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ABSTRACT

In this paper, the one-dimensional gravitational gas is evolved numerically using an event-
driven code. Two initial conditions are considered: (1) an initially uniform isolated system with
no velocity dispersion and where the initial velocities are sine functions of the position, and (2)
two “clusters” with initially constant phase-space densities in elliptical regions of phase space.

INTRODUCTION

There have been attempts to study the time evolution
of the one-dimensional gravitational gas both
analytically (Mineau et al., 1990; Muriel & Esguerra,
1996; Muriel et al., 1998) and numerically (Hohl &
Feix, 1967; Severne et al., 1985). These attempts may
be traced to two streams: the first, resulting from a
long tradition of applying the kinetic theory to a gas of
self-gravitating particles (Chandrasekhar, 1942;
Landau & Lifshitz, 1980; Spitzer, 1987; Lightman &
Shapiro, 1978; Saslaw, 1985) and the second, arising
from Poincare’s unsuccessful attempt to solve the three-
body problem, the emergence of computers, and the
development of numerical analysis. The motivation for
these is the problem of structure formation in the
universe–a challenging problem of classical physics,
which is of great interest today because of recent and
still improving data on the cosmic microwave
background. In its full glory, the problem of structure
formation is a complicated nonlinear problem, which
is difficult to treat both analytically and numerically.

Because of the above reasons, the interest in simplified
models of structure formation persists to this day. One
model, that of collapsing globular clusters, involves
concentric spherical shells representing groups of stars
with equal radial velocities (Youngkins & Miller,
2000). A variation of the model gives each shell
constant angular momentum (Barkov et al., 2002;
Klinko et al., 2001).

A simpler model, that of self-gravitating parallel
“infinite” sheets has been investigated for a longer time.
It has been used in the past to model the behavior of
halo stars (Prendergast, 1954; Camm, 1950; Schilt,
1950). It is sometimes referred to as the self-gravitating
one-dimensional system (SOG) (Youngkins & Miller,
2000; Wright & Miller, 1984) or as the one-dimensional
gravitational gas (1DGG) (Hohl & Feix, 1967; Mineau
et al., 1990). Recently, a modification of the 1DGG,
one that takes into account mass and energy loss due
to the evaporation of stars, was introduced as a toy
model of globular cluster (Fanelli et al., 2001).

In this paper, we study the non-homologous collapse
of the 1DGG using numerical methods.
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METHOD

Consider a model of parallel self-gravitating “infinite”
flat sheets, each with mass m

i
 and allowed to pass

through each other. The Hamiltonian is

(1)

In the present study, every sheet has mass m = 1 = N,
where N is the number of sheets in the system. To
simplify further, we choose the scale such that 4πG is
equal to one. In this system, the force acting on a sheet
is constant as long as the sheet does not intersect (or
“collide”) with any other sheet–this makes it easy to
implement numerically.With the choice of units, the
acceleration of a sheet is

(2)

where N
R
 and N

L
 are the number of sheets to the right

and to the left of the sheet, respectively. If the sheets
are ordered, the acceleration can be written as

(3)

where i, a positive integer, is the order of the sheet
defined as follows:

. (4)

The evolution is then achieved using an event-driven
algorithm described by Fanelli et al. (2001). In this
algorithm, intersection times between adjacent sheets
are calculated, and the system is evolved up to the
minimum intersection time giving a solution that is
exact to machine precision. (A more sophisticated
heap-based algorithm (Noullez et al., 2001) which may
give a faster running time is not used here.) The phase-
space coordinates (x

i
 and v

i
) at a later time t is then

recorded.

Two different configurations are analyzed: (1) an
initially uniform isolated system with no velocity
dispersion, and where the initial velocities are negative
sine functions of the position (note that the choice of a

negative sine dependence of initial velocity on the
position is not essential–any other functional
dependence of initial velocity on position, which
assures that all sheets go towards the origin initially
could have been chosen); and (2) two “clusters” with
initially constant phase-space densities in elliptical
regions of phase-space.

RESULTS

The results are shown in Figs. 1 and 2. One may think
of the results illustrated in both figures as metaphors:
Fig. 1 for the evolution of a collapsing galaxy, and
Fig. 2 for the evolution of two neighbor galaxies for
different initial separation distances.
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Fig. 1. Evolution in phase-space of an initially uniform
isolated system with no velocity dispersion and where the
initial velocities are negative sine functions of the position.
The sheets at t = 0, 40, 70, 100, and 250 are moving to the
right while the sheets at t = 20, 60, 90, 200, and 1,000 are
moving to the left–a collapse.
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The following features in Fig. 1 should be noted. At
t = 0, the system is uniform and there is no velocity
dispersion. At t = 10, the density at the origin is high.
In the region near the origin are positions in which
sheets moving with different velocities and in opposite
directions can be found–this is called multistreaming.
The region exhibiting multistreaming gradually
expands. The formation of a high-density core region
surrounded by a low-density halo region is apparent,
beginning at t = 250.

The following features in Fig. 2 should be noted. In the
time interval shown, the shape of the 300-sheet cluster
in phase-space hardly changes, while that of the
100-sheet cluster changes a lot (e.g., at t = 7, the sheets
from the 100-sheet cluster occupy a length that is about
twice the length occupied at t = 0). It is tempting to
conclude that the sheets from the 100-sheet cluster will
eventually form a halo around the 300-sheet cluster,
but the numerical simulations have not gone that far to
make the conclusion definitive.
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Fig. 2. Evolution of two clusters with initially constant phase densities in elliptical
regions of phase-space. Four initial conditions, which differ in the separation
distance of the clusters, are evolved. The more massive cluster has 300 sheets while
the other has 100.

FINAL REMARKS

In this paper, the one-dimensional
gravitational gas has been evolved
numerically using an event-driven
code for two initial conditions.
Features such as the onset of
multistreaming and the formation
of a core-halo structure have been
exhibited. The event-driven code
gives results that are exact to
machine precision, but is rather
slow compared to numerical
integration, especially when the
system being evolved has regions
with high sheet density. However,
one should not interpret this
statement as an endorsement of
faster routines employing straight
numerical integration, such as the
Runge-Kutta method–as a naive
implementation yields non-
physical, non-energy conserving
results fast. From here, one may
pursue several research directions:
(1) one may run the existing code
on a faster computer; (2)
implement a faster, more
sophisticated (and still event
driven) heap-based algorithm
(Noullez et al., 2001); (3) develop
and optimize algorithms based on
numerical integration using the
existing event-driven code as a
benchmark for accuracy; and, (4)
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perform analytical work. Analytical efforts dealing with
essentially the same initial conditions are now under
way (Gargar, 2002).
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