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ABSTRACT

We show that the quantization of the classical Time-of-Arrival (TOA) for arbitrary position X still leads
to a class of self-adjoint TOA-operator for a confined particle. The spectrum of the TOA-operator is
studied for different cases.

INTRODUCTION

When does a given particle prepared in some initial
quantum state arrive at a given spatial point?

In standard quantum formalism, this raises the time-
of-arrival (TOA) at the level of quantum observable
where the TOA distribution is supposedly derivable
from the spectral resolution of a self-adjoint TOA-
operator canonically conjugated to the driving
Hamiltonian. Recently, Galapon (2000) has shown that
objections in constructing such TOA operators, due to
Pauli’s Theorem, do not hold within the single Hilbert
space formulation of quantum mechanics. Also,
researchers have evidently not been discouraged from
seeking an expression for the TOA distribution within
a consistent theoretical framework (Muga & Leavens,
2000).

We construct the TOA-operator for arbitrary detector
position as a generalization of the operator constructed
for the detector position at X = 0 (Galapon, 2002), which
has shown that a class of self-adjoint and canonical
TOA operator can be constructed for a spatially
confined particle in the interval [-l,+l].

By considering the symmetry properties of the
constructed TOA operator, theoretical predictions for
the probability distributions were obtained and
compared with numerical results.

CONFINED TOA AND TOA OPERATORS

The TOA at X of a classical particle with position q,
momentum p, and mass µ is given by

(1)

Symmetrizing the classical expression (Eq. (1)) for the
TOA at X gives (Muga & Leavens, 2000)

(2)

in which T, q, and P are the operator versions of t, q,
and p,  respectively.

We attach the Hilbert space H = L2[-l,l]. The position
operator is unique and is given by the bounded
multiplicative operator, q, whose domain is the entire
Hilbert space. We rename the momentum operator P

( )t q X
p

µ= − −

( ) ( )1 1

2
T q X P P q X

µ − −⎡ ⎤= − − + −⎣ ⎦
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by with domain

  . The Hamiltonian operator

is     whose domain is

       .

We consider              to cover the entire symmetry
of the classical TOA in the quantum domain. Different
values of γ correspond to different physics. We also
rename T by Tγ , such that Eq. (2) becomes

(3)

The momentum and the Hamiltonian operators
commute and have a common set of eigenvectors,

and both have pure point spectra.

Non-periodic boundary condition

Since q appears in first power and X is just a parameter
in Eq. (3), Tγ is an operator if the inverse of the
momentum operator Pγ

-1 exists. For this non-periodic
case, zero is not an eigenvalue of Pγ , thus, the inverse
of Pγ exists. Pγ is unbounded and self-adjoint, thus Pγ

-1

is bounded, everywhere defined (by extension) and self-
adjoint. Then it follows that for every                      Tγ is
bounded, everywhere defined, and is a symmetric
operator. Thus, Tγ is self-adjoint.

In coordinate representation, Eq. (3) assumes the form
of a Fredholm integral operator (Galapon, 2000)

(4)

with the non-periodic kernel

(5)

2
2

2 qHγ φ
µ

= − ∂h ( ) {D Hγ φ= ∈

( ) ( ) ( ) ( ) ( )}: '' , ' exp 2 'D P q H l i lγ φ φ γ φ∈ − = −

( ),γ π π∈ −

( ) ( )1 1

2
T q X P P q Xγ γ γ

µ − −⎡ ⎤= − − + −⎣ ⎦

( ) ( )1
exp , 0, 1, 2,...,

2

q
q i n n

ll
γφ γ π⎛ ⎞= + = ± ±⎜ ⎟

⎝ ⎠

( ) ( ) ( ), ' ' '
l

l
T q T q q q dqγ γφ φ

−
= ∫

( ) ( ), ' ' 2
4 sin

T q q q q xγ
µ

γ
= − + −

h

( ) ( ) ( ) ( )( )exp ' exp 'i H q q i H q qγ γ− + − −

in which H(q,q’) is the Heaviside function. Tγ is
canonically conjugate to Hγ in the canonical domain

(6)

Periodic boundary condition

For the periodic case, zero is an eigenvalue of the
momentum operator, thus, the inverse of Pγ doesn’t
exist. But TOA is a valid question only if the particle
is in motion, otherwise it goes nowhere. We then expect
that the non-periodic kernel Eq. (5) has a finite part
corresponding to the non-vanishing momentum
components in the limit as         The finite part is
extracted by removing the divergent contribution of
the vanishing momentum eigenvalue (Galapon, 2002),
such that the kernel becomes

(7)
and the canonical domain for the Hamiltonian and
TOA-operator, T

0

(8)

Both kernels corresponding to the non-periodic and the
periodic boundary conditions are symmetric and
bounded, reaffirming the self-adjointness of the TOA
operators. Also, they are compact and the canonical
domains are closed, such that the pair (Hγ,Tγ) forms a
canonical pair on this closed subspace of the Hilbert
space (Galapon, 2002).

CONFINED TIME-OF-ARRIVAL (TOA)
SYMMETRIES

By symmetry consideration, we derive some properties
of the confined TOA-operator and infer relationships
among the eigenfunctions. We particularly consider
the behavior of the TOA-operator on the actions of the
parity operator, Π and the time reversal operator, Θ.

( ) ( ) }0, 0,1 .k kl l kφ φ− = = =

0.γ →

( ) ( ) ( ) ( )0

1
, ' ' 2 sgn ' '

4

i
T q q q q x q q q q

l

µ− ⎡ ⎤= − − − − −⎢ ⎥
⎣ ⎦h

{ ( ) ( ) ( )0
0 : ' ' ' 0,

l

c l
D q D H q q dqφ φ

−
= ∈ =∫

( ) ( ) }0, 0,1k kl l kφ φ− = = =

( ) ( ) ( )}' exp 2 'l i lφ γ φ− = −
( ) ( ) ( ){ : ' ' 0,

l

c l
D q D H q dqγ

γφ φ
−

= ∈ =∫

P i
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∂= −
∂
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The actions of Π and Θ are a n d
                , respectively, where

   are vectors of the Hilbert space (we particularly
considered the initial state,            ).

Non-periodic                 case

The symmetries of the non-periodic TOA-operators
follow directly from the invariance of their kernels
under the following operations

(9)

(10)

(11)

We denote T
[γ,X]

 as the TOA-operator at X for the case γ
with the kernel in Eq. (4) as T

[γ,X]
(q,q’,X) and ϕ

[γ,X]
 as

the corresponding eigenfunctions. For every        , it
can be shown that [ ] [ ], ,  ,X XT Tγ γϕ ϕ− ΘΠ = −ΘΠ and
using Eq. (9), the probability density relations in
coordinate and momentum representations are

(12)

(13)

We also find     and using Eq. (11)
leads to

(14)

(15)

Also, it can be shown that,
with the following probability distributions from Eq.
(10)

(16)

(17)

If we let                             , where          is the eigenvalue
of the TOA-operator, we found that

(18)

[ ] ( ) [ ] ( ), ,, ', , ',X XT q q X T q q Xγ γ
∗

−= − − − −

[ ] ( ) [ ] ( ), ,, ', , ',X XT q q X T q q Xπ γ π γ
∗

− − −= −

[ ] ( ) [ ] ( ), ,, ', , ',X XT q q X T q q Xγ γ
∗

− −= −

Hϕ ∈

[ ] ( ) [ ] ( )
2 2

, ,X Xq qγ γϕ ϕ− = −

[ ] ( ) [ ] ( )
2 2

, ,X Xk kγ γϕ ϕ− =

[ ] [ ], ,X XT Tγ γϕ ϕ− Θ = −Θ

[ ] ( ) [ ] ( )
2 2

, ,X Xq qγ γϕ ϕ− =

[ ] ( ) [ ] ( )
2 2

, ,X Xk kγ γϕ ϕ− = −

[ ] [ ], ,X XT Tπ γ π γϕ ϕ− −Θ = −Θ

[ ] ( ) [ ] ( )
2 2

, ,X Xq qπ γ γϕ ϕ− =

[ ] ( ) [ ] ( )
2 2

, ,X Xk kπ γ γϕ ϕ− = −

[ ] [ ], ,X XT γ γϕ τ ϕ= [ ], Xγτ

[ ] ( ) [ ] ( ), ,X XT q qπ γ γϕ τ ϕ− = −

(19)

(20)

Periodic (γγγγγ = 0 and γγγγγ = πππππ/2) case

We note the following symmetries of the periodic
kernel

(21)

(22)

For every  , we note           . It can
be shown that [ ]0, XT has positive and negative
eigenvalues of equal magnitudes, with corresponding
eigenfunctions,     and  . Using Eq. (21), we get the
following probability densities

(23)

(24)

For opposite X, we have                                          and
by using Eq. (22), we find

(25)

(26)

Spectrum of the time-of-arrival (TOA) operator

The solution to Eq. (4) reduces to an eigenvalue
problem

(27)

which is solved using the Nystrom Method for second
order homogenous Fredholm integral equation (Delves
& Mohamed, 1985). We produce eigenfunctions and
eigenvalues for the TOA-operator, which were not done
in current literatures (Muga & Leavens, 2000), although
we will not emphasize on the numerical values of the
simulation, but more on the behaviors of eigenfunctions
and the spectrum.

[ ] ( ) [ ] ( )0, 0,, ', , ',x XT q q X T q q X∗= −

[ ] ( ) [ ] ( )0, 0,, ', , ',x XT q q X T q q X∗
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( ) ( ), ,q t q tϕΘ = − ( ) (, ,q t qϕ ϕ=

)0
( ),0qϕ
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For the non-periodic case, we are able to verify Eqs.
(12) to (17). In particular, in Fig. 1, relations of the
position probability conforms with Eq. (12) and the
eigenvalue of operators [ ], XT γ and [ ], XT γ − , which are
opposite in sign but are of equal magnitude are
consistent with Eq. (20). The corresponding momentum
probability for Fig. 1 is shown in Fig. 2. This is
consistent with Eq. (13).

For the periodic boundary case, we particularly focused
on the detector at X = 0. But we have also confirmed
Eqs. (25) and (26). This operator was constructed in
Galapon (2000). On Figs. 3 and 4, the probability
densities corresponding to the negative and positive
eigenvalue are again overlapping for both the
momentum and position. These are consistent with Eqs.
(23) and (24).

Fig. 3. Probability density of the position corresponding to
the eigenfunctions of the negative (φ-) and positive (φ+)
eigenvalue at X = 0. The probability densities overlap
and their eigenvalues differ in signs only.
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Fig. 2. Momentum probability distribution for detector
positions X = 0.5 and X = -0.5, with γ = 3. The x-axis is the
momentum value nπ, where n = 0, +1, ... The distributions
overlap.
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Fig. 4. The momentum probability density for periodic
boundary condition at X = 0. The probabilities corresponding
to the negative and positive eigenvalues overlap.
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Fig. 1. Position probability distribution for detector positions
X = 0.5 and X = -0.5; with γ = 3 and eigenvalues
τ[3,0.5]

 = -4.3944 and τ[3,-0.5]
 = 4.3944. The distributions are

mirror images of each other.
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CONCLUSION

We have shown that the quantization of the classical
TOA at arbitrary X for a spatially confined particle
allows a construction of a quantum mechanical
counterpart, a TOA-operator, which is canonically
conjugate to the free Hamiltonian. The eigenvalues are
supposed to be the outcome of a TOA measurement.
From symmetry considerations, we derived some
properties of the TOA for different cases. But a better
insight on the TOA operator properties is to be obtained
by evolution of the given stationary states.
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