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ABSTRACT

The purpose of this study is to develop a computer-based classifier that automates coral reef assessment
from digitized underwater video. We extract low-level color and texture features from coral images to
serve as input to a high-level classifier. Low-level features for color were labeled blue, green, yellow/
brown/orange, and gray/white, which are described by the normalized chromaticity histograms of these
major colors. The color matching capability of these features was determined through a technique called
“Histogram Backprojection”. The low-level texture feature marks a region as coarse or fine depending
on the gray-level variance of the region.

INTRODUCTION

Coral reefs are considered as one of the richest
ecosystems on earth and an essential source of
livelihood for many people. Marine scientists assess
the condition of coral reefs from population estimates
of biotics and abiotics in the reef area (Alcala & Gomez,
1982). In coral reef assessment, marine scientists
classify videos or images of transects of corals into six
main categories or “benthos”: (1) abiotic (rock, rubble,
sand); (2) live coral; (3) dead coral (and dead coral
with algae); (4) algae; (5) soft coral; and (6) other fauna.

Some popular methods used for reef assessment are
Line Intercept Transect (LITR) and In-Situ Mapping
(ISMP). Both methods employ a diver to assess or film,
in-situ, the coral reef, which is lined with transects, a
kind of tape measure utilized by marine scientists to
record the length or area of the reef. Although filming
the benthic organisms in a reef area reduces diving time,

video analysis still requires identification of items in each
frame by expert individuals (Uychiaoco et al., 1992;
Carleton & Done, 1995). A software known as
PointCount’99 (http://www.cofc.edu/~coral/pc99/
Pcppintro.htm) has been developed to aid in the
assessment, but user-intervention is still required. Most
of these techniques are often labor-intensive, requiring
experience and a trained eye. There are works on
remote sensing or spectral imaging of seafloors using
airborne multispectral cameras (Bierwirth et al., 1993;
Carper et al., 1990), but close-up inspection of the coral
reefs are still needed to correlate spectral signatures
with actual reef conditions. Hence, the purpose of this
study is to computer-automate the coral reef assessment
from digitized underwater video, thus making the
analysis less tedious. It is also worth noting that this is,
to the best of our knowledge, the first attempt to
automate coral reef assessment through a computer.

In computer vision, “color” is a point property in the
digitized image. Pattern recognition techniques using
color often operate on the color distribution alone,
ignoring the spatial, black and white (tonal) property of* Corresponding author
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regions in the image which defines the texture.
Incidentally, color and texture are some indicators used
by marine scientists to identify components in a reef.
Hence, this study aims to show the feasibility of using
color and texture as features for classifying coral reef
components.

One approach in pattern recognition is classification by
minimum distance between model and test image
features, such as color, texture, and color-texture
(Huang et al., 1997; Kondepudy & Healey, 1994; Ojala
& Pietikainen, 1999). In Marcos et al. (2001), we
attempted to classify coral reef components directly
from color and texture feature vectors. Recognition
rates were low, which could mean that such a direct
approach to classification is not suitable for corals.

We attempt another approach to image classification
based on the presence or absence of features. For
example, abiotics such as rocks would normally be gray
and craggy. Dead corals are bright white, while live
corals are mostly colorful and regularly textured. Note
that a combination of features such as “irregular+gray”
would most likely point to the existence of rocks, while
a region which is “regular+colorful” would most likely
mean the region has a living coral. If we have a binary-
valued feature such as “regularity”, which has a value
of 1 when the region is regularly textured, and 0
otherwise; and if we have another feature such as
“colorfulness”, which is 0 when the region is gray or
white, and 1 if otherwise, then we can preclassify an
image region with binary numbers. For example, rock
will be 00 (regularity-colorfulness) and coral will be
11. If we have f binary-valued features, then the total
number of combinations is 2f. In this paper, we test two
features, color and coarseness-fineness, in preclassifying
image regions in a video frame of a coral reef.

METHODOLOGY

Image data

Fifty frames from a digitized video of Australia’s Great
Barrier Reef (© Australian Institute of Marine Science)
were used for testing. The video (frame rate = 25
frames/second) was taken from a shallow depth, with

sunlight as the illumination source. Distance between
camera and corals were kept to 30 cm. Still frames
were digitized to an image size of 640 x 480 pixels.

Low-level color feature extraction

Humans perceive color in an object through the nature
of light reflected by that object. The characteristics
generally used to distinguish one color from another
are brightness, hue, and saturation (Gonzales & Woods,
1992). In computer vision, color represents a property
of a point picture element or a “pixel” in a digitized
image. For a given colored pixel, hue and saturation
represent the chromaticity, while brightness, the intensity
of the pixel.

The purpose of color spaces or color models is to
represent how color is to be perceived according to
some standard. Some color spaces are modeled on how
the human eye perceives color. Other color spaces are
used as hardware-oriented models, such as the RGB
(red, green, blue) for color monitors. In this study, we
transformed image RGB into the normalized
chromaticity coordinates (NCC) or normalized rg
(Gonzales & Woods, 1992). The normalized rg
coordinates are computed from RGB space by the
following expressions:

      I = R + G + B;      r = R/I;      g = G/I           (1)

where I is the brightness value and r and g are the
chromaticity values. Note that b is no longer unique
because of the relationship r + g + b = 1. This color
space has three advantages: (1) it is easy to compute;
(2) it separates brightness and chromaticity information
(intrinsic color); and (3) the colors created in combining
two colors in different brightness proportion appear in
the line joining the two chromaticities of the two colors
in rg-space. The rg chromaticity histogram of an image
will then be a 3D plot where the x- and y-coordinates
are the chromaticity values (r and g) while the z-
coordinate is the frequency of occurrence in the image.

Most live corals in the video are either blue, yellowish,
brown, or green, while dead corals have a bleached or
white color. Rocks, on the other hand, have grayish
color, or sometimes greenish due to algae growth.
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Heuristically, it was determined that four groups of
colors, namely blue, green, yellow/orange/brown, and
gray/white, are dominant in the coral reef images. Since
gray is merely an incidence of white, gray and white
are grouped into one major color. For each major color,
an average rg chromaticity histogram was obtained
from manually cropped image patches which visually
possess the major color. These major colors are the
low-level color features utilized in this study.

Histogram Backprojection

The dominance of each group of color at each region
of an image was tested using Histogram Backprojection
(Swain & Ballard, 1991) (Fig. 1). The chromaticity
histogram of a target image is first obtained before the
test image is transformed into chromaticity space. The
chromaticity values of each pixel in the test image are
traced onto the target chromaticity histogram, and the
corresponding frequency value is assigned to the same
pixel in the test image (backprojection). This process
produces a bright region in the backprojected image
where the image matches the colors in the histogram
with high frequencies. In this paper, we aim to match
regions in the coral images exhibiting the four major
colors (blue, green, yellow/brown/orange, and gray/
white).

Dead corals and sand have the same chromaticity and
differ only in brightness. To distinguish between the two,
intensity information was included in the color matching.
Thus, whenever a region is labeled as gray, we test
further if its intensity is beyond a certain threshold.

Low-level texture feature extraction

In computer vision, “texture” is the spatial or black and
white or tonal property of an image (Haralick, 1979).
An image is composed of texture primitives, which is a
region in an image with little variation in tone. Texture
is exhibited by an image when there is a large variation
in the texture primitives. Fine textures have higher spatial
frequencies and its texture primitives are small, while
coarse textures have larger primitives and lower spatial
frequencies.

Most texture paradigms utilize methods that extract the
spatial frequency information of an image, for example,
Fourier Transform. Some analyze the spatial distribution
of the gray level of each region in an image and derive
statistical information from the distribution. In this study,
gray-level variance was utilized to characterize the
texture of coral reef components. A gray-level image
of the frame to be analyzed is obtained using I in Eq.
(1). The gray-level values may be scaled from 0 to 1 or
0 to 255. A region of the image has fine texture if the
gray-level variance relative to the average gray value
of that region is small, and has coarse texture if the
variance is large.

Rocks, live corals, algae, and dead corals usually have
coarse texture, while sand and certain live corals
perceptually have fine textures. These characteristics
of texture, or low-level features, aid marine scientists in
the classification of corals. Thus, coarse and fine will
be the low-level texture features to be used in this study.

Fig. 1. Illustration of the Histogram Backprojection technique. The chromaticity values of a pixel are traced into the color
histogram of a query image and its frequency value is assigned to that pixel.
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RESULTS AND DISCUSSION

Color matching results

Although colors are illumination dependent, the light
source for the video used in this study is constant all
throughout the film (sunlight). Therefore, no color
shifting due to light source change is observed in the
images. The average major color histograms were used
as model histograms. On the upper left side of Fig. 2a is
a massive blue-colored coral; on the upper right, a dead

coral. Histogram backprojection was applied to Fig. 2a
using the average blue histogram, resulting in Fig. 2b; in
Fig. 2c, the gray/white histogram was used. The results
for both show that the blue and white parts registered
as bright areas. For effectively matching bleached or
pale white regions in the image, we incorporated the
intensity information into the histogram backprojection
of the test image. We emphasize that from this technique
alone, the dead coral population of a reef can be
determined.

We have implemented histogram backprojection in
video. An example showing the labeling of blue corals
and dead corals may be downloaded from http://
www.nip.upd.edu.ph/ipl/members/jing/corals.

Texture labeling

The mean of the gray-level variances of each low-level
texture was computed using 10 cut-out image samples
per low-level class (i.e., images exhibiting coarse and
fine textures). It was found that the mean of the
variances for coarse texture regions fall in the range of
0.01 to 0.1, while that for fine texture regions have an
order of magnitude of 0.001. The results imply that these
low-level texture features are dissimilar or non-
overlapping.

We further tested the low-level feature by getting the
variance of each N x N block in an image. If the variance
of the image is within the range of 0 to 0.01, this area
is classified as “of fine texture”, and the center of this
block is marked by a green letter “F”. If the variance of
the N x N block is within 0.01 to 1, this area is “of
coarse texture”, and we mark a red letter “C” on the
center of the block. This approach was tested for
different window sizes and it was found that effective
texture characterization is achieved using window sizes
in the range of 40 x 40 to 70 x 70 pixels. Fig. 3 shows
the result of the block processing using a 60 x 60 block
size. Perceptually, we can see that fine and coarse
textures in the image are effectively recognized by
merely using the gray-level variance of the image.

Coarseness or fineness of an image region can depend
on illumination direction. In our case, the videos are
illuminated by diffused sunlight (corals were shallow);
thus, image coarseness does not change.

(c)

(g)

(a) (b)

(d)

(f)

(h)

(e)

Fig. 2. Test images (a, c, e, and g) and their
corresponding histogram backprojected images (b, d, f,
and h) using the four image chromaticity histograms:
averaged green rg histogram (a & b); averaged yellow/
brown/orange rg histogram (c & d); averaged blue rg
histogram (e & f); and averaged gray/white histogram (g
& h).
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CONCLUSION

In this work, we introduced an approach to coral reef
image labeling utilizing low-level features for both
color and texture. The low-level color features using
four major colors (blue, green, yellow/brown/orange,
gray/white) can effectively label colored reef images
with histogram backprojection. The low-level texture
features (coarse and fine texture as described by gray-
level variances) can effectively label perceptually
coarse and fine texture regions in the images. Having
obtained the low-level features, the next step would be
a higher-level of classification.

RECOMMENDATIONS

These low-level features can serve as weights, or “on-
off” inputs to the classifier, such that certain combinations
of these low-level features can describe a certain benthic
category. If color and texture are not enough as low-
level inputs, then a third feature, shape, may be included.
If there are f features, each having only two states,
then the number of possible combination of feature states
is 2f. For example, three binary features (f = 3) would
be able to label up to eight classes. In our case, we
have six benthic categories; therefore, we only need
three dual-state features for combinatorial classification.

Fig. 3. A frame classified into coarse (C) and fine (F) blocks.
Each block is 60 x 60 pixels. The whole image is 640 x 480
pixels.
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