \mathbf{x} \in \mathbb{C}$. If $\mu = 0$, then A = I, which implies $H_{\mathbf{x}} = H_{\mathbf{y}}^{-1}$. If $\mu \neq 0$, then rank(A - I) = 1, and since $A \in U_S$, we have $A \in H_S$.

Suppose {**x**, **y**} is linearly independent. Let $z \in \mathbb{C}^n$ be given. Suppose $z \in \text{ker} (A - I)$, that is, Az = z. Then

$$\mathbf{0} = (\mathbf{A} - \mathbf{I})\mathbf{z} = (\alpha \mathbf{x}^* \mathbf{S} \mathbf{z})\mathbf{x} + (\beta \mathbf{y}^* \mathbf{S} \mathbf{z})\mathbf{y} + \alpha \beta (\mathbf{x}^* \mathbf{S} \mathbf{y})(\mathbf{y}^* \mathbf{S} \mathbf{z})\mathbf{x}.$$

Since {**x**, **y**} is linearly independent, and α , β are nonzero, we have $\mathbf{y}^*S\mathbf{z} = 0$ and it follows that $\mathbf{x}^*S\mathbf{z} = 0$. Thus, $\mathbf{z} \in {\mathbf{x}, \mathbf{y}}^S$. Conversely, suppose $\mathbf{z} \in {\mathbf{x}, \mathbf{y}}^S$. Then $\mathbf{x}^*S\mathbf{z} = \mathbf{y}^*S\mathbf{z} = 0$ and so

$$(A - I)\mathbf{z} = \alpha(\mathbf{x}^*S\mathbf{z})\mathbf{x} + \beta(\mathbf{y}^*S\mathbf{z})\mathbf{y} + \alpha\beta(\mathbf{x}^*S\mathbf{y})(\mathbf{y}^*S\mathbf{z})\mathbf{x} = \mathbf{0},$$

that is, $\mathbf{z} \in \ker(A - I)$. Therefore $\ker(A - I) = {\mathbf{x}, \mathbf{y}}^{s}$.

Lemma 1. Let $S \in GL_n$ be Hermitian and let $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ be nonzero. Suppose $H_x, H_y \in H_s$ and $A = H_x H_y$. If $\{\mathbf{x}, \mathbf{y}\}$ is linearly dependent, then A = I or $A \in H_s$. If $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent, then ker $(A - I) = \{\mathbf{x}, \mathbf{y}\}^s$.

If {**x**, **y**} is linearly independent, an immediate consequence of Lemma 1 is that $\dim(\ker(A - I)) = \dim(\{\mathbf{x}, \mathbf{y}\}^{s}) = n - 2$. Thus, there are n - 2 Jordan blocks corresponding to 1 in the Jordan canonical form of *A*.

For completeness, we include the following lemma, which is used several times in the paper and can be readily verified. If $A = [a_{ij}] \in M_n$, the *trace of A* is defined to be $\operatorname{tr} A = \sum_{i=1}^n a_{ij}$.

Lemma 2. Let $A, B \in M_2$ be given such that neither is a scalar matrix. Then A and B are similar if and only if trA = trB and det A = det B.

Let {**x**, **y**} be a linearly independent subset of \mathbb{C}^n . We consider each of the three possibilities (i) H_x , $H_y \in K_s$, (ii) H_x , $H_y \in L_s$, or (iii) $H_x \in K_s$ and $H_y \in L_s$, and determine the Jordan canonical form of the product H_yH_y .

$H_x, H_y \in K_s$

Let {**x**, **y**} be a linearly independent subset of \mathbb{C}^n such that H_x , $H_y \in K_s$, i.e., $H_x = I + ir_x \mathbf{x} \mathbf{x}^* S$ and $H_y = I + ir_y \mathbf{y} \mathbf{y}^* S$, where $\mathbf{x}^* S \mathbf{x} = \mathbf{y}^* S \mathbf{y} = 0$, and r_x , r_y are nonzero real numbers. If $A = H_x H_y$, then

$$A = I + ir_x \mathbf{x} \mathbf{x}^* S + ir_y \mathbf{y}^* S - r_x r_y (\mathbf{x}^* S \mathbf{y}) \mathbf{x} \mathbf{y}^* S.$$

Either $\mathbf{x}^* S \mathbf{y} = 0$ or $\mathbf{x}^* S \mathbf{y} \neq 0$.

Case 1: If $\mathbf{x}^* S \mathbf{y} = 0$, then $A = I + ir_x \mathbf{x} \mathbf{x}^* S + ir_y \mathbf{y} \mathbf{y}^* S$. Note that $\{\mathbf{x}, \mathbf{y}\}^S = \{\mathbf{x}\}^S \cap \{\mathbf{y}\}^S$, which is of dimension n - 2. If n > 2, then there exists $\mathbf{z} \in \{\mathbf{y}\}^S$ but $\mathbf{z} \notin \{\mathbf{x}\}^S$. Hence, $(A - I)\mathbf{z} = ir_x(\mathbf{x}^* S \mathbf{z})\mathbf{x} \neq \mathbf{0}$. Since $\mathbf{x}^* S \mathbf{x} = \mathbf{y}^* S \mathbf{y} = \mathbf{x}^* S \mathbf{y} = 0$, we have $(A - I)^2 = 0$. Since $A - I \neq 0$, the minimal polynomial of A is $(x - 1)^2$ and so the largest Jordan block corresponding to 1 is of size 2. The number of Jordan blocks corresponding to 1 of size 1 is rank $(A - I)^0 - 2 \operatorname{rank}(A - I) + \operatorname{rank}(A - I)^2 = n - 2(2) + 0 = n - 4$. Since 1 is the only eigenvalue of A and there are n - 2 Jordan blocks corresponding to 1, A is similar to $I_{n-4} \oplus J_2(1) \oplus J_2(1)$. If n = 2, then $\mathbf{x}^* S \mathbf{y} \neq 0$, otherwise $\mathbf{x}^* S \mathbf{x} = \mathbf{y}^* S \mathbf{y} = \mathbf{x}^* S \mathbf{y} = 0$ and $\{\mathbf{x}, \mathbf{y}\}$ linearly independent imply $\mathbb{C}^2 = \{\mathbf{x}, \mathbf{y}\}^S$ is of dimension n - 2 = 0, which is a contradiction.

Case 2: Suppose $\mathbf{x}^* S \mathbf{y} \neq 0$. We find any remaining eigenvalues of *A*. The images of \mathbf{x} and \mathbf{y} under *A* are

$$A\mathbf{x} = \mathbf{x} + ir_x(\mathbf{x}^*S\mathbf{x})\mathbf{x} + ir_y(\mathbf{y}^*S\mathbf{x})\mathbf{y} - r_x r_y(\mathbf{x}^*S\mathbf{y})(\mathbf{y}^*S\mathbf{x})\mathbf{x} = (1 - r_x r_y|\mathbf{x}^*S\mathbf{y}|^2) \mathbf{x} + ir_y(\mathbf{y}^*S\mathbf{x})\mathbf{y}$$

and

$$A\mathbf{y} = \mathbf{y} + ir_{x} (\mathbf{x}^{*}S\mathbf{y})\mathbf{x} + ir_{y} (\mathbf{y}^{*}S\mathbf{y})\mathbf{y} - r_{x} r_{y} (\mathbf{x}^{*}S\mathbf{y})(\mathbf{y}^{*}S\mathbf{y})\mathbf{x} = \mathbf{y} + ir_{y} (\mathbf{x}^{*}S\mathbf{y})\mathbf{x}$$

Hence span{x, y} is invariant under A. Consider the restriction of A to span{x, y} and its matrix representation

$$M = \begin{bmatrix} 1 - r_{\mathbf{x}} r_{\mathbf{y}} |\mathbf{x}^* S \mathbf{y}|^2 & ir_{\mathbf{y}} (\mathbf{x}^* S \mathbf{y}) \\ ir_{\mathbf{y}} (\mathbf{y}^* S \mathbf{x}) & 1 \end{bmatrix}$$

with respect to the ordered basis {**x**, **y**}. Since $\mathbf{x}^*S\mathbf{x} = \mathbf{y}^*S\mathbf{y} = 0$ and $\mathbf{x}^*S\mathbf{y} \neq 0$, we have $\mathbb{C}^n = \operatorname{span}{\{\mathbf{x}, \mathbf{y}\}} \bigoplus {\{\mathbf{x}, \mathbf{y}\}}^S$. Thus *A* is similar to $M \bigoplus I_{n-2}$ and 1 is not an eigenvalue of *M*. Note that det(*M*) = 1 and tr(*M*) = 2 - $r_x r_y |\mathbf{x}^*S\mathbf{y}|^2 \in \mathbb{R}$. Since $A \in U_s$ has determinant 1 and *M* is not a scalar matrix, we see that *M* is similar to one of the following: diag($e^{i\theta}, e^{-i\theta}$), where $\theta \in \mathbb{R}$ such that $e^{i\theta} \neq \pm 1$; $J_2(-1)$; or diag(λ, λ^{-1}), where $\lambda \in \mathbb{R}$ and $|\lambda| > 1$. We determine if the preceding three possibilities for the Jordan canonical form of *M* occur.

Let $\theta \in \mathbb{R}$ such that $e^{i\theta} \neq \pm 1$. If we choose $r_x, r_y \in \mathbb{R}$ such that $r_x r_y = \frac{2(1 - \cos\theta)}{|\mathbf{x}^* S \mathbf{y}|^2} \neq 0$, then det $(M) = 1 = \det(\operatorname{diag}(e^{i\theta}, e^{-i\theta}))$ and tr $(M) = 2 \cos\theta = \operatorname{tr}(\operatorname{diag}(e^{i\theta}, e^{-i\theta}))$. By Lemma 2, *M* is similar to $\operatorname{diag}(e^{i\theta}, e^{-i\theta})$. If we choose $r_x, r_y \in \mathbb{R}$ such that $r_x r_y = \frac{4}{|\mathbf{x}^* S \mathbf{y}|^2}$, then $tr(M) = -2 = tr(J_2(-1))$ and det $(M) = 1 = det (J_2(-1))$. By Lemma 2, M is similar to $J_2(-1)$.

Let $\lambda \in \mathbb{R}$ such that $|\lambda| > 1$. If we choose $r_x, r_y \in \mathbb{R}$ such that $r_x, r_y = \frac{(2-\lambda-\lambda^{-1})}{|\mathbf{x}^*S\mathbf{y}|^2} \neq 0$, then we have det $(M) = 1 = \det(\operatorname{diag}(\lambda, \lambda^{-1}))$ and $\operatorname{tr}(M) = -2 = \operatorname{tr}(\operatorname{diag}(\lambda, \lambda^{-1}))$. Since $\lambda \neq \lambda^{-1}$, we have that M is similar to $\operatorname{diag}(\lambda, \lambda^{-1})$.

Theorem 3. Let $S \in GL_n$ be indefinite Hermitian and $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ be given. If $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent and $H_{\mathbf{x}}, H_{\mathbf{y}} \in K_s$, then the product $H_{\mathbf{x}}H_{\mathbf{y}}$ is similar to one of the following:

- a. $I_{n-4} \bigoplus J_2(1) \bigoplus J_2(1)$
- b. $I_{n-2} \oplus J_2(-1)$
- *c.* $I_{n-2} \oplus \text{diag}(e^{i\theta}, e^{-i\theta})$, where $\theta \in \mathbb{R}$ such that $e^{i\theta} \neq \pm 1$
- *d*. $I_{n-2} \bigoplus \text{diag}(\lambda, \lambda^{-1})$, where $|\lambda| > 1$ and $\lambda \in \mathbb{R}$.

$H_x, H_y \in L_s$

We now consider the product of two elements of L_s . Let $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ such that $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent and $H_{\mathbf{x}}, H_{\mathbf{y}} \in L_s$, that is, $H_{\mathbf{x}} = I + \frac{e^{i\alpha} - 1}{\mathbf{x}^* S \mathbf{x}} \mathbf{x} \mathbf{x}^* S$ and $H_{\mathbf{y}} = I + \frac{e^{i\beta} - 1}{\mathbf{y}^* S \mathbf{y}}$ **yy**^{*}*S*, where **x****S***x** and **y****S***y** are nonzero, and $\alpha, \beta \in \mathbb{R}$ such that $e^{i\alpha} \neq 1$ and $e^{i\beta} \neq 1$. Since $H_{\mathbf{y}} = H_{a\mathbf{y}}$ for all nonzero $a \in \mathbb{C}$, we can assume that **x****S***x**, $\mathbf{y}^* S \mathbf{y} \in \{1, -1\}$. If $A = H_{\mathbf{x}} H_{\mathbf{y}}$, then

$$A = I + \frac{e^{i\alpha} - 1}{\mathbf{x}^* S \mathbf{x}} \mathbf{x}^* S + \frac{e^{i\beta} - 1}{\mathbf{y}^* S \mathbf{y}} \mathbf{y} \mathbf{y}^* S + \frac{e^{i\alpha} - 1}{\mathbf{x}^* S \mathbf{x}} \frac{e^{i\beta} - 1}{\mathbf{y}^* S \mathbf{y}} (\mathbf{x}^* S \mathbf{y}) \mathbf{x} \mathbf{y}^* S.$$

Case 1: If $\mathbf{x}^*S\mathbf{y} = 0$, then $A = I + \frac{e^{i\alpha} - 1}{\mathbf{x}^*S\mathbf{x}}\mathbf{x}\mathbf{x}^*S + \frac{e^{i\beta} - 1}{\mathbf{y}^*S\mathbf{y}}\mathbf{y}\mathbf{y}^*S$. Observe that $A\mathbf{x} = \mathbf{x} + (e^{i\alpha} - 1)\mathbf{x} = e^{i\alpha}\mathbf{x}$. Hence, \mathbf{x} is an eigenvector of A corresponding to $e^{i\alpha}$. Similarly, \mathbf{y} is an eigenvector of A corresponding to $e^{i\beta}$. Since $\mathbf{x}^*S\mathbf{x}$ and $\mathbf{y}^*S\mathbf{y}$ are nonzero and $\mathbf{x}^*S\mathbf{y} = 0$, we have $\mathbb{C}^n = \operatorname{span}\{\mathbf{x}, \mathbf{y}\} \oplus \{\mathbf{x}, \mathbf{y}\}^S$. Hence A is similar to $I_{\alpha-2} \oplus \operatorname{diag}(e^{i\alpha}, e^{i\beta})$.

Case 2: Suppose $\mathbf{x}^* S \mathbf{y} \neq 0$. We find any remaining eigenvalues of *A*. The images of \mathbf{x} and \mathbf{y} under *A* are

$$A\mathbf{x} = \mathbf{x} + (e^{i\alpha} - 1)\mathbf{x} + \frac{e^{i\beta} - 1}{\mathbf{y}^* S \mathbf{y}} (\mathbf{y}^* S \mathbf{x})\mathbf{y} + \frac{e^{i\alpha} - 1}{\mathbf{x}^* S \mathbf{x}} \frac{e^{i\beta} - 1}{\mathbf{y}^* S \mathbf{y}} (\mathbf{x}^* S \mathbf{y})(\mathbf{y}^* S \mathbf{x})\mathbf{x}$$
$$= \left(e^{i\alpha} + \frac{e^{i\alpha} - 1}{\mathbf{x}^* S \mathbf{x}} \frac{e^{i\beta} - 1}{\mathbf{y}^* S \mathbf{y}} |\mathbf{x}^* S \mathbf{y}|^2\right)\mathbf{x} + \left(\frac{e^{i\beta} - 1}{\mathbf{y}^* S \mathbf{y}} (\mathbf{y}^* S \mathbf{x})\right)\mathbf{y}$$

and

$$A\mathbf{y} = \mathbf{y} + \frac{e^{i\alpha} - 1}{\mathbf{x}^* S \mathbf{x}} (\mathbf{x}^* S \mathbf{y}) \mathbf{x} + \frac{e^{i\beta} - 1}{\mathbf{y}^* S \mathbf{y}} (\mathbf{y}^* S \mathbf{y}) \mathbf{y} + \frac{e^{i\alpha} - 1}{\mathbf{x}^* S \mathbf{x}} \frac{e^{i\beta} - 1}{\mathbf{y}^* S \mathbf{y}} (\mathbf{x}^* S \mathbf{y}) (\mathbf{y}^* S \mathbf{y}) \mathbf{x}$$
$$= e^{i\beta} \mathbf{y} + \left(e^{i\beta} \mathbf{x}^* S \mathbf{y} \frac{e^{i\alpha} - 1}{\mathbf{x}^* S \mathbf{x}} \right) \mathbf{x}.$$

Hence span{x, y} is invariant under A. Consider the restriction of A to span{x, y} and its matrix representation

$$L = \begin{bmatrix} e^{i\alpha} + \frac{e^{i\alpha} - 1}{\mathbf{x}^* S \mathbf{x}} & \frac{e^{i\beta} - 1}{\mathbf{y}^* S \mathbf{y}} & |\mathbf{x}^* S \mathbf{y}|^2 & e^{i\beta} \mathbf{x}^* S \mathbf{y} & \frac{e^{i\alpha} - 1}{\mathbf{x}^* S \mathbf{x}} \\ & \frac{e^{i\beta} - 1}{\mathbf{y}^* S \mathbf{y}} & (\mathbf{y}^* S \mathbf{x}) & e^{i\beta} \end{bmatrix}$$

with respect to the ordered basis {**x**, **y**}.

Note that $a\mathbf{x} + b\mathbf{y} \in {\mathbf{x}, \mathbf{y}}^{s}$ for some $a, b \in \mathbb{C}$ if and only if $\mathbf{x}^{*}S(a\mathbf{x} + b\mathbf{y}) = 0$ and $\mathbf{y}^{*}S(a\mathbf{x} + b\mathbf{y}) = 0$, that is $\begin{bmatrix} \mathbf{x}^{*}S\mathbf{x} & \mathbf{x}^{*}S\mathbf{y} \\ \mathbf{y}^{*}S\mathbf{x} & \mathbf{y}^{*}S\mathbf{y} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Since $\mathbf{x}^{*}S\mathbf{x}, \mathbf{y}^{*}S\mathbf{y} \in {1, -1}$, we have ${\mathbf{x}, \mathbf{y}}^{s} \cap \text{span}{\mathbf{x}, \mathbf{y}} = {\mathbf{0}}$ if and only if $\mathbf{x}^{*}S\mathbf{x}$ and $\mathbf{y}^{*}S\mathbf{y}$ have opposite signs or $|\mathbf{x}^{*}S\mathbf{y}| \neq 1$.

If $\mathbf{x}^* S \mathbf{x} = \mathbf{y}^* S \mathbf{y} \in \{\pm 1\}$ and $|\mathbf{x}^* S \mathbf{y}| = 1$, then $\mathbf{x}, \mathbf{y} \notin \{\mathbf{x}, \mathbf{y}\}^s$ and

 $\{\mathbf{x}, \mathbf{y}\}^{s} \cap \operatorname{span}\{\mathbf{x}, \mathbf{y}\} = \operatorname{span}\{(\mathbf{x}^{*}S\mathbf{y})\mathbf{x} - (\mathbf{x}^{*}S\mathbf{x})\mathbf{y}\}.$

Hence span{**x**} \oplus {**x**, **y**}^{*S*} is of dimension *n*-1 and contains span{**x**, **y**}. Now *A***x** can be rewritten as A**x** = $e^{i(\alpha+\beta)}$ **x** - $(e^{i\beta} - 1)($ **y**^{*s*} **5x**)[(**x**^{*} **5y**)**x** - (**x**^{*} **5x**)**y**]. This implies that span{**x**} \oplus {**x**, **y**}^{*S*} is invariant under *A*. Since det*A* = $e^{i(\alpha+\beta)}$ and rank(*A* - *I*) = 2, we have that *A* is similar to $I_{n-3} \oplus J_2(1) \oplus [e^{i(\alpha+\beta)}]$, if $e^{i(\alpha+\beta)} \neq 1$; or $I_{n-3} \oplus J_3(1)$, if $e^{i(\alpha+\beta)} = 1$.

If $\mathbb{C}^n = \operatorname{span}\{\mathbf{x}, \mathbf{y}\} \oplus \{\mathbf{x}, \mathbf{y}\}^S$, then *A* is similar to $I_{n-2} \oplus L$ and 1 is not an eigenvalue of *L*. Observe that det $L = e^{i(\alpha+\beta)}$ and tr $L = e^{i\alpha} + e^{i\beta} + \frac{e^{i\alpha} - 1}{\mathbf{x}^* S \mathbf{x}} - \frac{e^{i\beta} - 1}{\mathbf{y}^* S \mathbf{y}} |\mathbf{x}^* S \mathbf{y}|^2$.

Since $A \in U_s$ and L is not a scalar matrix, then L is similar to one of the following: diag($e^{i\theta}$, $e^{i\phi}$), where θ , $\phi \in \mathbb{R}$ such that $e^{i\theta}$, $e^{i\phi}$ are distinct and both are not equal to 1; $J_2(\lambda)$, where $|\lambda| = 1$ but $\lambda \neq 1$; or diag ($\lambda, \overline{\lambda^{-1}}$), where $|\lambda| > 1$.

It suffices to determine whether the last two possibilities for the Jordan canonical form of *L* occur. But first we need to determine the possible nonzero values of **x***S**y**, when **x***S**x**, **y***S**y** \in {1, -1} and {**x**, **y**} is linearly independent. Let $\mathbf{e}_i \in \mathbb{C}^n$ denote the column with *i*th entry 1 and 0 elsewhere. Suppose $c \in \mathbb{C}$ is nonzero and $S = P^*(I_k \bigoplus - I_{n-k})P$, for some nonsingular *P* and integer 0 < k < n. If |c| > 1, we can take **x**, **y** $\in \mathbb{C}^n$ such that $P\mathbf{x} = \mathbf{e}_1$ and $P\mathbf{y} = c\mathbf{e}_1 + \sqrt{|c|^2 - 1}\mathbf{e}_{k+1}$, so that $\mathbf{x}^*S\mathbf{x} = 1$, $\mathbf{y}^*S\mathbf{y} = |c|^2 - (|c|^2 - 1) = 1$, and $\mathbf{x}^*S\mathbf{y} = c$. Thus, if |c| > 1, there exists a linearly independent set {**x**, **y**} such that $P\mathbf{x} = \mathbf{e}_1$ and $P\mathbf{y} = c\mathbf{e}_1 + \sqrt{|c|^2 - 1}\mathbf{e}_{k+1}$, then $\mathbf{x}^*S\mathbf{x} = 1$, $\mathbf{y}^*S\mathbf{y} = |c|^2 - (|c|^2 + 1) = -1$ and $\mathbf{x}^*S\mathbf{y} = c$. Hence every nonzero $c \in \mathbb{C}$ can be realized as $\mathbf{x}^*S\mathbf{y}$ by a linearly independent set {**x**, **y**} such that $\mathbf{x}^*S\mathbf{x} = -\mathbf{y}^*S\mathbf{y}$, when *S* is *-congruent to $I_k \oplus -I_{n-k}$.

Let $\alpha = \beta \in \mathbb{R}$ such that $\alpha \neq k\pi$, for all $k \in \mathbb{Z}$. If $a = \operatorname{Re}(e^{i\alpha})$, then $\frac{-4e^{i\alpha}}{(e^{i\alpha} - 1)^2} = \frac{2}{1-a} > 1$. If we take $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ such that $\mathbf{x}^* S \mathbf{x} = 1 = \mathbf{y}^* S \mathbf{y}$ and $|\mathbf{x}^* S \mathbf{y}|^2 = \frac{-4e^{i\alpha}}{(e^{i\alpha} - 1)^2}$, then tr $L = 2e^{i\alpha} + (e^{i\alpha} - 1)^2 |\mathbf{x}^* S \mathbf{y}|^2 = -2e^{i\alpha}$ and det $L = e^{i2\alpha}$. Since L is not a scalar matrix, it

follows from Lemma 2 that *L* is similar to $J_2(-e^{i\alpha})$, where $e^{i\alpha} \neq \pm 1$.

If we take $e^{i\alpha} = e^{-i\beta} = i$, and $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ such that $\mathbf{x}^* S \mathbf{x} = 1 = -\mathbf{y}^* S \mathbf{y}$ and $|\mathbf{x}^* S \mathbf{y}| = 1$, then tr L = -2 and det L = 1. Since L is not a scalar matrix, L is similar to $J_2(-1)$.

Let $\lambda = re^{i\theta}$, where r > 1 and $\theta \neq 2k\pi$ for all $k \in \mathbb{Z}$. Then $-\frac{e^{i\theta}(r-1)^2}{(e^{i\theta}-1)^2 r}$ is positive.

If we take $\alpha = \beta = \theta$, and $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ such that $\mathbf{x}^* S \mathbf{x} = 1 = -\mathbf{y}^* S \mathbf{y}$ and $|\mathbf{x}^* S \mathbf{y}|^2 = -\frac{e^{i\theta}(r-1)^2}{(e^{i\theta}-1)^2 r}$, then tr $L = 2e^{i\theta} - (e^{i\theta}-1)^2 |\mathbf{x}^* S \mathbf{y}|^2 = e^{i\theta} (r + r^{-1}) = \lambda + \overline{\lambda}^{-1}$ and det $L = e^{i2\theta} = \lambda \overline{\lambda}^{-1}$. Hence L is similar to diag $(\lambda, \overline{\lambda}^{-1})$.

Let $\lambda = r$, where r > 1. Let $\beta = -\alpha$ and $\alpha \in \mathbb{R}$ such that $\operatorname{Re}(e^{i\alpha}) = r^{-1}$. Since $\frac{(r-1)^2}{r}$ > 0, we have $\frac{r-r^{-1}}{2(1-r^{-1})} > 1$. If we take $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ such that $\mathbf{x}^*S\mathbf{x} = 1 = \mathbf{y}^*S\mathbf{y}$ and $|\mathbf{x}^*S\mathbf{y}|^2 = \frac{r-r^{-1}}{2(1-r^{-1})}$, then tr $L = 2r^{-1} + 2(1-r^{-1}) |\mathbf{x}^*S\mathbf{y}|^2 = r + r^{-1}$ and det L = 1. Hence

L is similar to diag(r, r^{-1}).

Theorem 4. Let $S \in GL_n$ be indefinite Hermitian and $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ be given. If $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent such that $H_{\mathbf{x}}, H_{\mathbf{y}} \in L_s$, then the product $H_{\mathbf{x}}H_{\mathbf{y}}$ is similar to one of the following:

- a. $I_{n-2} \bigoplus \text{diag}(e^{i\theta}, e^{i\phi})$, where $\theta, \phi \in \mathbb{R}$ such that $e^{i\theta}, e^{i\phi} \neq 1$
- b. $I_{n-3} \bigoplus J_{\gamma}(1) \bigoplus [e^{i\theta}]$, where $\theta \in \mathbb{R}$ and $e^{i\theta} \neq 1$
- c. $I_{n-3} \oplus J_3$ (1)
- *d*. $I_{n-2} \bigoplus J_{2}(\lambda)$, where $|\lambda| = 1$ and $\lambda \neq 1$
- e. $I_{n-2} \oplus \text{diag}(\lambda, \overline{\lambda^{-1}})$, where $|\lambda| > 1$.

$H_x \in K_s$ and $H_v \in L_s$

Lastly, we consider the product of an element of K_s and of L_s . If $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ are nonzero such that $H_{\mathbf{x}} \in K_s$ and $H_{\mathbf{y}} \in L_s$, then $H_{\mathbf{x}} = I + ir\mathbf{x}\mathbf{x}^*S$, where $r \in \mathbb{R} \setminus \{0\}$, and $\mathbf{x}^*S\mathbf{x} = 0$, and $Hy = I + \frac{e^{i\alpha} - 1}{\mathbf{y}^*S\mathbf{y}}$ **yy***S, where $e^{i\alpha} \neq 1$. Note that $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent since $\mathbf{x}^*S\mathbf{x} = 0 \neq \mathbf{y}^*S\mathbf{y}$. If $A = H_x H_v$, then

$$A = I + ir\mathbf{x}\mathbf{x}^*S + \frac{e^{i\alpha} - 1}{\mathbf{y}^*S\mathbf{y}} \mathbf{y}\mathbf{y}^*S + ir\frac{e^{i\alpha} - 1}{\mathbf{y}^*S\mathbf{y}} (\mathbf{x}^*S\mathbf{y}) \mathbf{x}\mathbf{y}^*S$$

Case 1: If $\mathbf{x}^*S\mathbf{y} = 0$, then $A = I + ir \mathbf{x}\mathbf{x}^*S + \frac{e^{i\alpha}-1}{\mathbf{y}^*S\mathbf{y}}$ $\mathbf{y}\mathbf{y}^*S$, $A\mathbf{x} = \mathbf{x}$, and $A\mathbf{y} = e^{i\alpha}\mathbf{y}$. Since $\mathbf{x}^*S\mathbf{y} = 0$ and $\mathbf{x}^*S\mathbf{x} = 0$, we have $(A - I)^2 = \frac{(e^{i\alpha}-1)^2}{\mathbf{y}^*S\mathbf{y}}$ $\mathbf{y}\mathbf{y}^*S$ and $(A - I)^3 = \frac{(e^{i\alpha}-1)^3}{\mathbf{y}^*S\mathbf{y}}$ $\mathbf{y}\mathbf{y}^*S$.

Observe that rank(A - I) = 2 and rank $(A - I)^2 = \operatorname{rank}(A - I)^3 = 1$, which imply that 2 is the size of the largest Jordan block corresponding to 1, and the number of Jordan blocks of size 2 corresponding to 1 is $\operatorname{rank}(A - I) - 2\operatorname{rank}(A - I)^2 + \operatorname{rank}(A - I)^3 = 2 - 2(1) + 1 = 1$. Since there are n-2 Jordan blocks corresponding to 1 and det $A = e^{i\alpha}$, we have that A is similar to $I_{n-3} \oplus J_2(1) \oplus [e^{i\alpha}]$.

Case 2: Suppose $\mathbf{x}^* S \mathbf{y} \neq 0$. The images of \mathbf{x} and \mathbf{y} under A are

$$A\mathbf{x} = \mathbf{x} + \frac{e^{i\alpha} - 1}{\mathbf{y}^* S \mathbf{y}} (\mathbf{y}^* S \mathbf{x}) \mathbf{y} + ir \frac{e^{i\alpha} - 1}{\mathbf{y}^* S \mathbf{y}} |\mathbf{x}^* S \mathbf{y}|^2 \mathbf{x}$$
$$= \left(1 + ir \frac{e^{i\alpha} - 1}{\mathbf{y}^* S \mathbf{y}} |\mathbf{x}^* S \mathbf{y}|^2\right) \mathbf{x} + \frac{e^{i\alpha} - 1}{\mathbf{y}^* S \mathbf{y}} (\mathbf{y}^* S \mathbf{x}) \mathbf{y}$$

and

$$A\mathbf{y} = \mathbf{y} + ir(\mathbf{x}^*S\mathbf{y})\mathbf{x} + (e^{i\alpha} - 1)\mathbf{y} + ir(e^{i\alpha} - 1)(\mathbf{x}^*S\mathbf{y})\mathbf{x} = ire^{i\alpha}(\mathbf{x}^*S\mathbf{y})\mathbf{x} + e^{i\alpha}\mathbf{y}.$$

Hence span{x, y} is invariant under A. Consider the restriction of A to span{x, y} and its matrix representation

$$\mathcal{K} = \begin{bmatrix} 1 + ir \frac{e^{i\alpha} - 1}{\mathbf{y}^* S \mathbf{y}} & |\mathbf{x}^* S \mathbf{y}|^2 & ir e^{i\alpha} (\mathbf{x}^* S \mathbf{y}) \\ \frac{e^{i\alpha} - 1}{\mathbf{y}^* S \mathbf{y}} & (\mathbf{y}^* S \mathbf{x}) & e^{i\alpha} \end{bmatrix}$$

with respect to the ordered basis {**x**, **y**}. Since $\mathbb{C}^n = \operatorname{span}{\{\mathbf{x}, \mathbf{y}\}} \oplus {\{\mathbf{x}, \mathbf{y}\}}^S$, *A* is similar to $I_{n-2} \oplus K$ and 1 is not an eigenvalue of *K*. Note that det $K = e^{i\alpha} \neq 1$ and tr $K = e^{i\alpha} + 1 + ir \frac{e^{i\alpha} - 1}{|\mathbf{y}^* S \mathbf{y}|} |\mathbf{x}^* S \mathbf{y}|^2$. Since *A* is *S*-unitary, *K* is similar to one of the following: diag($e^{i\theta}, e^{i\phi}$), where $\theta, \phi \in \mathbb{R}$ such that $e^{i\theta}, e^{i\phi}$ are distinct with both not equal to 1, and $e^{i(\theta + \phi)} = e^{i\alpha}$; or diag($\lambda, \overline{\lambda^{-1}}$), where $|\lambda| > 1$ and $\lambda \neq \pm 1$.

We now determine whether the three possibilities for the Jordan canonical form of K occur.

Let θ , $\phi \in \mathbb{R}$ such that $e^{i\theta}$, $e^{i\phi}$, and $e^{i(\theta+\phi)}$ are not equal to 1, and $e^{i\theta} \neq e^{i\phi}$. If $\alpha = \theta + \phi$, choose $r \in \mathbb{R}$ such that $r(e^{i\alpha} - 1) = \frac{(\mathbf{y}^* S \mathbf{y})(1 - e^{i\theta})(e^{i\phi} - 1)}{i|\mathbf{x}^* S \mathbf{y}|^2}$. This has a solution since $\frac{(1 - e^{i\theta})(e^{i\phi} - 1)}{e^{i\alpha} - 1} = -1 + \frac{e^{i\theta} + e^{i\phi} - 2}{e^{i\alpha} - 1}$ is nonzero and the real part of $\frac{e^{i\theta} + e^{i\phi} - 2}{e^{i\alpha} - 1}$ is 1. Then det $K = e^{i(\theta + \phi)} = \det(\operatorname{diag}(e^{i\theta}, e^{i\phi}))$ and tr $K = e^{i\theta} + e^{i\phi} + e^{i\phi} = \operatorname{tr}(\operatorname{diag}(e^{i\theta}, e^{i\phi}))$. Thus K is similar to $\operatorname{diag}(e^{i\theta}, e^{i\phi})$.

Let
$$\lambda = te^{i\gamma}$$
, where $t, \gamma \in \mathbb{R}$ such that $t > 1$ and $e^{i2\gamma} \neq 1$. Choose $\alpha = 2\gamma$ and $r \in \mathbb{R}$ such that $r(e^{i\alpha} - 1) = \frac{(\mathbf{y}^* S \mathbf{y})(1 - te^{i\gamma})(t^{-1}e^{i\gamma} - 1)}{i|\mathbf{x}^* S \mathbf{y}|^2}$. This has a solution since $\frac{(1 - te^{i\gamma})(t^{-1}e^{i\gamma} - 1)}{e^{i\alpha} - 1}$
 $= -1 + \frac{(t + t^{-1})e^{i\gamma} - 2}{e^{i2\gamma} - 1}$ is nonzero and the real part of $\frac{(t + t^{-1})e^{i\gamma} - 2}{e^{i2\gamma} - 1}$ is 1.
Then det $K = \lambda \overline{\lambda^{-1}} = \det(\operatorname{diag}(\lambda, \overline{\lambda^{-1}}))$ and tr $K = (t + t^{-1})e^{i\gamma} = \operatorname{tr}(\operatorname{diag}(\lambda, \overline{\lambda^{-1}}))$. By Lemma 2, K is similar to $\operatorname{diag}(\lambda, \overline{\lambda^{-1}})$.

Let $\lambda = e^{i\beta}$, where $\beta \in \mathbb{R}$ and $\lambda \neq \pm 1$. Choose $\alpha = 2\beta$ and $r \in \mathbb{R}$ such that $r = \frac{(1-\lambda)\mathbf{y}^*S\mathbf{y}}{i(\lambda+1)|\mathbf{x}^*S\mathbf{y}|^2}$. This has a solution since $\frac{1-\lambda}{\lambda+1} = -1 + \frac{2}{\lambda+1}$ and the real part of $\frac{2}{\lambda+1}$ is 1. Then det $K = \lambda^2 = \det J_2(\lambda)$ and tr $K = 2\lambda = \operatorname{tr} J_2(\lambda)$. Since K is not a scalar matrix, K is similar to $J_2(\lambda)$.

Theorem 5. Let $S \in GL_n$ be indefinite Hermitian and $\mathbf{x}, \mathbf{y} \in \mathbb{C}^n$ be given. If $\{\mathbf{x}, \mathbf{y}\}$ is linearly independent such that $H_{\mathbf{x}} \in K_s$ and $H_{\mathbf{y}} \in L_s$, then the product $H_{\mathbf{x}} H_{\mathbf{y}}$ is similar to one of the following:

- a. $I_{n-3} \bigoplus J_{2}(1) \bigoplus [e^{i\alpha}]$, for some $\alpha \in \mathbb{R}$ such that $e^{i\alpha} \neq 1$
- b. $I_{n-2} \bigoplus \text{diag}(e^{i\theta}, e^{i\phi})$, where $\theta, \phi \in \mathbb{R}$ such that $e^{i\theta}, e^{i\phi}, e^{i(\theta + \phi)}$ are all not equal to 1, and $e^{i\theta} \neq e^{i\phi}$
- *c*. $I_{n-2} \bigoplus \text{diag}(\lambda, \overline{\lambda^{-1}})$, where $|\lambda| > 1$ and $\lambda \notin \mathbb{R}$
- *d*. $I_{n-2} \bigoplus J_{2}(\lambda)$, where $|\lambda| = 1$ but $\lambda \neq \pm 1$.

ACKNOWLEDGMENTS

The work of A.T. Paras was supported by the Natural Sciences Research Institute (NSRI) Project MAT-18-1-05.

REFERENCES

Catbagan K. 2015. On the Λ_s -polar decomposition and the Λ_s -elementary matrices [B.S. thesis]. Philippines: University of the Philippines Diliman.

de la Rosa KL, Merino DI, Paras AT. 2012. The *J*-Householder matrices. Linear Algebra Appl. 436(5):1189-1194.

Gohberg I, Lancaster P, Rodman L. 2005. Indefinite linear algebra and applications. Basel: Birkhäuser.

Horn RA, Johnson CR. 2013. Matrix analysis. 2nd ed. New York: Cambridge University Press.

Merino DI, Paras AT, Teh TD. 2011. The Λ_s -Householder matrices. Linear Algebra Appl. 436:2643-2664.

Erwin J. Gonda is a B.S. Mathematics graduate of University of the Philippines Diliman and is currently working in the insurance industry.

Agnes T. Paras <agnes@math.upd.edu.ph> is a professor of Mathematics at University of the Philippines Diliman