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ABSTRACT

In large scale IP Television (IPTV) and Mobile TV distributions, the video signal is typically encoded and
transmitted using several quality streams, over IP Multicast channels, to several groups of receivers,
which are classified in terms of their reception rate. As the number of video streams is usually constrained
by both the number of TV channels and the maximum capacity of the content distribution network, it is
necessary to find the selection of video stream transmission rates that maximizes the overall user
satisfaction. In order to efficiently solve this problem, this paper proposes the Dynamic Programming
Multi-rate Optimization (DPMO) algorithm. The latter was comparatively evaluated considering several
user distributions, featuring different access rate patterns. The experimental results reveal that DPMO is
significantly more efficient than exhaustive search, while presenting slightly higher execution times than
the non-optimal Multi-rate Step Search (MSS) algorithm.

Keywords: Quality of Experience (QoE), Dynamic Programming , Quality of Service (QoS), Internet Protocol
Television (IPTV), Multi-Rate

INTRODUCTION

The possibility of ubiquitous Internet access brought
about by the wide dissemination of mobile technologies
led to a greater heterogeneity of access networks and
terminal equipments with different capabilities, which,
coupled with the natural unpredictability of Internet
QoS, constitutes a technological challenge for Internet-
based video distribution services. While current
networking technologies and architecture have enabled
a significant increase of the transmitted video quality,
this can mainly benefit high capability terminals operating
from high capacity access networks. However, in order
to cover the entire market spectrum, the video
distribution services must also satisfy users using lower
capability terminals operating from lower capacity
access networks (e.g. mobile handsets using GPRS).

In large scale IP Television (IPTV) and Mobile TV
distributions, the video signal is typically encoded and
transmitted using several quality streams, over IP
Multicast channels, to several groups of receivers,
which are classified in terms of their reception rate.
As the number of video streams is usually constrained
by both the number of TV channels and the maximum
capacity of the content distribution network, the
selection of the best transmission rate of each video
stream should be dynamically adjusted trying to meet
the maximum user level of satisfaction. For huge
numbers of dynamically changing heterogeneous
receivers and video streams, the exhaustive search for
the optimal mix of stream quality levels is unbearable
given the real-time adaptation requirements.
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Regarding video quality metrics, while networking

Quality of Service (QoS) metrics usually provide good

hints regarding the true quality experienced by the user,

their relationship is nonlinear. That is the reason why

user centric metrics have been used in television

services for more than twenty years to evaluate video

quality, based on subjective assessment metrics that

are obtained using a panel of human evaluators in

standard defined methods. These metrics measure the

impairment caused by a diversity of factors on the

Human Visual System (HVS) and constitute what is

called Quality of Experience (QoE) metrics. When

available, the latter constitute more reliable criteria for

the optimization of the video streaming service.

This paper proposes a QoE oriented multi-rate

optimization algorithm designated the Dynamic

Programming Multi-rate Optimization (DPMO)

algorithm. As the name suggests, DPMO is based on

Dynamic Programming concepts. It is able to find the

set of video stream transmission rates that optimizes

the average QoE of a set of users, featuring a

computational complexity that is significantly lower than

the exhaustive search. The proposed mechanism was

comparatively evaluated considering several user

distributions, featuring different access rate patterns.

RELATED WORKS ON MULTI-RATE

SWITCHING

In the early video distribution systems over Internet,

video streaming was provided at a single rate. This

scheme was suitable for users with connection speeds

close to the average media rate, which implies that users

with large access speeds were unable to exploit their

transmission capabilities and users with slower

connections could not view any content at all.

A natural evolution of this single rate system is to offer

content at individually encoded bitrates chosen in order

to cover the available connection types (ADSL, Cable,

WIMAX, WiFi, etc.). However, this proposal does not

optimize the quality of the streams sent to the different

users due to the fact that the bottleneck capacity is not

defined only by the access link but also by the core

network and the streaming server, which can also limit

the available bandwidth due to congestion or high load.

Multi-rate switching or stream replication (Li & Liu,

2003) is a dynamic extension of the individually encoded

bitrates. It allows mid-stream switching between

different rates according to the detected network

conditions. Several commercial products (Real

Networks, 2002) (Birney, 2000) use this scheme, as

for instance SureStream technology from Real

Networks (Conklin, et al., 2001). The innovation of this

approach lies in the use of multiple representations of

the original content (each one encoded at a different

bitrate) optimized for different access network and load

conditions. The result is a single file wherein all encoded

streams are bundled. During the streaming session, the

player monitors the bandwidth and the loss

characteristics of the connection and instructs the

server to switch to the stream that will provide the best

perceptual quality.

More recently, Microsoft introduced Smooth Streaming

(Zambelli, 2009), an adaptive streaming technique

where the video/audio source is encoded at multiple

bitrates, generating multiple chunks of various sizes

each with 2 to 4 seconds of video. Because web servers

usually deliver data as fast as network bandwidth

allows, the client can easily estimate user bandwidth

and decide to download larger or smaller chunks ahead

of time. Smooth streaming could be used for stored

content or for live content, which allows to dynamically

adapt the rates of the different streams in real-time

according to the network and user conditions.

In the OLYMPIC project (Patrikakis, et al., 2003), a

platform that was able to deal with multi-rate switching

was developed.  It consisted of servers, reflectors (proxy

streaming servers) and transcoders. Servers are

responsible for streaming stored or live content and

are considered as the point where any stream

originates. Users may request a particular stream

directly from a server or the request may be submitted

to a proxy streaming server. In the latter case, content

is transmitted to the proxy node before being forwarded

to the client. A proxy streaming server node may serve

a large number of clients by replicating and

subsequently forwarding packets received from the

server, thus reducing the server’s workload. For

example, assume that a large number of users request

the same stream from a specific proxy streaming

server. In this case, only one copy of the stream must
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reach the proxy streaming server. There the stream is

replicated and transmitted to the various clients,

improving scalability as the system’s capacity (in terms

of users) can be increased by the deployment of

additional proxy streaming servers.

Nunes, Monteiro, & Grilo (2009) proposed an algorithm

called Multi-rate Step Search (MSS) to efficiently

search the optimal set of streams bitrates that

maximizes the QoE of a set of users (see section III).

MSS fixes the lowest data rate to the value of the lower

user access rate and then sequentially adds additional

streams whose bitrates must always match available

user access rates. For each added stream, an

exhaustive search is performed so that its data rate

will correspond to the argmax of the QoE when fixing

the bitrates of the streams that are already on the

system. After the new bitrate is found, all bitrates are

sequentially adjusted until a local maximum is found.

Then the algorithm proceeds to add another stream.

The process continues until the target number of streams

is reached. Although MSS does not provide any

guarantees of finding the optimal set of streams, it is

very efficient from the point of view of execution time

and its results are usually not very far from the optimal

ones.

Yang, Kim, & Lam (2000) have proposed the use

dynamic programming to determine the optimal

partitioning of multi-rate multicast receivers. They have

formulated the partitioning problem as an optimization

problem to maximize the sum of receiver utilities subject

to some loss tolerance constraints for a general class

of utility functions.  In particular, they considered two

different receiver utility functions:  one is based on Inter-

Receiver Fairness (IRF), which was first defined in

(Jiang, Ammar, & Zegura, 2000), and the other based

on isolated receiver rates.  In this study, however, we

used a different utility function, one that is based on

the quality of experience (QoE) metric as explained in

the next section.

QOE VIDEO MULTI-RATE STREAMING

OPTIMIZATION: PROBLEM STATEMENT

The problem of rate adaptation as it is related to the

OLYMPIC project platform (Patrikakis, et al., 2003)

may be formulated as follows: Consider a multimedia

stream S encoded at K  different bitrates b
i
, i∈{1, ...,

K}, resulting in K streams {S
1 
, S

2
. .., S

K
}. A streaming

server proxy node relays the streams to various clients,

where the clients are categorized to K groups   {G
1 
,

G
2
. .., G

K
}. according to the received stream (for

example, a terminal receiving stream S
i 
(encoded at

bitrate b
i
 ) belongs to group G

i
). A group G

i
 contains

n
i 
terminals t

i,j
, where j∈{1, ..., n

i
},. This configuration

is illustrated in Figure 1.

The objective is to develop algorithms that are able to

respond to varying network and terminal conditions by

dynamically adapting a subset of the parameters  K

and b
i
, in order to achieve maximization of user

perceived quality (QoE). The parameters that affect

stream quality include the available bandwidth, network

congestion, terminal CPU load and the number of

served terminals.

Considering a fixed number of  K streams, each stream

encoded at a fixed bitrate b
i
 , a specific case of the

generally stated problem emerges. The goal is to find

the optimal distribution of terminals to available streams

whereby minimization of terminal-side packet loss and

maximization of network utilization and perceived

quality is achieved. It is worth noting that the

optimization goal is twofold. Firstly, we wish to obtain

a specific (optimal) distribution of terminals as a function

of their performance (specifically the sustained packet

loss). Secondly, we wish to design an algorithm for

enforcing this distribution dynamically over time, as a

response to fluctuating terminal performance.

As a simple example of the aforementioned algorithm,

consider a streaming server proxy node that relays 3

streams  S
1 

(128 kbps),  S
2 

(256 kbps) and  S
3 

(512

kbps). The streams are received by terminals t
1
t
2
 ,  and

t
3 
respectively.  At some point the system is informed

(by means of a reporting mechanism presumably

established between the terminals and the streaming

server proxy node, e.g. RTCP reports) that terminal t
2

is sustaining a significant packet loss that is deemed as

unacceptable on the basis of the defined policy. As a

response, the streaming server proxy node ‘switches’

the 512 kbps transmitted to  t
2 
with the 128 kbps stream

(represented by the big vertical arrow in Figure 1). This

results in a decrease of the packet loss experienced by

the terminal that leads to a smoother terminal-side
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playback of the received stream as well as better

network utilization.

Furthermore, consider an algorithm that examines the

packet loss of each terminal in a group and determines

the worst and best performing terminals in the group.

Then, the algorithm initiates a ‘switch’ of the stream

received by the worst performing terminal with a stream

encoded at a lower bitrate and another ‘switch’ of the

stream received by the best performing terminal with

a stream encoded at a higher bitrate.

The QoE video streaming optimization aims to maximize

the objective function  that represents the sum of

quality ( ) of each stream ( ) that exist at one instant:

Figure 1. Terminal grouping according to the received stream bitrate.
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ITU-T has standardized a parametric computational

model, as Recommendation G.1070 (ITU-T, 2007), for

evaluating QoE of video telephony.  The model

estimates the QoE of video-telephony services based

on quality design/management parameters in terminals

and networks. For H.264 the quality of a video stream

without losses can be approximated by the expression

(  in kbps):

Q
t 
= 1.2 log

10 
(1 + b

i
) (2)

Notice that  is subject to the constraint ,  b
i ≤  AR

u
,

∀ u∈Gi
, where AR

u
 is the access rate that user u

experiences. A straightforward approach to solve this

problem is to enumerate all possible bitrates

combinations and choose the one that maximizes Q
t
.

However, this approach is combinatorial in nature and

the time complexity of the solution can grow

exponentially with the number of variables. The MSS

algorithm (Nunes, Monteiro, & Grilo, 2009) tries to

tackle this problem in an efficiently in a heuristic way,

but it offers no guarantees of optimality.

(1)
1

K

t i i

i

Q Q n
=

= ⋅∑
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DYNAMIC PROGRAMMING MULTI-RATE

OPTIMIZATION

Dynamic Programming (DP) is an optimization

technique for solving complex problems by breaking

them into smaller sub-problems. It is especially useful

in problems where one needs to make decisions one

after another. In general, problems that can be solved

through dynamic programming possess two

characteristic ingredients: optimal substructure and

overlapping sub-problems (Cormen, et al., 2001). A

problem has an optimal substructure if the optimal

solution of the problem can be derived from the optimal

solution of the sub-problems. An optimization problem

is said to have overlapping sub-problems if the

algorithm solves the same problem over and over again.

The problem can be modeled as a system with an initial

state and several possible final states. Starting from

the initial state, a decision has to be made to move to a

next state where a certain reward or benefit is

associated with that decision, until a final state is

achieved. The total reward is the sum of the rewards

accumulated along the way from the initial state to the

final state. An optimal solution is one that maximizes

the total reward.

The application of DP to the optimal rate allocation

problem is designated the DP Multi-rate Optimization

(DPMO). Each user experiencing an access rate AR
j
,

∈{1, ..., M} shall be assigned rate R
j 
= b

i
, i∈{1, ...,

K} . The DPMO algorithm analyses each user in turn,

departing from its initial state at the lowest available

access rate (AR
1
) and then progressing to the highest

access rate (AR
M
). For users experiencing AR

1
 , rate

b
1 

is introduced and this rate necessarily corresponds

to AR
1
, i.e. R

1
 = b

1
 = AR

1
. For every other access

rate AR
j
,one of two possible options can be chosen:

(1) To assign the previous rate  b
i 
again (i.e. R

j 
= b

i
),

keeping the number of used streams for the

moment;

(2) To add rate b
i + 1

 
=
 AR

j
 to the set of used stream

rates, making R
j 
= b

i + 1
.

For example in Figure 2, given M = 10 and K = 3. At

state 4, the reward in choosing the first option is 1.2 log

(1 + Ar
1
) . n

4 
whereas at state 5, the reward is  1.2 log

(1 + Ar
5
) . n

5  
taking the second option, assuming that

where n
4 
 and n

5 
are the number of users that experience

access rates Ar
4
  and Ar

5
, respectively. Although it

was not clearly evident that this problem can be solved

through DP, realizing that decisions on when to jump to

a higher rates subject to a finite number of jumps gives

the clue that DP can be used. DPMO can be best

understood with an example.

The DPMO implementation requires two state

variables,  k∈{1, ..., j - 1} and l∈{0, 1, ..., K - 1},

where k is the index of the rate allocated to users

Figure 2. DP Optimization of multi-rate video streaming.
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Table 1. Decision table for  j = 10.

Science Diliman (January-June 2010) 22:1, 33-42

experiencing  AR
j  
and l is the number of available steps

(stream rates).  These two variables serve as indices

for the decision tables computed by the algorithm. For

each <k, l> pair, two items are stored: one is the optimal

option taken and the other is the corresponding reward

for that option, where option 0 means the previous rate

is maintained and option 1 means that there is a jump

to a new rate. The rewards consist of QoE values

calculated with expression (2).

Moving to j = 9, the table is calculated in the same

manner but for each  <k, l> pair, the algorithm considers

which option provides a higher accumulated QoE value

(V2,0) considering the reward in j = 10, and stores the

corresponding option and accumulated reward in the

table. For example, for k = 2, l = 0, there is no other

option but option 0, because no jumps in the rate are

possible. The corresponding accumulated value is (V2,0)

= 1.2 log (1 + AR
2
) . n

9
 + (V2,0), which goes into the

respective table entry.

For k = 2, l = 1, two options are possible:

• Option 01: (V2,0) = 1.2 log (1 + AR
2
) . n

9
 + (V2,1)

• Option 12: (V2,1) = 1.2 log (1 + AR
2
) . n

9
 + (V 9,0)

The algorithm chooses the option that gives the higher

(V2,1) and stores it in the respective entry in the table

for j = 9. A similar procedure is carried out for the

other <k, l> pairs.

9

9

1 0

9 1 0

9 1 0

DPMO solves the problem backwards (i.e., from the

final state to the initial state), such that j
 ∈{M, M - 1,

..., 1}.  Referring to the example in Figure 2, DPMO

calculates the table for   j =10 first. For l = 0, the

previous rate indicated by k is maintained while for l >

0, jumping to a higher rate will always provide a higher

Q
t
  since  AR

1 
< AR

2 
< ⋅ ⋅⋅  < AR

M 
(see Table 1).  Each

<k, l> value in the decision table is designated as Vk,l .

Note that column 10 is empty and is blackened in Table

1.

1 0

9

The analysis will now jump to the last two steps.  Table

2 shows the decision table for j = 2. Columns for  k =

2,..., 10 are empty and are blackened. The DPMO

algorithm terminates and arrives at the optimal solution

when it reaches j = 1, where the optimal value is 1.2

Table 2.  Decision table for j = 2 .

log (1 + AR
1
) . n

1
 + (V1,2). The optimal rates are then

determined by checking each decision table from  j = 1

to j = 10 where option 1 is taken.

To visualize the operation of DPMO, consider three

peaks access rate distribution (described in section V).

Executing DPMO results in a decision graph with 62

states as shown in Figure 3. DPMO starts computing

1 The value of l remains equal to 1 in V2,1 because no jump was

made.

2 The value of  l is decremented by 1 and becomes 0 in V2,1 meaning

that further jumps will be possible.

10

10
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Figure  3. Decision graph for the three peaks access rate distribution. Within each circle, three items are indicated:

<l, k> pair, best decision and the accumulated  Q
t
 value.

Science Diliman (January-June 2010) 22:1, 33-42

the decision table of the final state, j = 62. Then, it

proceeds to compute the tables for the other states

until it terminates at j = 1, obtaining the optimal Q
t
.

The optimal decision as well as the corresponding

optimal bitrates  b
i
, i ∈{1, 2, ..., K} can be obtained

by going through the decision tables tracing from state

j = 1 to state j = 62  where option 1 is chosen. Take

note that at j = 1, option 1 is chosen automatically. At

<-,3>
1

9418.871

<1,0>
0

9198.043

<1,1>
0

9359.465

<1,2>
0

9391.232

<1,0>

0
9142.767

<1,1>

0
9304.189

<1,2>

0
9335.955

<2,0>

0
9151.322

<2,1>

0
9307.882

<2,2>

0
9338.141

<1,0>

0
9059.852

<1,1>

0
9221.273

<1,2>

0
9253.040

<2,0>

0
9068.330

<3,1>

0
9228.487

<3,2>

0
9257.310

<1,0>
0

22.1107

<1,1>
1

23.1997

<40,0>
0

22.85003

<60,1>
1

23.1997

<60,2>
1

23.1997

<1,0>
0

0

<1,1>
1

0

<40,0>
0

0

<61,1>
1

0

<61,2>
1

0

j=1

j=2

j=3

j=4

j=61

j=62
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each succeeding state, the optimal decision and the

corresponding reward value is already solved by

DPMO. In this example, the resulting optimal streams

rates are 200 kbps, 219 kbps and 239 kbps.

Figure 4 plots the value of  Q
t
 as DPMO progresses

from state  j = 62 where Q
t 
= 0 to initial state j = 1

where Q
t 
= 9418.871, the optimal value.

RESULTS

The DPMO algorithm was compared with the MSS

algorithm (Nunes, Monteiro, & Grilo, 2009) and

exhaustive search in terms of execution time and the

obtained . The algorithms were implemented and tested

in MATLAB (2009) and performance results were

obtained considering a fixed number of streams, K = 3.

The algorithm can be easily adapted to other values of

K. We considered the five different distribution profiles

(also used in (Nunes, Monteiro & Grilo, 2009)) of user

access rates AR
j
 to analyze the performance of the

algorithms under various computational scenarios

ranging from easy to difficult as follows:

• Uniform: the integer access rate values (Ar
j
) are

uniformly spaced within the interval [AR
1
, AR

M
] .

• Three peaks: three wide triangular-shaped peaks

spanning uniformly spaced access rates, with maxima

Figure 4. Evolution of  Q
t  
as calculated by DPMO.

at 208 kbps (90 users), 222 kbps (70 users) and 245

kbps (≈128 users), minima at 200 kbps (10 users),

216 kbps (10 users), 229 kbps (0 users) and 260 kbps

(8 users).

• Three clusters: three tiny triangular-shape pulses

spanning uniformly spaced access rates, located in

intervals [102 kbps, 140 kbps] (maximum at 108 kbps

with 70 users), [251 kbps, 283 kbps] (maximum at

267 kbps with 85 users) and [501 kbps, 529 kbps]

(maximum at 515 kbps with 75 users).

• Six clusters: three tiny triangular-shape pulses

spanning uniformly spaced access rates, located in

intervals [100 kbps, 165 kbps] (maximum at 130 kbps

with 99 users), [175 kbps, 245 kbps] (two maxima

at 205 kbps and 210 kbps with 99 users) and [250

kbps, 315 kbps] (maxima at 280 kbps and 285 kbps

with 99 users), [325 kbps, 390 kbps] (maximum at

360 kbps with 99 users), [400 kbps, 465 kbps]

(maximum at 435 kbps with 100 users) and [475

kbps, 530 kbps] (maximum at 410 kbps with 100

users).

• Random: Randomly chosen 300 access rates from

the interval [10 kbps, 1000000 kbps], with random

total number of users, where each access rate is

assigned to a maximum of 1000 users. All the three

algorithms (i.e. exhaustive search, DPMO and MSS)

are executed using the same random scenarios.
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Table 4. Execution times and Q
t
   error

Table 3 provides a summary of the different access

rate distribution profiles considered in this study.

The execution times are listed in Table 4 for all the

considered user rate distributions. For each distribution

except the Random, the optimal Q
t
 is listed together

with the set of rates  that achieve it are shown. In

addition, we also included the average difference and

the standard deviation of the difference between the

optimal  calculated by DPMO and the  calculated by

MSS.

While the exhaustive and DPMO algorithms always

find the optimal Q
t
, MSS sometimes fails to find the

optimal solution in random distributions, since it can

become stuck at local maxima. However, the error is

very low and it consistently presents a lower execution

Science Diliman (January-June 2010) 22:1, 33-42

Table 3. Access rate distribution profiles

time than DPMO. This suggests that MSS may still

be useful in extremely demanding settings featuring

huge numbers of heterogeneous users and target

streams (K). Both MSS and DPMO are significantly

more efficient than exhaustive search.

CONCLUSIONS

This paper has proposed the DPMO, a Dynamic

Programming based algorithm whose objective is to

calculate the optimal set of multicast video data rates

that maximizes the overall QoE for a set of users with

heterogeneous access network rates.

DPMO guarantees that the optimum solution is

reached by employing Dynamic Programming

concepts. Nevertheless, experimental results have

demonstrated that despite not providing any optimality

Distribution 
 

(kbps) 

 

(kbps) 

Number of 
access 

rates 

( ) 

Total 
number of 

users 

Max 
users in 

each  

Total 
number of 

users 

Number 
of Runs 

Uniform 250 440 20 20 1 20 1 

Three peaks 200 261 62  128 3338 1 

Three clusters 102 529 75  85 3060 1 

Six Clusters 100 530 87  100 4494 1 

Random 10 1000000 300 N/A 1000 Random 20 

 

Distribution 
Optimal 

 

Optimal  

(kbps),  

Execution time (seconds) 
Average 

difference 
between 

calculated and 

optimal  (MSS 
only) 

Standard 
deviation of 

difference 
between 

calculated and 

optimal  (MSS 

only) 

Exhaustive DPMO MSS 

Uniform 59.9 250, 310, 380 0.65 0.07 0.04 0 0 

Three peaks 9418.9 200, 219, 239 1.93 0.28 0.26 0 0 

Three 
clusters 

8994.2 102, 252, 501 3.49 0.38 0.22 0 0 

Six Clusters 12692.7 100, 345, 195 5.40 0.47 0.34 0 0 

Random N/A N/A 228.05 6.05 4.24   
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guarantees, the solutions presented by MSS are optimal

in most configurations or at least approach the optimum

solution with a very low average error. The results show

that both MSS and DPMO are significantly more

efficient than exhaustive search in terms of execution

time, with MSS being slightly but consistently more

efficient than DPMO, suggesting that MSS may still

be useful in extremely demanding settings featuring

huge numbers of heterogeneous users and target

streams.

While the present work targets at dynamic video

multicast environments where users and access rates

dynamically change over time, both DPMO and MSS

assume that the user configurations are static most of

the time and that they must be executed anew each

time the user configuration changes. Future work shall

focus on adapting the DPMO algorithm in order to

remain efficient in highly dynamic user configurations.
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