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ABSTRACT

In solving transportation problems, recent developments have seen
interest in including several kinds of attribute (other than the classical
cost and profit attributes) that may even be incommensurate with one
another. There exist several approaches in solving a transportation
problem with multiple attributes/objectives. Some of the approaches
allow a decision maker to input his/her preferences with respect to the
multiple number of objectives that need to be concurrently optimized in
a compromised way. The literature, however, seems to lack solution
techniques that would deal with a real life decision-making situation
wherein a group of decision makers is involved but would probably have
different (even conflicting) preferences in solving a transportation
problem with multiple objectives. In this research, we propose to utilize
a fuzzy programming formulation and binary search technique (adopted
from Tapia and Murtagh 1992) as a methodology to solve multi-objective
transportation problem as a group decision-making concern. Fuzzy
programming allows the decision makers to vary at any given iteration
their fuzzy aspiration levels in terms of preference criteria and
underachievement tolerance values. Since conflict in aspiration levels
usually results in an infeasible situation, binary search is applied until
a feasible and acceptable compromise solution is achieved. The main
objective of this paper is to propose a valid and new methodology.
Inasmuch as comparing existing methodologies is not our primary aim,
we believe this is another major and serious research undertaking.
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INTRODUCTION

The classic transportation problem is a special class of linear program that deals
with transporting a commodity from sources (e.g., factories) to destinations (e.g.,
warehouses) through a network of arcs (e.g., highways). Each source has a given
supply, each destination has a given demand, and each arc that connects the source-
destination pair has a given transportation cost (or profit) per unit of shipment.The
objective is to determine the amount of commodity to be transported from each
source to each destination so that the total transportation cost (or profit) is
minimized (or maximized) while satisfying the supply and demand constraints.
However, in real-life applications, for each possible transportation, other than cost
(or profit), several kinds of attribute (e.g.,average delivery time of commodities,
reliability of transportation, product deterioration, etc.) are also important to consider.
Usually, these attributes are incommensurate with one another. Moreover, in a
corporate setting where several decision makers actively participate in problem
solving and each one can pick his/her own shipment goal different from the others,
the group of decision makers may initially express a set of conflicting or incoherent
goals. Hence, a number of researches have considered the transportation problem
with multiple objectives and offered different solution approaches.

Abd El-Wahed and Lee (2006) have classified the solution approaches to the
multiple objective transportation problem (MOTP) into four categories: (1) interactive
approaches, (2) non-interactive approaches, (3) goal programming approaches, and
(4) fuzzy programming approaches. Ringuest and Rinks (1987) and Climaco and
others (1993) have developed two interactive approaches that determine the
satisfactory solution while maintaining the special structure of the transportation
problem. The decision maker controls the search direction during the solution
procedure through his/her own preferences. Therefore, the main advantage of these
approaches is that the efficient solution satisfies the preferences of the decision
maker. The shortcomings of these methods are on a) the convergence of the solution
procedure,which is dependent on the decision maker’s rationale and consistency in
expressing his/her preferences, and b) the difficulty in enumerating the set of
efficient solutions in large-scale problems.

Some of the non-interactive methods found in the literature are in Aneja and Nair
(1979), Diaz (1976 and 1979), Isermann (1979), and Kasana and Kumar (2000).
These authors have proposed different approaches to generate the set of efficient
solutions from where a decision maker chooses his/her preferred solution. One
difficulty with these techniques is that the solution process may take a long time
in scanning the feasible region for the efficient solutions. Another is the difficulty
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of the decision maker in making trade-offs among the efficient solutions due to
his/her inexperience and/or the incomplete information about the decision
environment.

Lee and Moore (1973) and Aenaida and Kwak (1994) have used goal programming to
solve the MOTP. With goal programming, a decision maker can obtain a satisfying
solution and likewise analyze his/her aspiration levels. As mentioned in Tamiz and
others (1998) and Romero (1991),goal programming also has some disadvantages.
The naive setting of the weights in the formulation of goal programming models
can lead to wrong results. Likewise, the goal programming formulation changes the
well-known mathematical structure of the multi-objective transportation problem.
Problems could also come up during the determination of the aspiration levels.

Fuzzy programming is recommended as a tool to solve the MOTP where there is
incomplete preference information provided by the decision maker.Abd El-Wahed
(2001) and Li and Lai (2000) have used fuzzy programming to obtain a compromise
solution to the MOTP. Other research works utilizing fuzzy programming are
described in Chanas and others (1984), Bit and others (1992, 1993a, 1993b), Chanas
and Kuchta (1998), Ehrgott and Verma (2001), Challam (1994), Abd El-Wahed and
Abo-Sinna (2001), and Lai and Hwang (1996). Fuzzy programming has likewise
some shortcomings. Abd El-Wahed (2001) has shown that using fuzzy programming
in solving MOTP changes the standard form of a transportation problem.Li and Lai
(2000) have proven that the min-operator does not guarantee a solution. Abd El-
Wahed and Lee (2006) have combined categories 1,3 and 4 (see paragraph 2 of this
section for the categories) of the solution approaches.

Some other solution approaches not mentioned in Abd El-Wahed and Lee (2006)
are found in the works of Mistuo and others (1999), who used a spanning tree-based
genetic algorithm for solving the MOTP; Hong-Wei and others (2009),who applied
the thinking of lamarckina evolution based on Fuzzy-genetic algorithm and proposed
the Lam-genetic algorithm technique; and Amirteimoori (2010), who utilized the
concept of Data Envelopment Analysis to compute the efficiency measure in his
proposed approach.

However, in our literature search, we have not found a study wherein group decision-
making scenario is considered in MOTP. It is a given fact that group decision-making
isa common feature in today’s corporate world. Hence, we feel the need to consider
a decision-making situation involving a number of decision makers who are all
concerned with determining a compromise solution to the MOTP.
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A number of papers have proposed to solve multi-objective problems under a
group decision-making environment using fuzzy programming techniques. One of
these is the work of Xiong and others (2013), which deals with group decision-
making for multi-objective problem where the preferences of the decision makers
are expressed by fuzzy reference points using a multi-objective evolutionary
approach. A decision support model to consider consensus measure and robustness
measure for fuzzy group decision-making for multi-objective problems has also
been presented. Wang and others (2012) have proposed to solve the multi-criteria
group decision-making by using intuitionistic interval information aggregation
operators. Based on the intuitionistic interval, a method that applies the knowledge
level of the experts to the group decision-making problem is developed. Wu and
others (2007) have presented a method that integrates fuzzy multi-objective linear
programming with fuzzy group decision-making techniques. Based on the method, a
fuzzy multiple objective group decision support system is developed. Xu and Chen
(2007) have proposed an interactive method that can be used in multi-objective
group decision-making scenario where the information about attribute weights is
partly known. The weights of the decision makers as well as the attribute values
are expressed in triangular fuzzy numbers. The method constructs the normalized
expected decision matrices by using two simple formulas and aggregates these
normalized expected decision matrices into a complex decision matrix. The decision
makers are then asked to provide their preference gradually in the course of
interactions and by solving linear programming models, the method diminishes
the given set gradually and finds the most preferred alternative. Zhang and Lu
(2003) have proposed an integrated fuzzy group decision-making method. This
method allows group members to express fuzzy preferences for alternatives and
individual judgments for solution selection criteria. The method likewise allows
for the weighting of group members. The technique then aggregates these elements
into a compromise group decision that is the most acceptable for the group as a
whole. Herrera and others (1995) have utilized the linguistic ordered weighted
averaging (LOWA) operator to solve group decision-making problems from individual
linguistic preference relations.

In most of the proposed approaches that use fuzzy techniques, the decision makers
are asked to input certain preferences. Infeasibility is likely to occur if the
preferences are highly conflicting. Asking the decision makers to input a new set of
preferences usually becomes a waste of time. In this paper, we propose to obtain
a satisfying solution to the MOTP under a group decision-making scenario that
would reasonably be acceptable to all the decision makers by utilizing interactive
group decision-making using fuzzy programming with preference criteria developed
by Tapia and Murtagh (1992).
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THE MULTI-OBJECTIVE TRANSPORTATION PROBLEM

In the classic transportation problem, a commodity is to be transported from several
sources to several destinations in such a way that the total transportation
cost is minimum. Suppose there are m sources S(i = 1,2, ..., mjand n
destinations D, (1=1, 2,...,n). Each source Shas available supply a and each
destination DJ has demand q C”. is the cost of transporting a unit of the commodity
from Sto D. We let x;as the number of commodity to be transported from S to D,
. Inreal life, most transportation problems are not single objective.The mathematical
model of MOTP can be stated as follows :

Minf (x)
subject to

n

le] = al, = 1, m, (1)
j=i

m
inj = b]', ] = 1, . N, Q)
i=1

x; 20 foralli,j

where f(X) = [f1(x), f2(x), ..., fX(x)] is a vector of K objective functions and

frCo =§:Zn:ci];‘xi/‘-

i=1j=i

The superscript on f*(x) and Ci’; is used to identify the number of objective
functions(k = 1,2,...,K).

A solution to this multi-objective problem is called a nondominated solution and
we define it as follows:
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Definition 1 A feasible vector x €S (S is the feasible region) yields a nondominated
solution, f(x) of the MOTP if, and only if, there is no other vector x° € S such that:

m n m n
ZZC{;x?j SZZC{;xU forallk
but i=1j=1 i=1j=1
m n m n
ZZCi’]‘-x?j <ZZC{/‘-xU for somek,k =12, ..,K.
i=1j=1 i=1j=1

A number of techniques have been proposed in the literature to solve the MOTP. As
far as we know, none of the published approaches have considered a group decision-
making situation involving several decision makers with different and usually
conflicting preferences due to differences in their choice of nondominated solutions.
In this paper,we wish to obtain a nondominated solution that would satisfy all the
decision makers despite their incoherent preferences. We use fuzzy programming
with preference criteria technique as proposed in Tapia and Murtagh (1992). Fuzzy
programming enables the decision makers to vary at any given iteration their fuzzy
aspiration levels in terms of input information, known as preference criteria and
underachievement tolerance values. Should there be conflict in preferences, which
usually results in infeasibility, a binary search method will be employed until a
feasible, efficient and acceptable solution is obtained. These concepts will be
expounded in the next section.

GROUP DECISION-MAKING

In solving the MOTP involving a number of,say L decision makers, this research
applies the interactive group decision-making technique utilizing fuzzy programming
with preference criteria by Tapia and Murtagh (1992). Notions of preference criteria
and percentages of achievement (concepts borrowed from Tapia and Murtagh 1989)
and underachievement tolerance values are considered important to quantify for
mathematical modeling purposes. These are used to define the membership function
of a set of nondominated solutions. The value of the membership function of an
element in a fuzzy set would indicate the degrees of satisfaction of the decision
makers, which are expressed in terms of some aspiration levels. A solution with a
high membership value signifies that the solution is preferred compared to one
with a low membership value. The proposed solution technique utilizes iteratively
(a) fuzzy programming with preference criteria to obtain nondominated solutions
to the MOTP,and (b) binary search algorithm to explore progressively nearerto a
commonly desired solution. The binary search is used to arrive at a compromise
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solution at every iteration stage. The interaction of the group of L decision makers
takes the form of (1) initially indicating their preference information and then (2)
signifying their acceptance (or non-acceptance) of the results after each binary
search for a feasible solution. In the course of the decision process, the binary
search algorithm is expected to reduce the degrees of the interpersonal conflicts
among L decision makers.The best acceptable compromise solution is the one that
can be associated with the least possible degree of conflict.

The following definitions of some concepts borrowed from Tapia and Murtagh
(1989) are needed for the formulation of the fuzzy programming model and the
binary search algorithm.

Definition 2 The optimal functional value of the k-th objective function, f*(x) k =
1,2,..,K, of the MOTP denoted by f*(x;) is given by

f*(xp) = min f¥(x) subject to (1) and (2) (3)

Definition 3 The worst functional value of the k-th objective function, f*(x) k =
1,2,..,K, of the MOTP denoted by f*w is given by
ka = Mmax {fk (x;)} (4)

1<k<K

where xpk = 1,..,K are the K optimal decision support vectors given in (3).

Definition 4 The preference criterion for the k-th objective function, f*(x) k =
1,2,..,K, of the MOTP, denoted by pc’l‘, quantifies the -th decision maker’s desire
to attain the optimal functional value, f*(x;), over the range of values between this
optimal value and the worst value, ¥ pcf is expressed as a value between 0 and
100. The higher the value, the higher the preference of the [-th decision maker to
achieve the optimal value of the k-th objective function.

Definition 5 The percentage of achievement of the k-th objective function, f*(x) k =
1,2,..,K, of the MOTP with respect to the solution vector x, denoted by PA,(x) or
PA, is given by

fEG) = )

PAk = PAk(x) = |1- ]Ckw——fk(m

* 100% (5)

PA,(x) signifies the closeness of the k-th objective’s computed value atx, f*(x) , to
the true minimum, f*(x;), over the range of values between flw and ).
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Definition 6 The nonnegative underachievement size that the [-th decision maker is
willing to accept for the k-th objective function of the MOTP is denoted by €F.

Definition 7 For each objective function, k = 1,..., K, the selection criteria, SCl(k),
which the [-th decision maker, | = 1,..,L is going to use in searching for the best
compromise solution should satisfy the following requirement:

SCl(k): 0< pcf —€f <PA, <100 fork =1,..,Kand [ = 1,..,L (6)

The best compromise solution should satisfy the requirement that the K selection
criteria are satisfied simultaneously for all the L decision makers. These selection
criteria can be regarded as expressions of each of the L decision makers’ aspiration
level for the k-th objective function. We want to search for a best compromise
solution, X, in which the percentage of achievement, PAy(x), of the k-th objective
function is better or at least equal to the [-th decision maker’s aspiration level
expressed in terms of the preference criterion, pCzk, and the underachievement
tolerance value, €.

FUZZY PROGRAMMING TO SOLVE MOTP
WITH MULTIPLE DECISION MAKERS

Preliminary to fuzzy programming, the [-th decision maker,among a group of L
decision makers, has to generate a finite number of nondominated solutions to the
MOTP satisfying his/her implicit preference structure (See Tapia and Murtagh 1989,
1991). We denote a nondominated solution as f(x,) and let U, be the index set of
alternative solutions, f(x,), favored by the [-th decision maker. We can let such
nondominated solutions favored by the [-th decision maker constitute the following
set:

Fi = {f(x,),u €U}

We also form the set

which is the union of all the sets of favored nondominated solutions to the MOTP of
the L decision makers. From this set, the L decision makers have a task of choosing
the best compromise solution.
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Using the selection criteria in (6), we now define the membership function,
mf(x,), for k = 1,..,K; I = 1,..,L; and u = 1,...,U, of a favored nondominated

solution in F as follows:

PA(x) — pef +€f
mf(x,) = 100 — pcf + €k
0 if PA(x,) < pcf —€f @)

if 0 <pcf —€f < PA(x,) <100

Each solution can be considered to be a member of a fuzzy set whose degree of
membership can be calculated using (7), with values ranging from 0 to 1. A solution
with a membership value near 1 is taken to be a strongly desirable solution, while
a membership value near 0 means a weakly desirable solution.

We can define the following fuzzy sets:

Gl = {(foa),ml(x): f(x) €FYk=1,..,K; 1=1,..,L

where F is the set of nondominated solutions of the MOTP and m{‘(xu) is the
membership function given in (7). These fuzzy sets are also called fuzzy objectives.

One of the ways of obtaining the intersection of these fuzzy objectives is by taking
the minimum membership value among all the fuzzy objectives that can make up a
non-empty fuzzy set g. The fuzzy set gcan be expressed as follows:

g = {FG)minmf () : f(x,) € F)

The fuzzy set g contains the solutions common to all the fuzzy objectives, and their
membership values are determined by the membership function that gives the
smallest membership value. The best compromise solution is then the nondominated
solution in g having the largest membership value, which means that it corresponds
to the optimal solution of the following maximin program:

maxmin{mf (x,)} (8)

The above discussion considers a discrete set of alternatives among the number (U)
of selected nondominated solutions.

The maximin program (8) can be extended to one of determining the best
compromise solution among all nondominated solutions of the MOTP by considering
the following mathematical program based on the model in Tapia and Murtagh



Solving a Multi-objective Transportation Problem

(1992), which incorporates this fuzzy algorithm into a single-objective mathematical
model. We propose the fuzzy model that allows the search for a nondominated
solution vector, X, which is found not only in the union of sets of favored solutions
but also from among the feasible space of the nondominated solutions.

(FP-MOTP):
max Z
subject to:
x satisfies (1) and (2) of MOTP

PA,(x) — pcf + €f

100 — pcf + €f
> Z vk, 9)
0 < pcf —€F< PAL(x) <100 VE,!1 (10)
PA;, (x)
_ 1_f"(x)—f"(x;;)
= fr )
* 100 (11)

where f*(x}) is as givenin (3) and f* is as given in (4).

According to a proposition in Tapia (1992), FP-MOTP can be used to generate
solutions that correspond to nondominated solutions of MOTP.

In cases where the solution is unsatisfactory (e.g., the value of Z is very close to
zero),or in the event of infeasibility, or in case the resulting feasible solution is not
acceptable to the decision makers,FP- MOTP can be used interactively and iteratively
as needed in such a way that the values of the input parameters, including the
decision makers' preference criteria, pCzk, and the underachievement tolerance
values, ef‘, can be modified by the decision makers according to their individual
preference structures.

Infeasibility is also expected to occur should the L decision makers have highly
conflicting preferences. This situation arises when one of the decision makers holds
a very high aspiration for a particular objective function while the rest of the
decision makers, on the contrary,hold a very low aspiration level for it.

10
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We apply the interactive procedure proposed in Tapia and Murtagh (1992), which
makes use of a binary search technique to determine a combination of input
parameters, pcf and €L, that can give a feasible solution to the FP-MOTP. It is
necessary to modify FP-MOTP in order to find a compromise nondominated solution
that will be acceptable to all the decision makers.

It is possible to reduce constraints of type (9) and of type (10) from Lx K to K in
FP-MOTP by considering the most stringent constraint falling under each type. The
revised fuzzy program has the following form:

(RFP1)
max Z
subject to:
x satisfies (1) and (2) of MOTP
PA(x) — pe (1)
—_— >
100—p1) =2k (12)
0< p(1) < PA(x) <100 Vk (13)
where Pk (x) is givenin (11) and
Pi() = max{pcf —€f} (14)

Constraints (12) and (13) represent the most stringent constraints among those of
types (9) and (10), respectively, as we consider here the maximum among the
aspiration levels of all decision makers for each of the objective function.

If RFP1 has a feasible solution, then this must be the best compromise solution as
it satisfies all the decision makers' preferences. However, RFP1 has constraints
that require the most rigorous degree of satisfaction. Infeasibility therefore is
likely to occur. If RFP1 does not provide a feasible solution, then the decision
makers should make a compromise by way of ignoring some constraints that require
a certain amount of rigor. In this case, it is necessary to solve RFP2. RFP2 is exactly
the same as RFP1 except thatpi (1) in (12) and (13) is changed to Pkx(2) where

pe(2) = mlin{PClk —€f} (15)

This means that RFP2 is the least rigorous model to solve for the given decision
problem. Hence, if RFP2 does not provide a feasible solution, then a compromise
solution acceptable to all the decision makers is impossible to achieve. The proposed

11
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algorithm is therefore not carried out for the initial set of preference criteria,
pclk, and underachievement tolerance values Eﬁ‘. The decision makers can then be
required to input another set of parameters associated with aspiration levels of
lower priority ranking.

In case RFP2 has a feasible solution, then it should be possible to determine some
revised models RFPn,n =3,4,...,N having the following formulation:

(RFPn)

max Z
subject to:

x satisfies (1) and (2) of MOTP

PA, —pr(n)
—100—Pk(n) >ZVk (16)
0 <p,(n) <100Vk 17)

where PA,(x)is as given in (11) and p,(n) for n = 3,4,...,N (where N is a pre-
determined number of iterations) can be determined by using a binary search
technique applied to the set of L expressed preference criteria and underachievement
tolerance values.

BINARY SEARCH ALGORITHM

Constraints (16) and (17) can be characterized as having an intermediate degree of
rigor to satisfy between the most rigorous requirements, which have most recently
led to an infeasible solution, and the least rigorous requirements, which have most
recently led to a feasible solution. To accomplish this, a binary search technique
proves to be useful in determining the next value of p,(n) needed in the revised
models RFPn as follows:

Forn=13,4,..., N

pe(n) = %(INFL. + FES)) (18)

where INF is the most recent value of Pr (Ming ) for which RFPn;,s has an infeasible
solution, and FES, is the most recent value of Pk (Mres) for which a feasible solution
exists for RFP,ses.

12
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This interactive solution procedure for RFPn may be terminated under any one of
the following circumstances:

e The prescribed maximum number of iterations N is reached, in which case
the most recent feasible solution may be acceptable to all the decision
makers as their best compromise solution.

¢ The decision makers have accepted the feasible solution of the n-th
iteration, where n < N.

e The binary search algorithm has reached an iteration stage at which a
prescribed degree of convergence, say §, has been reached, i.e.,

m,gXka(n) —p(n—1D|<6

If, however, the binary search algorithm has already reached an iteration stage at
which a prescribed degree of convergence has been reached but the decision makers
are still not satisfied with the solution, then we ask them to input a new set of
preference criteria and underachievement tolerance values, and repeat the binary
search until a compromise solution will have been reached. We are expecting all of
the decision makers to be consistently in a compromising posture in any decision-
making activity.

NUMERICAL EXAMPLE

To illustrate our fuzzy MOTP technique for multiple decision makers, we have
developed computer codes using the Advanced Integrated Multidimensional
Modeling Software (AIMMS 2012). The free AIMMS academic software can solve
up to 5000 variables and constraints. For models with almost unlimited number of
variables and constraints for commercial or industrial use, the AIMMS PRO is
recommended. The use of parameter inputs necessary for the interactive solution
of our proposed multi-objective transportation methodology in a group decision-
making setting is very convenient. Complexity analysis is not our real concern and
the problems of dominated MOMP or non-Pareto-efficient solutions is non-existent
here inasmuch as we are dealing with a purely linear mathematical model, which in
a known real-world setting may not hopefully become excessively so large that
existing software such AIMMS PRO would not be able to handle it.

We use published data in Amirteimoori (2010), as follows: An automobile

manufacturer has assembly plants located in eight towns: A, B, C,D, E, F, Gand H.
The cars are assembled and sent to major markets in three towns: I,J, and K. The

13
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manufacturer considers one input (shipping cost) and two outputs (the value of
shipment and profit). Hence, the objective functions to be optimized are the total
shipping cost, total value of shipment and total cost, which we denote as f1, f2,
and f3, respectively. The appropriate input-output, (Ci',‘-), availabilities (a),and
demands (bj) are listed in Table 1. These are the parameter values that we input in
the computer codes that we have written in AIMMS.

Table 1. The data for example. Each ordered triple represents the Shipping Cost (k= 1),
Value of Shipment (k = 2), Profit (k = 3) of each unit of shipment from source j to
destination j (i.e. C%;, €%, C3;) = (531, 3500, 500)

i/j / J K Si
A (531, 3500, 500) (431, 380, 600) (395, 3950, 400) 10
B (394, 2850, 600) (418, 2395, 700) (512, 2590, 485) 13
C (405, 310, 800) (512, 409, 1000) (412, 390, 1100) 11
D (355, 290, 705) (493, 385, 617) (570, 419, 518) 7
E (299, 415, 585) (398, 512, 490) (315, 255, 380) 9
F (319, 512, 488) (464, 215, 305) (435, 355, 512) 9
G (619, 612,619) (490, 510, 505) (354, 550, 0) 4
H (456, 299, 601) (394, 512, 432) (439, 499, 519) 6
Dj 30 25 14

To guide the decision makers in their input preferences (i.e., preference criteria and
underachievement tolerance values), we perform single optimization computations
using our computer codes written in AIMMS, one for each function of the MOTP
subject to the same constraints of the said model. The nondominated solution
obtained by solely minimizing g1 gives 25924 as the best value of flwhile the
worst value of f! is 29243 obtained from solely minimizing f2. The nondominated
solution from solely maximizing f2 gives 98234 as its best value. The worst value
of f2is 53093 obtained from solely minimizing f3. Lastly, the nondominated
solution as a result of solely maximizing f3gives 47794 as the best value. The
worst value of £3is 40952 obtained from solely maximizing f2. The nondominated
solutions obtained are given as row-vectors in Table 2.

Table 2. The nondominated solutions from the single objective optimizations

f! f? f?
min f* 25924 68750 44044
max f?2 29243 98234 40952
max f* 29343 53093 47794

14
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The decision vectors, >gji =A ...,H,j=1,3,K,and the corresponding percentages
of achievement PA; (computed using (5) of Definition (5)),are given in Table 3.

Table 3. Solution vectors, x;; i = A,..,Hj = I,],K, obtained
from the single objective optimizations and the corresponding percentages
of achievement, PA4,;, of each objective function
(i.e, formin f1 x, = 4, x5 = 1, x4 = 5)

i\ I J K

min f? PA,

A 4 5 PA, 100.00%
B 13 PA, 34.69%
C 1 7 PA, 45.19%
D 7

E 9

F 9

G 2 2

H 6

max f? PA,

A 4 4 2 PA, 0.00%
B 13 PA, 100.00%
C 11 PA, 0.00%
D 7

E 9

F 9

G 2 2

H 1 5

max f3 PA,

A 3 4 3 PA, 27.96%
B 3 10 PA, 0.00%
C 1 10 PA, 100.00%
D 6 1

E 7 2

F 9

G 3 1

H 2 1

Each [-th decision maker can use these values as a guide to determine his/her
preference criterion, which is his/her aspiration level to achieve the optimal value
of an objective function (see Definition 4) and his/her underachievement tolerance
value which he/she is willing to accept for the k-th objective function (see Definition

6). The percentage of achievement, PA,, of the k-th objective function corresponding
to a nondominated solution serves as a guide to a decision maker as to the

15
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acceptability to him/her of a solution as this signifies the closeness of the objective's
value at a decision vector to the true optimum over the range of values of an
objective function. Hence, PAyalso serves as a guide for each decision maker in
assigning the inputs pc} and €}, for fuzzy programming. Should it happen that all
the decision makers are willing to accept any of the nondominated solutions out of
the three single-objective optimization results, then the problem is already solved.
For example, if all decision makers would choose a nondominated solution which
has the highest average of percentages of achievement of the three objective
functions, then all of them have the same choice, which is the nondominated solution
optimizing the function, f1 (see Table 3). However, in real life, this scenario is
rather unlikely to happen as each decision maker does not normally place full
preference on a particular objective but rather holds partial preferences on all the
objective functions.

Suppose there are three decision makers (L = 3). For discussion purposes, let us
suppose that the decision makers have individually engaged in interactive and
iterative solution processes to solve the MOTP (see Tapia and Murtagh 1989,1991).
Each decision maker is assumed to have tried solving the MOTP a number of times
and used this as a learning process to come up with his/her own preference criteria
and underachievement tolerance values, which are given in Table 4. These are also
used as input parameters in our AIMMS computer codes.

For example, decision maker 1 chooses a preference criterion forf1, p! to be 70,
because he wants to obtain a nondominated solution vector, x, for which the value
of f1 evaluated at x is 70% close to its best value of 25924 measured from its
worst value of 29243. Additionally, he/she chooses an underachievement tolerance
value of 5 for the first objective function. The same explanation holds for all the
other input values in Table 4.

Using these preference structures and applying the interactive and iterative solution
approach for a single decision maker proposed in Tapia and Murtagh (1991), we
perform three multi-objective optimizations using our AIMMS computer codes
and obtain three decision vectors, x;;,i =4,...,H, j = L],K, which are givenin
Table 4. Each nondominated solution's percentage of achievement, P4, also
computed using (5), is likewise given in Table 4. Realistically, not all the decision
makers will favor the same nondominated solution out of the three multi-objective
optimization results because different decision makers are more likely to have
different or inconsistent preference structures relative to the multiple objective
functions (see, for example, Table 4). A compromise has then to be reached and
hence we now propose to apply the binary search technique.
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Table 4. Different preference structures, i.e., preference criteria
and underachievement tolerance values chosen by decision makers [ =1, 2, 3;
solution vectors x;; i = A,...,Hj = I,],K, obtained
after using these preference structures
in the method proposed in Tapia and Murtagh (1991);
and the corresponding percentages of achievement,
PA,,of each objective function, k=1,2,3

[ (Decision k pck € 041 J K Pa,
Maker)
1 1 70 5 A 6 4 PA,  70.96%
2 70 5 B 13 PA,  70.90%
3 50 5 C 5 6 PA,  50.01%
D 7
E 9
F 9
G 4
H 6
2 1 70 5 A 10 PA,  70.56%
2 45 5 B 13 PA,  46.66%
3 70 10 C 11 PA,  70.24%
D 3 4
E 1 8
F 9
G 4
H 6
3 1 60 3 A 10 PA,  60.44%
2 50 4 B 13 PA,  50.02%
3 60 5 C 2 9 PA,  60.06%
D 7
E 9
F 4
G 4
H 6

The binary search starts with the preference structures of the three decision makers
given in Table 4 from where the values of their preference criteria and
underachievement tolerance values are used as input parameters into our fuzzy
model for group decision-making. The proposed algorithm, as implemented in the
AIMMS environment applied to these input parameters, gives the results (presented
in Table 5) after eight (i.e.,n =1, 2,...,8) iterations assuming the decision makers
have agreed to do this maximum number of iterations. Each nondominated solution'’s
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percentage of achievement, PA,, is likewise given in Table 5. The detailed
description of the inputs in each iteration step is given below.

Table 5. Solution vectors, x; i = 4,..,Hj = I,]J,K,obtained after
n = 1,2,..,8 iterations of the binary search model RFPn
and the corresponding percentages of achievement, PA ,
of each objective function.

i/j J K i/j [ J K
n=1 n=2 PA
A A 2 3 5 PA, =7055%
B B 1 12 PA, = 57.23%
C C 3 8 PA,=61.02%
D D 7
E inf. E 9
F F 9
G G 3 1
H H 2 4

p(1)=65 p(1)=65 p;(1)=60 p(2)=57 p,(2)=40 p;(2)=45
n=3 PA, n=4 PA,
A 5 2 3 PA =6844% A 4 2 4 PA =6768%
B 13 PA, = 62.00% B 13 PA,=62.56%
C 1 10 PA,=61.30% C 2 9 PA, =6147%
D 7 D 7
E 9 E 9
F 9 F 9
G 3 1 G 3 1
H 6 H 1 5

p,(3)=61  p(3) py(3) P(4)=63  p(4) p5(4)
n=5 =525 =525 PA, n=6 =587 =563 PA,
A 3 2 5 PA =6692% A 2 2 6 PA =66.16%
B 13 PA,=63.13% B 13 PA, = 63.70%
C 3 8 PA;=61.02% C 4 7 PA;=60.57%
D 7 D 7
E 9 E 9
F 9 F 9
G 3 1 G 3 1
H 2 4 H 1 5

p(5)=64  p,5)  py5) p,(6) p,6)  psy(6)
n=7 =619 =581 n=8 =645 =634 =591
A A
B B
C C
D D
E inf. E inf.
F F
G G
H H

p(7)  p(7)  p7) p,(8) 8  py8)
=647 =642 =595 =646 =638  =59.3
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For the first iteration, the fuzzy model RFP1 needs as input parameters, p, (1), for
k=1,2,3. These input parameters are computed using (14) as follows: using the input
values in Table 4, p;(1) = max{70—5,70— 5,60 — 3} = 65; p,(1) = max{70 — 5,
45—75, 50 — 4} = 65;and p3(1) = max {50 — 5,70 — 10,60 — 5} = 60. This means
that all the decision makers' maximum preferences for all the objectives are utilized.
RFP1 gives an infeasible solution. Table 5 capsulizes the result of this iteration
together with the results of succeeding iterations.

For the next iteration, we use (15) to compute for the values of p;(2) for k=1, 2,
3 (i.e., p1(2) = min{70 - 5,70 — 5,60 — 3} = 57; p,(2) = min{70 — 5,45 — 5,50 — 4]
= 40; and p3(2) = min{50 — 5,70 — 10,60 — 5} = 45) . These are the least stringent
preferences of the decision makers. Since RFP2 turns out to be feasible, we can
proceed to further iterations in order to search for a more stringent set of
preferences that could result possibly in another feasible solution.

In the third iteration, px(3) for k=1, 2, 3 is taken to be the average of px(1)and
pe(2) (see (18),i.e., p3(1) average {65,57} = 61, p3(2) = average {65,40}= 52.5,
and p3(3) = average {60; 45} = 52.5). By taking the average here, there is an
intermediate degree of rigor that satisfies both the most stringent preferences and
the least stringent preferences of the decision makers. RFP3 turns out to be feasible.
The solution obtained from RPF3 can still be improved by proceeding to the fourth
iteration.

Noting that iteration 3 is the last iteration that gives a feasible solution while
iteration 1 is the last iteration that gives an infeasible solution, we then use in
RFP4: pp(4)for k =1,2,3 the average of p, (1) and pr(3) (i.e., p;(4) = average
{65, 61} = 63;p2(4) = average {65, 52.5} = 58.7; and p3(4) = average {60, 52.5} =
56.3). RFP4 gives us a feasible solution.

We can further improve the solution given in RFP4 by proceeding to the next two
iterations by solving RFP5 and RFP6, which both give feasible solutions. In an
attempt to further improve the solution given in RFP6, we proceed to the seventh
iteration and solve RFP7.

In RFP7, px(7) fork=1,2,3 is the average of p(1) and px(6) (i.e., p1(7) = average
{65,64.5}=64.7; p2(7) = average {65, 63.4} = 64.2; and p3(7) = average {60, 59.1}
=59.5). px(7)fork=1, 2,3 are computed in this manner since iteration 6 is the last
iteration that gives a feasible solution, while iteration 1 is the last iteration that
gives an infeasible solution. RFP7, however,turns out to be infeasible.
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Noting that RFP6 is the last iteration that gives a feasible solution while RFP7 is
the last iteration that gives an infeasible solution, we perform the last (i.e.,
predetermined) maximum number of iterations (that is n=8, i.e. solve RFP8) where
pi(8) for i=1,2,3 is the average of pr(6) and pr(7) (i.e., p1(8) = average {64.5,
64.7} = 64.6; p2(8) = average {63.4, 64.2} = 63.8; and p3(8)= average {59.1, 59.5}
=59.3). RFP8 likewise turns out to be infeasible.

Hence, the best compromise solution is given by RFP6: x4y = 2,x4; = 2, %25 = 6,
xp = 13,x¢; = 4,xcxk =7, xp1 = 7, % = 9, %1 = 9,x6; =3, %6k = L, xy; = L, xy; = 5.
In this group decision exercise, the last feasible result can be considered as the
best compromise solution because it corresponds to the most stringent combination
of preferences that the binary search methodology attempts to identify.

CONCLUSION

Many real applications of the transportation problem consider arcs with various
attributes (input/output). As aresult, a number of researches have been done to
solve the MOTP. However, literature lacks methodologies on solving the MOTP that
involves a group of decision makers who may have varying and conflicting
preferences relative to the attributes of the arcs. This paper presents a model that
makes it possible to solve the MOTP in a group decision-making setting. The proposed
MOTP model (FP-MOTP) requires the decision makers to input their fuzzy aspiration
levels in the form of preference criteria and underachievement tolerance values,
which signify the relative importance of each attribute of the arcs to each decision
maker. To illustrate our model and methodology, we use published data in
Amirteimoori (2010) wherein each arc in the transportation problem involves one
input and two output attributes. We demonstrate a scenario with three (3)
hypothetical decision makers wherein they are required to input their fuzzy
preferences signifying differently the importance of every attribute to them
individually.

In summary, we describe the methodology being proposed in this paper for solving
a multi-objective transportation problem (MOTP) in a group decision-making setting
as follows:

Step 1. Each function (arc attribute) in the multiple objective
transportation problem is separately optimized subject to the same set
of transportation constraints. The results yield a decision support matrix
that describes to the multiple decision makers the worst and the best
values that could possibly be expected for each objective function (see
Definitions (3) and (4)).
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Step 2. Each decision maker is allowed individually to engage in several
interactive and iterative fuzzy programming attempts (see FP-MOTP)
wherein, as in a learning process, he/she can find a preference structure
consisting of preference criteria and underachievement tolerance values
(see Definitions (5) and (6), respectively) that he/she actually favors most,
depending on the corresponding percentages of achievement of the
objective functions (see Definition (5)). Inevitably, it is possible that not
all decision makers will have one and the same preference structure.
Therefore, there is a need for the decision makers to come together and
look for a compromise.

Step 3. The binary search methodology (see Section (5)) is performed. It
is an impartial tool that can provide a compromise nondominated solution
to the MOTP. Ultimately, a best compromise nondominated solution is
assured because it corresponds to the combination of preference criteria
for all the objectives that are as high as possible relative to the initial
various preference structures chosen by all the decision makers.

We finally note that in any decision-making activity involving multiple decision
makers, it is to be expected that to arrive at the ultimate solution, every decision
maker should be ready to compromise.
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