
Noche and Araneta

12

ABSTRACT

*Corresponding author

Science Diliman (July-December 2007) 19:2, 12-22

An Asynchronous IEEE Floating-Point Arithmetic Unit

Joel R. Noche*
Affiliation when work was started and completed:

Department of Electrical and Electronics Engineering
College of Engineering, University of the Philippines, Diliman

joel.noche@up.edu.ph
Present affiliation:

Department of Mathematics and Natural Sciences
College of Arts and Sciences, Ateneo de Naga University, Naga City, Camarines Sur

jrnoche@adnu.edu.ph
Date submitted: July 29, 2005; Date accepted: May 11, 2006

Jose C. Araneta
(deceased)

Department of Electrical and Electronics Engineering
College of Engineering, University of the Philippines, Diliman

An asynchronous floating-point arithmetic unit is designed and tested at the transistor level using
Cadence software. It uses CMOS (complementary metal oxide semiconductor) and DCVS (differential
cascode voltage switch) logic in a 0.35 µm process using a 3.3 V supply voltage, with dual-rail data and
single-rail control signals using four-phase handshaking.

Using 17,085 transistors, the unit handles single-precision (32-bit) addition/subtraction, multiplication,
division, and remainder using the IEEE 754-1985 Standard for Binary Floating-Point Arithmetic, with
rounding and other operations to be handled by separate hardware or software. Division and remainder
are done using a restoring subtractive algorithm; multiplication uses an additive algorithm. Exceptions
are noted by flags (and not trap handlers) and the output is in single-precision.

Previous work on asynchronous floating-point arithmetic units have mostly focused on single operations
such as division. This is the first work to the authors' knowledge that can perform floating-point addition,
multiplication, division, and remainder using a common datapath.

Key words: Asynchronous logic circuits, floating point arithmetic, calculation times

An Asynchronous IEEE Floating-Point Arithmetic Unit

13

INTRODUCTION

Asynchronous circuits, digital logic circuits that do not
use a global clock signal, have attracted attention this
past decade due to their potential advantages over
synchronous circuits (Hauck, 1995), (van Berkel et al.,
1999), (Sutherland & Ebergen, 2002). Asynchronous
circuits automatically adapt to changing physical
conditions, operating faster when the temperature is
lower or when the supply voltage is higher. They
consume power only when and where performing
computations. They allow robust mutual exclusion of
signals, making them ideal for handling external inputs.
They have better noise and electromagnetic
compatibility properties. They exhibit no clock skew,
and can thus be designed modularly. They are thus ideal
for portable, low-power, wireless applications that are
activated by external signals. Asynchronous circuits
have been used for some parts of a digital hearing aid
(Nielsen & Sparsø, 1999) and a pager (Kessels &
Marston, 1999), among others.

Some applications require accurate calculations to be
made quickly. Although real numbers can be handled
by integer arithmetic hardware (Grehan, 1988),
implementing the format known as floating-point in
hardware greatly improves performance. A binary
floating-point standard proposed by IEEE (1985) is
widely adopted, enabling software developers to create
easily-portable, highly reliable code. The standard
defines four different formats; the one with the least
number of bits (32) is called single-precision. Floating-
point numbers are represented as (-1)S × F × 2E, where
S is the sign bit, F is the significand, and E is the
exponent. If the floating-point number is normalized,
(i.e., 1 ≤ F < 2), then the most significant bit of the
significand is always 1 and can be removed to save
space (packed). For single-precision, the result is a 23-
bit fraction f. The signed exponent is encoded as an
unsigned number e called the exponent field using a
bias representation, with a bias of 127 for single-
precision (i.e., E = e - 127). The standard also defines
special quantities: denormal numbers (values which are
less than the smallest normalized values), 'Not a
Number's (results of invalid operations), positive and
negative zeroes, and positive and negative infinities.

Previous work on asynchronous floating-point arithmetic
units have mostly focused on single operations such as
division (Williams & Horowitz, 1991), (Matsubara &
Ide, 1997), (Won & Choi, 2000). The work described
in this paper is the first to the authors' knowledge that
can handle IEEE floating-point addition/subtraction,
multiplication, division, and remainder using a common
datapath. To achieve this goal with the available
computing resources, we chose to use single-precision
arithmetic, with rounding and other operations to be
handled by separate hardware or software. To minimize
circuit size, division and remainder are done using a
restoring subtractive algorithm and multiplication uses
an additive algorithm (Noche, 2003). Thus, the
architecture is 'serial.' Exceptions are noted by flags
(and not trap handlers) and the output is in single-
precision.

The datapath uses dual-rail DCVS (differential cascode
voltage switch) logic, and the control unit uses CMOS
(complementary metal oxide semiconductor) logic. A
transistor-level design of the unit using a 0.35 µm process
and a 3.3 V supply voltage is designed and tested using
Cadence software (IC4.46 package for Sun Solaris
5.8). Virtuoso Schematic Editing and Virtuoso Symbol
Editing are used to create the transistor-level
schematics. Testing is done using the Affirma Analog
Circuit Design Environment.

MATERIALS AND METHODS

Basic Operation

The unit has the following inputs: two 32-bit data inputs
(the operands), four arithmetic control (request) signals
(one for each operation), four rounding mode control
signals, and five flag reset signals. The outputs are: a
32-bit data output (the result), a signal acknowledging
correct receipt of the operands (ain), a signal indicating
that the output is ready (aout), five flags, and the signals
acknowledging their resets.

The external system first makes the operands active,
then waits for ain to become active. (When the external
system later makes the data inputs inactive, ain will
become inactive.) It then requests the operation to be
performed by making the corresponding arithmetic

Science Diliman (July-December 2007) 19:2, 12-22

Noche and Araneta

14

control signal active. The unit processes the data and
any exceptions set the corresponding flags. After the
result is computed, aout becomes active. The external
system then makes the arithmetic control signal
inactive. This deactivates the unit, making the result
and aout inactive. It is now ready for the next set of
operands and the next arithmetic operation.

The flags are always active and once set, they remain
set until explicitly cleared. They can only be set by the
unit, and can only be reset by the external system.

Overview of the Datapath

Figure 1 shows a block diagram of the unit's datapath,
with the control unit and some control signals hidden
for simplicity. The complete circuit schematics are in
Noche (2003). Operands X and Y, and result Z are
each composed of a sign bit, an exponent field, and a
fraction (e.g., X = S

X
, e

X
, f

X
).

The main building blocks of the datapath are the
registers and the adders. SR latches are used in the
control unit and also for the exception flags. Registers
for the exponent calculations do not require any shifting,
so SR latches (with completion signals) are also used
there. Although one 9-bit register E is enough for the
addition, multiplication, and division operations, the
remainder operation requires two additional 9-bit

registers e
1
 and e

2
 in its initial operand normalization.

Significand calculations involve left and right shifting,
so significands are stored in shift registers (modified
versions of those in Kishinevsky et al. (1994)). P is a
25-bit bidirectional shift register connected to A, a 24-
bit bidirectional shift register with an additional round
bit. B is a 25-bit shift-left register.

A 9-bit carry look-ahead (CLA) adder (Ruiz, 1998),
(Ruiz, 2000) is used for exponent calculations, and a
25-bit CLA adder handles all the required significand
calculations for all operations. Special signals indicate
if the result is zero or -1, and these were used in
certain cases as completion signals. For example, the
unit's remainder algorithm checks for the case where
e

X
 - e

Y
 = -1.

DCVS multiplexers are used to select the inputs to the
registers and adders. The multiplexers do not have
completion signals because the blocks their outputs are
connected to work correctly whether the outputs are
early or late. When two dual-rail signal paths merge
into one and both will never be active at the same time,
OR gates are used instead of multiplexers to minimize
the number of control signals needed. For example,
the output of the 25-bit adder is connected to OR gates
because the control signals to enable the 25-bit adder
and multiplexer 5 will never be high at the same time.

Control Building Blocks

The rest of the building blocks are used in the control
unit. These perform handshaking, counting, and
conditional branching. The C-element is a basic
asynchronous circuit building block, a device whose
output changes to a value (logic 0 or 1) only when all
its inputs are that value. Aside from C-elements (Shams
et al., 1998), SR-latches, and Boolean logic gates, most
of the control circuitry of the unit uses building blocks
well-suited for four-phase signaling and dual-rail data:
decide, do, twice, and thrice. The last three are
described by their signal transition graphs (Kondratyev
et al., 1998) and implemented as complex CMOS gates
using the software PETRIFY (Cortadella et al., 1997).
PETRIFY is also used to create the control circuitry
for the shift registers, details of which are in Noche
(2003).

Figure 1. Block diagram of the datapath

e
X

S
X

f
X

S
Y

e
Y

f
Y

X = 0?
X = NaN?
X =

Science Diliman (July-December 2007) 19:2, 12-22

An Asynchronous IEEE Floating-Point Arithmetic Unit

15

The decide Building Block

The decide building block has two variants: the decide
early and the decide late. Their symbols are shown in
Figure 2. Whenever the request on becomes active,
the first of the inputs ti or fi to go high decides which
of the outputs (t or f) will go high. Only one of the
outputs can go high at any time, and it goes and remains
high only when on is active. Once the 'decision' is
'made,' it cannot be changed or taken back. For
example, if ti and on go high, then t goes high and
remains high even if ti goes low, or fi goes high, or
both (as long as on remains active).

Figure 2. Symbols of (a) decide early, (b) decide late

Transistors driven by input signals that are the last to
change are placed nearer the outputs to improve
performance. The decide early block assumes that
the data input becomes active and valid before on
becomes active; decide late assumes that the data
input becomes active and valid after on becomes active.
Figure 3 shows the transistor-level schematics of both
versions. The inputs ti and fi (and their corresponding
outputs t and f) are interchangeable.

Figure 4. Symbols of (a) do unique, and (b) do guarded; (c)
structure of do guarded

Figure 5. STG of do unique

Figure 6. Symbols of (a) twice, (b) thrice
Figure 3. Transistor-level schematics of (a) decide early, (b)
decide late

The do Building Block

The do building block has two variants: the do unique
and the do guarded. Their symbols are shown in
Figures 4a and 4b. The do guarded block is a do
unique block with an attached C-element as shown in
Figure 4c. Figure 5 shows the STG of the do unique
building block. The do unique building block is the same
as the Q-element of Martin (1990).

The twice and thrice Building Blocks

The symbols and STGs of the twice and thrice building
blocks are shown in Figures 6, 7, and 8.

A Control Circuit Example

An example illustrates how these building blocks are
used to implement algorithms. The algorithm for division
is as follows. The sign of the result is the exclusive-or
of the operand signs. Special cases (those with
operands or results of zero, infinity, or 'Not a Number')
are handled first. For ordinary cases, the second
exponent is subtracted from the first and the bias is
added to this. Register A is set to zero. Significand F

X

is placed in register P, and F
Y
 is placed in B. The

Science Diliman (July-December 2007) 19:2, 12-22

Noche and Araneta

16

Figure 7. STG of twice

operands are then normalized. Thus, register B is shifted
left (and the preliminary exponent is incremented
accordingly) until its most significant bit is 1. The
contents of P are shifted left (and the preliminary
exponent is decremented accordingly) until the
significand there is normalized. The connected registers
P and A are then shifted left 24 times. For each iteration,
if the difference P - B is positive, then it is written to P
and the rightmost bit of A (bit 0) is set to 1. This step is
done 25 times. After this, if the significand in A is not
normalized, then A is shifted left once and the
preliminary exponent decremented. If the difference P
- B is positive, then it is written to P and bit 0 of A is set
to 1. The result (with the significand in A, bit 0 of A as
the guard bit, and the round bit deduced from P) is then
passed to the rounding unit.

Figure 8. STG of thrice

Figure 9 shows a part of the division algorithm and
Figure 10 shows one implementation. The example
shows sequential and parallel operations; while-loop,
for-to-do-next, and if-then constructs; and how
subroutines are handled. As line number n in the
algorithm is reached, signal nextn goes high. When the
algorithm is completed, all the nextn signals go low in
succession.

Note that the circuitry generating signals did2 and did4
are the same (a 2-input C-element whose inputs are
aB and cE). These two C-elements can be replaced
by a single C-element generating the signal did2or4,
which replaces all instances of did2 and did4. If so,
then a transition on did2or4 would be interpreted as
transitions on both did2 and did4, resulting in incorrect
behavior. The do building blocks generating the signals

do2 and do4 should thus be do guarded blocks, so
only the block that made the request would be
acknowledged.

RESULTS AND DISCUSSIONS

The unit uses variable-latency algorithms that are
implemented using variable-latency circuits.
Completion times are thus expected to be data
dependent Because limited resources prevented the
implementation of the rounding unit, the completion
times reported here do not include the time needed to
correctly round the result. The algorithms for the four
operations and for rounding are in Noche (2003).

What Affects Completion Times

Arithmetic operations start by unpacking denormals and
checking for 'Not a Number's. This takes the same
time t

un
 for all operations. Next, cases with operands

or results of zero or infinity are checked. The different
operations have different special cases, so this step
takes different times: t

as
 for addition, t

ms
 for

multiplication, t
ds

 for division, and t
rs
 for the remainder

Figure 9. Sample algorithm

Science Diliman (July-December 2007) 19:2, 12-22

An Asynchronous IEEE Floating-Point Arithmetic Unit

17

Figure 10. Implementation of sample algorithm

Science Diliman (July-December 2007) 19:2, 12-22

Noche and Araneta

18

operation. The completion times of special cases are
around 8 to 9 ns.

For addition, the next step, the determination of the
larger operand, takes a time t

ad
. Adjusting the

significand so that the exponents are equal takes a time
dependent on the exponent difference: xt

aa
, where x =

|e
X

- e
Y
|. The last steps take a time t

al
 which is small if

the result is zero, and large if the result is negative.
But its effect on the completion time is negligible when
compared with the effect of the exponent difference.
Thus, t

al
can be approximated as a constant equal to its

average value.

For multiplication, the next step is a significand addition
for every bit in the first operand's significand that is a
1. This step takes a time n

X
t
mad

, where n
X
 is the number

of 1's in F
X
. There is also a fixed time taken for shifting

the significands, t
mss

. The last steps take a variable
time t

ml
 depending on the result. But since it has little

effect on the completion time, it can be treated as a
constant.

For division, the next step is to normalize the operands
if they are denormal. This takes a time st

n
, where s is

the number of shifts to normalize the operands. There
is then a fixed loop, where a register write occurs when
the temporary significand of the first operand is greater
than or equal to the second operand's significand. This
condition is noted by a 1 in the unrounded significand
of the result F

Z
'. This takes a time n

Z
t
dsb

, where n
Z
 is

the number of 1's in F
Z
'. Shifting the significands takes

a fixed time t
dss

. The last steps take a variable time t
dl

depending on the result. Its effect on the completion
time is small, and it can be treated as a constant to
simplify matters.

For the remainder operation, the next step, normalizing
the operands if they are denormal, takes a time st

n
.

The remaining steps are more complicated, with many
conditional branches. When e

X
 < e

Y
, the calculation is

quick and this can be treated as a special case. When
e

X
> e

Y
, the algorithm may go through a loop that

executes a shift up to e
X
 - e

Y
 times. However, if the

significands are multiples of each other, this loop is
exited. One easy way to quantify 'being multiples of
each other' is to use the difference r

X
- r

Y
, where r

X
 is

the number of bits from the most significant 1 bit of F
X

to the least significant 1 bit of F
X
, and r

Y
 is defined

similarly for F
Y
. If each iteration in the loop takes a

time trsb, this step cannot take longer than (e
X
 - e

Y
) t

rsb
,

but can take a shorter time if r
X
 - r

Y
 < e

X
 - e

Y
. Thus, this

step takes a time zt
rsb

, where z is either e
X
-e

Y
 or r

X
 - r

Y
,

whichever is the smaller positive number. When e
X
 =

e
Y
, the completion time is t

rl
 and depends highly on the

significands. The effect of t
rl
 is not negligible, but may

be ignored for simplicity. Note that operands having
e

X
 > e

Y
 also pass through the circuitry for e

X
 = e

Y
.

Table 1 shows that the completion times are mostly
functions of the number of shifts or of additions. Using
improved adders or shifters will greatly shorten the
completion times.

Experimental Results

There are 232 different single-precision floating-point
values. Thus there are 232 × 232 ≈ 1.8 × 1019 different
possible test vectors for each operation. Due to time
constraints, only 248 test vectors were simulated. The
simulated temperature was 25 ºC and each output was
connected to a 5 fF capacitive load. These are typical
simulation conditions; higher temperatures and larger
loads would lengthen the completion times. The test
inputs were all active and valid from the start. A reset
pulse was applied to reset all flags, and then the
arithmetic control signal was set high. Once aout went
high, the test circuit set the arithmetic control signal
low, causing aout to go low. The time from when the
arithmetic control signal went high to when aout went
low is the completion time recorded for the test vector.
The selection of test vectors and the results of the
simulations are in Noche (2003).

Figure 11 shows the completion time t (in ns) for
ordinary case addition as a function of |e

X
 - e

Y
|. Figure

12 shows t for ordinary case multiplication as a function

op detailed approximate

+ tun + tas + tad + xtaa + tal aax
 + ba

× t
un

 + t
ms

 + n
X
t
mad

 + t
mss

 + t
ml

a
m
n

X
 + b

m

÷ tun + tds + stn + nZtdsb + tdss + tdl adnZ + bd + cds

rem tun + trs + stn + ztrsb + trl arz + br + crs

Table 1
Expressions for completion times

Science Diliman (July-December 2007) 19:2, 12-22

An Asynchronous IEEE Floating-Point Arithmetic Unit

19

of the number of 1's in the first operand's significand.
Figure 13 shows t for ordinary case division (no
denormal operands) as a function of the number of 1's
in the result's unrounded significand (including the
guard, round, and sticky bits). Figure 14 shows t for
ordinary case division as a function of the number of
shifts needed to normalize both operands (the test
vectors here all have one 1 in F

Z
'). Figure 15 shows t

for ordinary case remainder (no denormal operands,
e

X
 ≥ e

Y
) as a function of z (defined in the previous

section). Figure 16 shows t for ordinary case remainder
as a function of the number of shifts needed to
normalize both operands (if denormal) (the test vectors
here all have X = Y so that z = 0). The least squares
line is shown for each graph.

Estimation of Completion Times

300

350

400

450

500

550

600

650

0 5 10 15 20 25

Figure 12. Multiplication completion times (ordinary cases)
in ns as a function of the number of 1's in FX

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120 140

Figure 11. Addition completion times (ordinary cases) in ns
as a function of |eX - eY|

500

550

600

650

700

750

800

850

0 5 10 15 20 25

Figure 13. Division completion times (ordinary cases, without
denormal operands) in ns as a function of the number of 1’s
in FZ’

500

600

700

800

900

1000

1100

1200

0 10 20 30 40 50

Figure 14. Division completion times (ordinary cases, with
one 1 in FZ') in ns as a function of the number of shifts to
normalize operands

0

100

200

300

400

500

600

700

0 5 10 15 20 25

Figure 15. Remainder completion times (ordinary cases, w/
o denormal operands, eX >= eY) in ns as a function of z

Science Diliman (July-December 2007) 19:2, 12-22

Noche and Araneta

20

ns (nZ = 1, s = 0) to 1107.0 ns (n
Z
 = 24, s = 22) for the

completion times. For the remainder operation, 0 ≤ z
≤ 23 and 0 ≤ s ≤ 44, leading to a best-case estimate of
70.6 ns (z = 0, s = 0), and a worst-case estimate of
1126.6 ns (z = 23, s = 22) for the completion times.
Note that the predicted remainder completion time has
a relatively large standard error.

While these variable latency algorithms can result in
very long completion times, in other cases the times
are much shorter. For example, operations with zero
operands finish very quickly in this work. This could
prove useful in some applications. For example, taking
advantage of the relative occurrence of zero-valued
discrete cosine transform coefficients in compressed
video led to fewer operations and reduced power
consumption in (Xanthopoulos & Chandrakasan, 1999).

Power and Energy Consumption

The power and energy consumptions of this work for
a few test cases are shown in Table 3.

Table 2 shows the predicted completion times t and the
standard error in the predicted t based on the simulation
results. For single precision, the absolute value of the
exponent difference ranges from x = 0 to 254. The
approximate range for addition completion times would
thus be from 59.0 ns to 5850.2 ns. Cases where x is
large are quite rare. In Oberman (1996), ten
applications from the SPECfp92 benchmark suite
yielded the following distribution for double-precision
addition and subtraction operations: around 23% of them
had x = 0 and around 20% had x = 1; 52% of the
operations had x < 3 and around two-thirds had x < 6.
Using this distribution, the average addition completion
time would be around 127.4 ns.

0

200

400

600

800

1000

1200

0 10 20 30 40 50

Figure 16. Remainder completion times (X = Y) in ns as a
function of the number of shifts to normalize operands

The number of 1's in a single-precision significand
ranges from n

X
 = 0 to 24. Multiplication completion

times might thus range from 342.5 ns to 618.5 ns. For
division, n

Z
 can vary from 1 to 26, while s can vary

from 0 to 44, resulting in an estimated range of 554.0

CONCLUSIONS

An asynchronous single-precision floating-point
arithmetic unit is designed and tested at the transistor
level using Cadence software. Building blocks well-
suited for four-phase handshaking and dual-rail data
are used to implement the algorithms. A serial
architecture is chosen to keep the design small: only
17,085 transistors are used. Provision for a rounding
unit is included, which enables the unit to follow the
IEEE 754-1985 Standard for Binary Floating-Point
Arithmetic. Due to limited time and resources, the

op t (ns) standard error

+ 22.8x + 59.0 5.0

× 11.5nX + 342.5 10.1

÷ 11.8nZ + 542.2 + 12.8s 5.3

rem 26.4z + 70.6 + 20.4s 42.1

Table 2
Predicted completion times

Test vector (ns) (mW) (nJ)

4195835 + 3145727 79.0 4.08 0.32

4195835 × 3145727 465.1 4.07 1.89

4195835 ÷ 3145727 703.1 3.87 2.72

4195835 rem 3145727 101.5 4.19 0.43

Table 3
Completion times, power consumption, and energy

consumption of a few test cases

Science Diliman (July-December 2007) 19:2, 12-22

An Asynchronous IEEE Floating-Point Arithmetic Unit

21

transistor-level design of the rounding unit is left for
future work.

Previous work on asynchronous floating-point arithmetic
units have mostly focused on single operations such as
division. This is the first work to the authors' knowledge
that can perform floating-point addition, multiplication,
division, and remainder using a common datapath. The
algorithms used in this work are designed to minimize
area (and possibly cost) requirements. While current
designs focus on improving speed, the recent trend
toward mobile devices might make area-efficient
designs more attractive.

ACKNOWLEDGMENTS

This study was granted financial support by the Office
of the Vice Chancellor for Research and Development-
University of the Philippines, Diliman under Grant No.
00010.1 NSET. Louis Alarcón and Anastacia Ballesil
provided useful information during the revision of this
manuscript. J.R.N. thanks the family of J.C.A. for
their support, and the anonymous referees for their
suggestions.

REFERENCES

Cortadella, J., M. Kishinevsky, A. Kondratyev, L. Lavagno,
and A. Yakovlev, 1997. Petrify: A tool for manipulating
concurrent specifications and synthesis of asynchronous
controllers. IEICE Transactions on Information and Systems
E80-D(3): 315-325.

Grehan, R., 1988. Floating-point without a coprocessor. BYTE
13(9): 313-319.

Hauck, S., 1995. Asynchronous design methodologies: An
overview. Proceedings of the IEEE 83(1): 69-93.

IEEE Standard for Binary Floating-Point Arithmetic, 1985.
New York: ANSI/IEEE Std. 754-1985.

Kessels, J. and P. Marston, 1999. Designing asynchronous
standby circuits for a low-power pager. Proceedings of the
IEEE 87(2): 257-267.

Kishinevsky, M., A. Kondratyev, A. Taubin, and V.
Varshavsky, 1994. Concurrent Hardware: The Theory and
Practice of Self-timed Design. Chichester, John Wiley & Sons:
368 pp.

Kondratyev, A., J. Cortadella, M. Kishinevsky, L. Lavagno,
and A. Taubin, 1998. The use of Petri nets for the design and
verification of asynchronous circuits and systems. Journal
of Circuits, Systems, and Computers 8(1): 67-118.

Martin, A., 1990. Programming in VLSI: From communicating
processes to delay-insensitive circuits. In Hoare C. (ed.)
Developments in Concurrency and Communication.
Addison-Wesley, UT Year of Programming Series: 1-64.

Matsubara, G. and N. Ide, 1997. A low power zero-overhead
self-timed division and square root unit combining a single-
rail static circuit with a dual-rail dynamic circuit. In
Proceedings of the Third International Symposium on
Advanced Research in Asynchronous Circuits and Systems,
Eindhoven, The Netherlands: 198-209.

Nielsen, L. and J. Sparsø, 1999. Designing asynchronous
circuits for low power: An IFIR filter bank for a digital hearing
aid. Proceedings of the IEEE 87(2): 268-281.

Noche, J., 2003. An asynchronous single-precision floating-
point arithmetic unit. M.S. thesis, University of the
Philippines at Diliman.

Oberman, S., 1996. Design issues in high performance
floating point arithmetic units. Technical Report CSL-TR-
96-711, Computer Systems Laboratory, Departments of
Electrical Engineering and Computer Science, Stanford
University, Stanford, California.

Ruiz, G., 1998. Evaluation of three 32-bit CMOS adders in
DCVS logic for self-timed circuits. IEEE Journal of Solid-
State Circuits 33(4): 604-613.

Ruiz, G., 2000. Addition to "Evaluation of three 32-bit CMOS
adders in DCVS logic for self-timed circuits". IEEE Journal
of Solid-State Circuits 35(10): 1517.

Shams, M., J. Ebergen, and M. Elmasry, 1998. Modeling and
comparing CMOS implementations of the C-element. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems 6(4): 563-567.

Science Diliman (July-December 2007) 19:2, 12-22

Noche and Araneta

22

Sutherland, I. and J. Ebergen, 2002. Computers without
clocks. Scientific American 287(8): 46-53

van Berkel, C., M. Josephs, and S. Nowick, 1999. Applications
of asynchronous circuits. Proceedings of the IEEE 87(2):
223-233.

Williams, T. and M. Horowitz, 1991. A zero-overhead self-
timed 160-ns 54-b CMOS divider. IEEE Journal of Solid-
State Circuits 26(11): 1651-1661.

Won, J.-H. and K. Choi, 2000. Low power self-timed floating-
point divider in 0.25µm technology. In Proceedings of the
26th European Solid-State Circuits Conference, Stockholm,
Sweden.

Xanthopoulos, T. and A. Chandrakasan, 1999. A low-power
IDCT macrocell for MPEG-2 MP@ML exploiting data
distribution properties for minimal activity. IEEE Journal of
Solid-State Circuits 34(5): 693-703.

Science Diliman (July-December 2007) 19:2, 12-22

