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ABSTRACT

We developed a new approach to the perturbation theory for the effective Hamiltonian of condensate
particles in Fock space. Using this new theory, we can easily analyze the effect of including a somewhat
problematic term in the work of Ezawa et al. We thus showed that indeed, the inclusion of this term in the
perturbation potential is justified.

INTRODUCTION

The phenomenon of the Bose-Einstein condensation,
first observed (Anderson et al., 1995) for 57Rb at 170
K, followed by the cases (Davis et al., 1996; Bradley
et al., 1997) of 23Na, 7Li, and 1H, has excited
experimental and theoretical interests on different
aspects of this quantum effect. In particular, Ezawa et
al. (1998) studied the fluctuation of the condensate by
modifying the Bogoliubov prescription (Bogoliubov,
1947) in replacing a

0
 by 0N with (Ezawa & Luban,

1967; Ezawa, 1965)

(1)

where N
0 
is the number of condensate particles and a

0
 ,

the annihilation operator. This work was done with the
modified Oppenheimer approach to perturbation theory
in Fock space to obtain the effective Hamiltonian for

the condensate, using                  as the strength
parameter. It was then shown that the fluctuations are
much less than N

0
, thus justifying Bogoliubov’s

prescription.

In this work, a term

which is of zero-th order in   was included in the
perturbation, and the perturbation was carried out to
second order in    . This is unusual in perturbation work.
We shall therefore consider the contributions of these
terms to higher orders to seek justification for this work.

THE SYSTEM HAMILTONIAN

The Hamiltonian for a Bose-Einstein gas in a trap is

(3)

where v(x) is the trap potential and V(x) = V(-x), the
interaction. The former, which varies much more

slowly than the latter, is the chemical potential. In terms

of the new field a
0
', the field operator takes the form

(4)

where ( ) ( )n n
n

x a u xφ =∑ . The operator a
0
 shall

henceforth be taken to mean a
0
'.
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Terms linear in (x) will arise in H and can be eliminated
by adding and subtracting the Hartree potential

(5)

so that

(6)

The functions u
n
(x) are chosen to be real eigenfunctions

of
(7)

In view of the short range of the interaction as compared
to the wavelength of the atoms, people take the delta-
function approximation

    and (8)

where a is the scattering length of the atoms, so that
Eq. (7) simplifies as

(9)

Although we have a set of non-linear eigenvalue
equations, it is easy to reflect that we still have a
complete orthonormal set of eigenfunctions.

The Hamiltonian of the system can now be written as

where

and

with J
mn

 = L
oomn

 and K
lmn

 = L
0lmn

.

EZAWA’S PERTURBATION APPROACH

Ezawa’s perturbation theory is formulated to solve for
the effective Hamiltonian

(12)

in (13)

where

(14)

with A
n
 being an operator in the Hilbert space H

B 
H

C
 of

the total system, and     is an operator in H
C
.

The perturbation problem is formulated by dividing H
into three parts: H

C
 , which acts only on the condensate;

H
B
 , which acts only on the out-ofcondensate particles;

and H
BC

 , which involves the interaction between
condensate and out-of-condensate particles. The
unperturbed Hamiltonian is then taken to be the terms
down to the zero-th order term in H

B
 and H

C
 , given the

names H
B
 and H

C
. The rest of the terms are taken as

the perturbation. We note that H
BC

 contains a zero-order
term in   .

In the lowest order, Ezawa et al. (1998) got
                   and

(15)

where ( )†
0 0 0

1
.

2
x a a= + Higher order terms are

obtained after diagonalizing H
B
 , a process which

involves only an orthogonal transformation to handle
mutual interaction between out-of-condensate particles.
Using the perturbation formula

 ,
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the result obtained was

(16)

where

NEW PERTURBATION METHOD

To investigate the higher order terms due to H
BC

(0), we
shall assume that the perturbation consists of only this
term V = H

BC
(0), so that

(17)

The perturbation approach is obtained by writing

where

(18)

P is the projector to the condensate factor. We now
define

(19)

The effective Hamiltonian can now be replaced by

(20)

which satisfies the equation

(21)

From this new eigenvalue equation, we break it up into
two parts by projecting it with respect to P and
                 giving

and

(23)

This means that we can simplify the problem by finding
a perturbation operator K = QKP satisfying
corresponding operator equation

(24)
and

(25)

The P equation can be simplified into

(26)

which allows     to be solved for once K is found.
Furthermore, QKP can be left multiplied into this
equation to give

(27)

from which the term containing       can be eliminated
with Eq. (25), yielding

(28)

The role of this equation is to determine K
perturbatively, whether Eqs. (26) and (28) are the
working equations of this perturbation approach.

RESULTS OF PERTURBATION

Using this new approach to perturbation, we get

(29)

the first order result of Ezawa et al.,

(30)
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In fact we see that K will be a polynomial in
                           so that the term Q[H

C
,K]P vanishes

to all orders, and the equation that determines K
simplifies to

(31)

which is similar in form to the results of regular
perturbation theory in operator form developed by
Speisman (1957), and, therefore, we immediately get

(32)

and

(33)

Finally, the new Hamiltonian is given by substituting
these expressions for K into Eq. (26). Explicitly,          is
proportional to x

0
2 and       proportional to x

0
4. Since x

0

was estimated to be a small quantity in Ezawa’s work,
we see that indeed, we have explicitly verified that the
procedure to include H

BC
(0) in V is justified.
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