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ABSTRACT

In this work, a method to determine the nontrivial colorings of perfect

and transitive 2-uniform til ings is presented. This method has been

applied to determine all nontrivial transitive perfect colorings of 2-uniform

tilings that use the least number of colors. In addition, the equivalence of

the colorings obtained was also ascertained.
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INTRODUCTION

Numerous tilings of the plane by regular polygons have long been known, such as

the regular tilings 36, 44, and 63 as well as the 8 semi-regular tilings 3.122, 4.6.12,

4.82,  3.4.6.4,  3.6.3.6,  34.6,  32.4.3.4,  and 33.42,  as illustrated by Grünbaum and

Shepard (1987). These tilings are also known as Archimedean tilings. Given any

pair of vertices of the tiling, the Archimedean tilings would exhibit symmetry

(translation, rotation, reflection, or glide reflection) that sends one vertex to the

other. That is, the vertices of an Archimedean tiling form one transitivity class

under the action of the symmetry group of the tiling. For this reason, the arrangement

of polygons about a vertex is the same for every vertex of an Archimedean tiling.

For example, 3.4.6.4 means that a vertex is surrounded in cyclic order by a triangle

(3-gon), a square (4-gon), a hexagon (6-gon) and a square. On the other hand,  63 is

just 6.6.6, meaning a vertex is surrounded by three hexagons.

Lesser known are the 2-uniform tilings, which are edge to edge tilings by regular

polygons and where vertices of the tiling form two transitivity classes. These
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tilings have 20 types, as shown in Figure 1. The enumeration of these tilings is

attributed to Krötenheerdt (1969).  Each of the 2-uniform tilings is described through

the vertex types of the two transitivity classes. For example, (32.4.3.4; 3.4.6.4)

describes a 2-uniform tiling where the vertices are of types 32.4.3.4, and 3.4.6.4.

Figure 1. The twenty 2-uniform tilings in the Euclidean plane.
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In this study,  the colorings of 2-uniform tilings, which fall under the theory of color

symmetry, were considered. The basic problem in color symmetry is the

classif ication of symmetrically colored symmetrical patterns. The work of

Schwarzenberger (1984) provides a compendium of results on color symmetry,

spanning decades of works. Senechal (1988) discussed results of interest and posed

some problems on color symmetry.

The paper of Rapanut (1988) provided useful results on subgroups of the seventeen

plane crystallographic groups.  In his paper,  Roth (1993) determined that the minimum

number n of colors that suff ice to color any multipattern with an associated

symmetry group is 2 < n < 25.

More recent works on coloring symmetrical patterns in the case of hyperbolic

plane patterns have been done by De Las Peñas, Felix, and Laigo (2006). Frettlöh

(2008) listed possible values for perfect k-colorings of some hyperbolic regular

and Laves tilings.  Felix and Loquias (2008) worked on semiperfect colorings.  Precise

perfect colorings were studied by Santos and Felix (2011). A study on transitive

perfect colorings on semi-regular tilings was done by Gentuya (2013).

PRELIMINARIES

Let X be a set of objects in the plane and G  the symmetry group of X.  A coloring

of X (using n colors                  ) is  a  surjective  or  onto  function  from  X  to

                        . The coloring results in a partition                               of  X  where two

elements x and y in X are assigned the same color ci if and only if they are

elements of the same set Pi .  We may therefore treat a coloring as a partition P of

X.  If                for every            ,  we say that the partition P  is  G-invariant  and  that

the associated coloring is perfect.  We also say that each          induces a permutation

of the colors                    .

A special class of perfect colorings of  X  is the class of transitive perfect colorings

of X .  A perfect coloring of X is transitive  if G acts transitively on the set of

colors         ,  i.e. ,  if ci  and cj are any  two colors  in                        there is

an element in G that sends  ci  to cj . Thus, not only is each symmetry in G associated

with a unique permutation of the colors of the colored set, but given any two colors,

the pattern formed by elements of one color is congruent to the pattern formed by

elements of the other color. Hence, the colored pattern may be thought of as a

disjoint union of colored subpatterns that are congruent to each other.

1, 2, … ,  

1, 2, … ,  1, 2, … ,  

   ∈  

∈  

1, 2, … ,   1, 2, … ,  

1, 2, … ,  
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Consider two colorings of the same set X and the corresponding colored patterns

arising from the two colorings. The two colorings are said to be equivalent if one of

the colored patterns may be obtained from the other colored pattern by (1) a

bijection from the set of colors used in the f irst coloring to the set of colors used

in the second coloring, (2) a symmetry in the symmetry group G of X, or (3) a

combination of (1) and (2). This def inition of equivalence is adapted from Roth

(1982).

The concepts are illustrated using the colored patterns in Figure 2.  In Figure 2(a),

X = {1, 2, 3, 4, 5, 6, 7, 8} is  a  set  of  eight  points  with  symmetry  group G = <a, b>=

{e, a, a2, a3, b, ab, a2b, a3b}     D4 where a is a 90o-counterclockwise rotation about

the center of the configuration and b is a mirror reflection about the horizontal line

passing through the center of a. Figure 2(b) exhibits a transitive perfect  coloring

of  X .  The coloring corresponds to the partition P = {{1, 2}, {3, 4}, {5, 6}, {7, 8}},

where  the  points  in {1, 2},  {3, 4},  {5, 6},  and  {7, 8}  are colored red (R), blue (B),

green (G), and yellow (Y), respectively.   The 90o rotation a results in the permutation

(RYGB),  whereas the reflection b results in the permutation (BY).  Given any two

colors in the set {R, Y, G, B}, there is a symmetry in G that sends one  color  to

the  other color.  The coloring of X in Figure 2(c) is not perfect. The only elements

of G  that induce a permutation of the colors are e, a2, b, and a2b. Figure 2(d) and

〈 , 〉 ≅ 4 

′  〈 , 〉 ≅ 4 

Figure 2. The  set  X  consisting  of  eight  distinct  points  with  symmetry  group
           showing (a) the mirror elements of G, (b) a transitive and perfect

coloring, (c) a non-transitive and non-perfect coloring, (d)–(e) equivalent colorings,
and (f ) the set      of eight points with symmetry group                            with a perfect
but non-transitive coloring.

≅ 
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Figure 2(e) exhibit equivalent colorings of X. Using the bijection redblue and

green  yellow and then applying the 90o rotation a we obtain the colored pattern

in Figure 2(e) from the colored pattern in Figure 2(d).

In Figure 2(f), we illustrate a coloring of a set X’ which is perfect but not transitive.

The  symmetry  group  of X ’ is also G = <a, b>    D4.  Let x denote the upper right

hand corner point and  the point immediately below  as shown in the f igure.  The

G-orbit of x refers to the set                                  and consists of the images of x under

the elements of G. The set of corner points of X ’ is the G-orbit of x whereas the

G-orbit of y is the remaining set of points in X’. The rotation a induces the

permutations (RB) (GY)  and the reflection b induces the permutation (GY). Hence,

the coloring is perfect. The coloring is not transitive because there is no symmetry

in G that will send the color yellow to blue .

COLORING FRAMEWORK

In this study, nontrivial transitive perfect colorings of 2-uniform tilings were

considered. The approach of Felix (2011) where a coloring of a set is treated as a

partition of the set was used.  We made use of the theorem described below.  In the

theorem,                  denotes the set                            and is called the stabilizer in

G of x.

Theorem. Let X be a set and let G be a group acting transitively on X .

1 . If              is a coloring of X  for which G permutes the colors, then for

every           ,   there exists            such  that                        and the

coloring is described by the partition

2.  Let             and             such that                         and                           .

Then

is a coloring of X with n colors for which G permutes the colors.

(See Evidente, 2012 for the proof ).

Remark:  The above theorem determines all perfect colorings of X on the assumption

that G acts transitively on the set X. The partition P above corresponds to a coloring

of X  that is perfect and transitive.

 

1 

∈  

 

 

	 :	 ∈ 	 . 

∈    

  ∶ ∞ 

: ∈  

≅ 

∈ :  

: ∈  
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Based on the theorem, a procedure for arriving at nontrivial transitive perfect

colorings of a 2-uniform tiling where the number of colors used is minimal is

described.

METHOD FOR DETERMINING TRANSITIVE PERFECT COLORINGS
OF A 2-UNIFORM TILING USING THE LEAST NUMBER OF COLORS

1. Given a 2-uniform tiling, let G denote the symmetry group of the tiling.

This group G is a plane crystallographic group.

2. The set X of tiles of the tiling is partitioned into a f inite number of

G-orbits X
i
 ,  i = 1, 2, ..., m.

3. For  each  G-orbit ,  X
i
 ,  i = 1, 2, ..., m, obtain a G-orbit representative

  .

4. Obtain                    ,  i = 1, 2, ..., m.  This group is a finite group, which is

cyclic             or dihedral             .

5. Look for a proper subgroup    of G of least index such that for each

i = 1, 2, ..., m,  a conjugate of                    is contained in    .

Assume there is a subgroup     that was obtained in 5.

6. Obtain the   -orbits of tiles of the tiling.

7. For each i = 1, 2, ..., m,  choose a tile                such that

or equivalently                                    .

8. Form the set                                and denote by       the set

             ;  i.e. ,      is the union of the   -orbits        i = 1, 2, ..., m.

9. Let                         be a complete set of left coset representatives of

   in G.

10. The partition                                        describes a nontrivial transitive

perfect coloring of the tiling using n colors                     . The coloring

is  given  by  the  assignment                  ,  i = 1, 2, ..., n;  i.e. ,  the tiles

in           are all colored (assigned the color)    .

∈  

 
≅   ≅  

 

 

 

∈    
 

1, 2, … ,     1 ∪ 2 ∪ … 
…∪       , 

1,	 2, … ,  

 

, 	 1, 2,… ,   

1, 2, … ,  
⟶  
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For the basic ideas involved in formulating the procedure, some explanations are

provided below.

First, G-orbits X
i
 was considered to be independently colored. Based on the theorem,

the coloring or partition                               where              and

was used. Note that if                 ,  there exists            such that               and thus

                                            ; i.e. ,                  and                  are conjugate. The number

of colors corresponding to the partition                                 is given by           . Since

using the least number of colors in the coloring is preferred,  the same set

                  of  colors was used in coloring  the G-orbits                            ,  and  thus

we take           for i = 1, 2, ..., m  for some    where                                           . If

instead of            ,             was used to represent the G-orbit X
i
 then

should be obtained.  However,                                              if                 for  some

         .                           is required.

All of the transitive perfect colorings of 2-uniform tilings were looked into, with

the least number of colors (which were f inite) and in all cases, a     subgroup was

found. Otherwise, if no proper subgroup    of G was found, then the option will be

that   = G, and the coloring will be trivial.

The procedure used to arrive at the results for four of the twenty 2-uniform tilings,

namely, the tilings (32.4.3.4; 3.4.6.4), (33.42; 32.4.3.4)1, (3
3.42; 32.4.3.4)2, and (36;

32.4.3.4) is illustrated as follows.

The 2-Uniform Til ing (32.4.3.4; 3.4.6.4)

Consider the 2-uniform tiling (32.4.3.4; 3.4.6.4) given in Figure 1. If we let G

denote the symmetry group of the tiling, then                                    ,  where

are two linearly independent translations, a is a six-fold rotation centered at a

hexagonal tile, and r is a reflection with symmetry axis passing through the center

of a. These are shown in Figure 3 together with G-orbits of tiles where tiles of the

tiling belonging to the same G-orbit have the same color.

There are four G-orbits of tiles of the tiling:  X
1
, the set of hexagons; X

2
, the set of

squares; X
3
, the set of triangles whose sides are sides of squares, and; X

4
, the set of

triangles that share one side with another triangle.

Without loss of generality, tiles                                    and             can be chosen,

as given in Figure 3. The stabilizer of the hexagonal tile 1 in X
1
, generated by the

six-fold rotation a and the reflection r, is isomorphic to D
6
.  For the square tile 2 in

X
2
, the stabilizer is isomorphic to D

1
 generated by the reflection r. The triangular

: ∈   ∈    

, ∈   ∈    
1    

: ∈   :  

1, 2, … ,  

1, 2, … ,   ,  1, 2,… ,  
   

 
,  1, 2,… ,  

∈   ∈    
1   

∈    

 
 

 

〈	 , , , 	〉 ≅ 6   ,  

1 ∈ 1, 2 ∈ 2, 3 ∈ 3,  4 ∈ 4 
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tile 3 in X
3 
has a stabilizer generated by a three-fold rotation about its center and

the reflection r . The subgroup is isomorphic to D
3
. The stabilizer of the triangular

tile 4 is generated by a reflection r and is isomorphic to D
1
 .

· · 

Figure 3. The (32.4.3.4; 3.4.6.4) tiling showing the generators and the distinct
G-orbits with the tiles                                  , and           .1 ∈ 1, 2 ∈ 2, 3 ∈ 3  4 ∈ 4 

To f ind the subgroup            of smallest index in G that yields a nontrivial transitive

perfect coloring of the (32.4.3.4; 3.4.6.4) tiling, a plane crystallographic group H

that contains subgroups of type D
6
, D

3
,
  
and D

1
 must be identif ied. Among the

subgroups of G
 
isomorphic to H is the subgroup 

 
  , which is needed in this instance.

The results of Rapanut (1988) indicate that                  .  Moreover,  the  subgroups

of G of type         are of index n2 or 3n2, where n is a natural number.  This gives

the possible indices 1, 3, 4, 9, and so on. Since the least possible index n is being

determined such that the coloring is nontrivial,  the subgroup

of index 3 is f irst considered. Figure 4 shows a unit cell corresponding to the

subgroup   . For simplicity, a unit cell of the tilings will be looked into.

Schattschneider (1978) can be referred to for the unit cells corresponding to the

17 plane crystallographic groups and the symbols used to denote centers of

rotations.

An  inspection  of  the  unit  cell  shows  that  no  3-fold  rotation  of      stabilizes

a triangle in X
3 hence another low index subgroup must be considered. If we let

  ,  a subgroup of index 4 in G,  each G-orbit splits into 2 or more

  -orbits.  As shown in Figure 5, there are two   -orbits of hexagons,  three   -orbits

of squares, two   -orbits of triangles in  and three    -orbits of triangles in X
4
.

 

 

≅ 6  
6  

0 〈 2 1, 1 2, , 〉  

0 

0 

〈 2, 2, , 〉 
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Figure 4. The  (32.4.3.4; 3.4.6.4) tiling with the stabilizers in     shown in a unit
cell (shaded region).

0 

Figure 5. The    -orbits of the tiles of the tiling in (a) X
1
,  (b) X

2
,  (c) X

3
,  and (d) X

4
. 

Next, the set T = {t1, t2, t3, t4} is formed, where              and                       .  Any blue

hexagonal tile in X1 can be chosen as t1, any grey or green square tile in X2 can be

chosen as t2 , any purple triangular tile in X3 can be chosen as t3, and any orange or

blue triangular tile in X4 can be chosen as t4.  Note that in the   -orbits of tiles of

the  tiling  in  each Xi ,                     .  Form  the  partition,

Assigning  distinct colors to each           results in a transitive perfect coloring of

the tiling using only four colors.  Considering all possible combinations of tiles

for T results in exactly four inequivalent transitive perfect 4-colorings of the

(32.4.3.4; 3.4.6.4) tiling, as given in Figure 6(a)–(d).

∈    

 

 

 

, , , . 
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Figure 6. The four possible partitions for the (32.4.3.4; 3.4.6.4) tiling and their
corresponding inequivalent transitive perfect 4-colorings.

〈 , ,
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〈 , , , 〉 ≅ 4  

In each of the 4-colorings generated, color permutations are given in Table 1 (where

the colors red, green, blue, and yellow are denoted by R, G, B, and Y, respectively).

Table 1.  The color permutations correspond ing to generators of G

Generator Color Permutation

u (RG) (BY)

v (RB (GY)

a (BYG)

r (BG)

The 2-Uniform Til ings  and (33.42.32.4.3.4)1 and (33.42.32.4.3.4)2

Consider the  2-uniform tiling (33.42.32.4.3.4)1 with symmetry group

       ,  where u and v are two linearly independent translations, a is a 4-fold rotation

and r is a reflection with symmetry axis not passing the center of rotation a, as

shown in Figure 7.

There are four G-orbits of tiles of the tiling: (1) the squares that share no side with

other squares, (2) the squares that share one side with another square, (3) the

triangles that share exactly one side with a square, and (4) the triangles that share

two sides with squares.  The stabilizers in G  for a tile in each G-orbit are isomorphic

to C
4
, D

1
, D

1
, and C

1
 , respectively.  The proper subgroup    of G that contains them

must be isomorphic to         . The subgroup    of least possible index n2 where n is

a natural number is                       , as generated by GAP and                 .

〈 , , , 〉 ≅ 4  

 

4    
〈 3, 3 , , 〉  	 ∶ 	 9 

Figure 7. The (33.42;32.4.3.4)1 tiling with the generators u, v, a, and r .
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Form                                where                          for i = 1, 2, 3, 4. Observe that in Figure

8(a) any yellow square tile can be chosen as t
1
, in (b) t

2
 can be chosen from any of

the square tiles of colors red, pink, or peach, in (c) t
3
 can be chosen from any of the

triangular tiles of the tiling of colors orange, purple, or green, and in (d) t
4
 can be

any of the nine colored triangular tiles of the tiling. From all the possible choices

of  tiles  for                                                        inequivalent  nontrivial  transitive perfect

colorings of the (33.42.32.4.3.4)1 tiling is obtained. It may be checked that these

colorings are inequivalent.

One such transitive perfect coloring of the (33.42.32.4.3.4)1 tiling using nine distinct

colors is shown in Figure 9.

The 2-uniform tiling (33.42.32.4.3.4)2 has the same vertex types 33.42 and 32.4.3.4

but its symmetry group                            , where u and v are two linearly

independent  translations, p is a glide reflection, and q is a glide reflection with

glide axis perpendicular to the glide axis of p, as shown in Figure 10.

 1, 2, 3, 4  

〈 , , , 〉 ≅  

1 ⋅ 3 ⋅ 3 ⋅ 9 81 1, 2, 3, 4	 , 

Figure 8. The   -orbits of square and triangular tiles t
i
 with                      .   
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Figure 9. A transitive perfect 9-coloring of the (33.42; 32.4.3.4)1 tiling.

There are three G-orbits of tiles of the tiling:  X1 consisting of squares, X2 consisting

of triangles that share two sides with squares, X3 and consisting of the triangles not

included in X2. The stabilizers of the tiles of the tiling in each G-orbit are all

isomorphic to C1. This is contained in any subgroup of G. Thus, we only need

subgroups of least possible index greater than 1. Using GAP, three subgroups of

index 2 are obtained, and these are given in Table 2.

Figure 10. The (33.42; 32.4.3.4)2  tiling with its generators and tiles belonging to the
three G-orbits.
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〈 , 2〉 〈 , 2〉   
 

    ∪ , 

,  
 

,   ,  

,  

  (a)  1, (b)  2, (c)  3  where  〈 , 2〉 

If                                       ,  each G-orbit splits into two   -orbits,  as shown in Figure 11.

Form T = {t
1
, t

2
, t

3
}, where t

i
 is  in  X

i
  for  each  i = 1, 2, 3 and                      . In

Figure 11(a), t
1
 can be any yellow square tile or grey square tile. In (b), t

2 
can be any

orange tile or purple tile, and in (c), t
3
 can be any pink tile or blue tile. These give

eight possible combinations for the set T.

The  subgroup            is  of index 2 in G and we have                      where h is the

2-fold rotation in G whose center is shown in Figure 11.  If a set of f ixed tiles

for                            and the half-turn h in G are considered,  the partition

could be obtained.  Assigning the color red to       and the color green to          results

in a transitive perfect 2-coloring of the (33.42; 32.4.3.4)2  tiling. Nevertheless, it

should be noted that

〈 2, 1 , 1 1〉 

  Subgroup        Index       Symmetry Group

2 pg

2 pg

2 p2

〈 , 2〉 
〈 2, 〉 

Table 2.  Subgroups of                         of index 2〈 , , , 〉 

 

, , 2 , . 

That is, the symmetry           maps the partition               to the partition               .

Hence, the coloring described by                is equivalent to the coloring described

by             .

∈  
,  

Figure 11.    -orbits of tiles of the tiling in                                                        and a
half-turn h in G.

  1, 2, 3  
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  〈 , 2〉 

In turn, this reduces the possible number of nontrivial transitive perfect colorings

to four instead of eight,  as presented in Figures 12(a)-(h). The coloring in (a) is

equivalent to (b),  (c) is equivalent to (d),  (e) is equivalent to (f ),  and (g) is equivalent

to (h).

Figure 12. The eight transitive perfect 2-colorings of (33.42; 32.4.3.4)2 when .



Transitive Perfect Colorings of 2-Uniform Tilings

16

Similarly,  when we let                                     ,  each G-orbit  of tiles of the tiling splits

into 2    -orbits and results into four inequivalent transitive perfect 2-colorings, as

seen in Figure 13.

If we let                                                                      ,  each  G-orbit of tiles of the

tiling also splits into two   -orbits. The resulting 2-colorings are shown in Figure 14.

In all, there are 12 inequivalent transitive perfect 2-colorings of the (33.42; 32.4.3.4)2
tiling.

〈 2, 〉 〈 2, 〉 

〈 2, 1 , 1 1〉 〈 2, 1 ,			 1 1〉 

 

Figure 14. The four inequivalent transitive perfect 2-colorings of (33.42; 32.4.3.4)2

when                                   .〈 2, 1 ,			 1 1〉 

Figure 13. The four inequivalent transitive perfect 2-colorings of (33.42; 32.4.3.4)2

when                .〈 2, 〉 
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The 2-Uniform Til ing (36; 32.4.3.4)

Using the method discussed, f ive inequivalent transitive perfect 25-colorings of

(36; 32.4.3.4) were obtained. The least number of colors that can be used to color

the tiling is 25. One such coloring is shown in Figure 15 where tiles of the same

number are assigned the same color. Figure 16 indicates the remaining four

transitive perfect 25-colorings of (36; 32.4.3.4).

Applying the method for finding nontrivial transitive perfect colorings to all 2-uniform

tilings, results were obtained, as summarized in Table 3.  The patterns for all of the

inequivalent colorings in each of the twenty 2-uniform tilings were illustrated.

The results show that if n is the least number of colors needed in coloring a

2-uniform  tiling  in  such  a  way  that  it  is  nontrivial,  transitive,  and  perfect  then

         .  This result is expected based on the work of Roth (1993).

Applying the method to 3-uniform tilings, i.e. , tilings by regular polygons where

the vertices of the tiling form three transitivity classes, is also of interest. Additional

insights may be acquired from looking at transitive perfect colorings of 3-uniform

tilings. The complete list of drawings for the 61 3-uniform tilings are found in

Chavey (1989).

2 25 

Figure 15. A transitive perfect 25-coloring of the (36; 32.4.3.4) tiling.
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Figure 16. The other four motifs of a 25-coloring of the (36; 32.4.3.4) tiling.

Table 3. The 2-uniform tilings with their correspond ing symmetry groups
and the least number of colors needed for generating transitive perfect colorings

(36; 34.6)1 p6 4 64
(36; 34.6)2 p6m 3 1
(36; 33.42)1 cmm 2 8
(36; 33.42)2 pmm 2 4
(36; 32.4.3.4) p6m 25 5
(36; 32.4.12) p6m 3 1
(36; 32.62) p6m 2 2
(34.6; 32.62) cmm 2 2
(33.42; 32.4.3.4)1 p4g 9 81
(33.42; 32.4.3.4)2 pgg 2 12
(33.42; 3.4.6.4) p6m 4 4
(33.42; 44)1 cmm 2 2
(33.42; 44)2 cmm 2 4
(33.4.3.4; 3.4.6.4) p6m 4 4
(32.62; 3.6.3.6) pmm 2 2
(3.4.3.12; 3.122 ) p4m 9 3
(3.42.6; 3.4.6.4) p6m 25 25
(3.42.6; 3.6.3.6)1 pmm 3 3
(3.42.6; 3.6.3.6)2 cmm 2 2
(3.4.6.4; 4.6.12) p6m 25 4

2-Uniform Til ings Symmetry
Group

Least Number n
of Colors

Number of Inequivalent
n-Colorings
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