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INTRODUCTION

In clean layered structure of normal metal and
superconductor, Andreev-bound states are formed in
the normal metallic part through multiple Andreev
reflections (Andreev, 1964 & 1967) of the electron and
hole waves. In the Andreev approximation (AA)
(Andreev, 1964 & 1967), the incident electron towards
a normal metal-superconductor (NS) interface will be
reflected as a hole. Exact analysis, however, shows a
small amplitude of a normally reflected electron (Sipr
& Gyorffy, 1996). In most studies (Larkin & Yu, 1975),
Andreev-bound states are described using the
quasiclassical description, which can be shown to be
equivalent to AA (Ashida et al., 1982). Interestingly,
Andreev approximation works remarkably well
(Blaauboer et al., 1996). In this paper, we want to
investigate the reliability of AA by varying the transverse
dimensions (dimensions perpendicular to the flow of
current) of a mesoscopic superconductor-normal metal-
superconductor (SNS) sample (Bagwell, 1999). In most
systems considered so far (Tanaka & Tsukada, 1991),
the transverse dimensions which the breakdown of the
Andreev approximation can hardly show up are
considered infinite.

THEORY

Throughout the paper, Rydberg atomic units are used–
the energy is in Rydberg, the distance is in Bohr

(1 Bohr ~ 0.5Å),    = 1, and the electronic mass is 1/2.
The Green’s function formalism is outlined extensively
by Koperdraad et al. (1995). It is an extension of the
microscopic theory used by Tanaka & Tsukada (1991),
in that the electron-hole scattering properties are treated
exactly.

The matrix Green’s function satisfies the equation

(1)

in which the differential operator is closely related to
the operator in the Bogoliubov-de Gennes (BdG)
equations

                                                                               (2)

apart from the replacement of E by iω
n
. The quantity

ω
n
, which is equal to ω

n 
= πnk

B
T, is called the Matsubara

frequency. For a system of fermions, n is an odd integer.
Possible inhomogeneities of the system are fully
represented by the r dependence of the gap function.
The spinor wave function Ψ(r) describes quasiparticle
excitations, and the energy E is measured with respect
to the Fermi energy µ. Eq. (1) is derived using the finite
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temperature Green’s function formalism (Abrikosov et
al., 1963 & 1965) by manipulating the equations of
motion instead of the often used diagrammatic analysis.
The SNS system we consider is shown in Fig. 1. The
gap function ∆ has a constant complex value in the
superconducting part and zero in the normal part. This
model of the gap ignores the proximity effect. As far as
the transverse directions are concerned, the general
solution of Eq. (1) can be expressed as a Fourier series

expansion in sin y k y and sin z k z in which

and      
 
   . The functions sin yk y  and sin zk z

are in fact the transverse solutions of the BdG equations
with the boundary conditions Ψ(x,0,0) = Ψ(x, L

y
,L

z
) = 0.

Thus, we have

(3)

In Eq. (3), the summation extends over all allowed values
of                          . The Fourier coefficient becomes the

  Green’s function of the
quasiparticle motion along the x-direction, which can
be seen by substituting Eq. (1) with Eq. (3):

(4)

where          . Eq. (4) demonstrates
that                                            is diagonal to     and    .
In calculating the local density of states and the self-
consistent gap function, we will need the Green’s
function for diagonal spatial coordinates. As long as we
keep x x'≠ , we can already take y = y’ and z = z’ in
Eq. (3). Since we are only interested in the variations
over the longitudinal direction x, we can average over
the transverse dimensions. By that, Eq. (3) simplifies to
the series:

(5)

The solution of Eq. (4) for a superconducting bar, that
is when the system shown in Fig. 1 is composed mainly
of a superconducting material without the normal metal,
is

(6)

where

(7)

(8)

                                                            (9)

(10)

(11)

                                    (12)
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Fig. 1. The geometry of the SNS system considered.
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(13)

φ is the phase of the complex constant ∆. The index σ
refers to the type of particle (electronlike for σ = +1
and holelike for σ = -1), and the index n indicates the
direction of propagation (ν = +1 to the right and ν = -1
to the left).

The solution of Eq. (4) for an NS system (single
interface) is,

                                                           (14)

where

(15)

with µ = sgn(x–x’). For multiple interfaces, that is, for
arbitrary number of layers

(16)

The quantities           and             are obtained by imposing
the continuity of the Green’s function and its derivative
at the interfaces.

The bound-state energy is determined by looking through
the local density of states (LDOS) using the
formula

(17)

in which G
11

 is the upper left matrix element of the
multiple scattering Green’s function (Eq. (16)). At the
bound-state energy, the LDOS has infinite peak. To
avoid this singularity, the parameter δ is introduced to
broaden the peak so that it acquires a finite height. The
peaks in the plot of the LDOS against the quasiparticle

energy must correspond to the Andreev-bound state
energies.

In this formalism, the Andreev approximation can easily
be implemented. This approximation amounts to the
replacement

(18)

if  kσ
vj 

 occurs  in  the  exponential  and  to                 if
      occurs as a factor. It is valid when E, |D|<<     .

In the present paper, we investigate its limitation by
looking at configurations in which E,            .

The gap function can be determined self-consistently,
using the formula

(19)

where ( , ', , , )y z nF x x k k iω  is the upper right element of
the matrix Green’s function ' ' ( , ', , , )j j y z nG x x k k iν ν ω  and
V is the pairing interaction amplitude. In carrying out
the calculation, we first substitute in ( , ', , , )y z nF x x k k iω
the step-like gap profile shown in Fig. 1. We can
determine a new value of the gap by using Eq. (19).
This new value is again substituted in

( , ', , , )y z nF x x k k iω , and another new value is again
obtained using Eq. (19). The iteration is continued until
the difference in the gap values between two successive
iterations is negligibly small.

RESULTS

Local density of states

To investigate the reliability of the Andreev
approximation, we focus on the choice of the transverse
dimensions which we choose to be y z tL L L= = . The
transverse components of the solutions of the BdG

equations are sin( )yk y sin( )zk z in which y
y
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or ( , )y zn n are called modes whose allowed
values are determined by

    . (20)

When the transverse dimension is small, the
second term in the right becomes large, and as a
result of which, only a few modes will be allowed.
If this term exceeds the chemical potential µ ,

xFk becomes imaginary, the wave-function is
damped, and consequently, such mode cannot
exist. For larger transverse dimensions, the
second term is smaller whereupon more modes
are allowed. Most of our calculations will be
done for small tL so that only few modes will
exist. We will tune tL such that 2

xFk is of the same
order of magnitude as the gap energy ∆, in which
regime the Andreev approximation (Eq. (18)) is
not valid, and call such tL value a critical width.

Figs. 2 and 3 show the results for a configuration
in which ( , ) (2,2)y zn n =  is the highest allowed
mode. The chemical potentials in the
superconductor and in the normal metal, µ

S
 and

µ
N
 , respectively, are assumed equal with

magnitude 0.5. The longitudinal dimension L of
the normal-metal part is 4,000 Bohr and the gap
∆ is treated as real, with magnitude 0.0001 Ry.
The LDOS in the normal-metal part at x = 1,000
Bohr is plotted against E/∆. The peaks represent
discrete energy states (Blaauboer et al., 1996).
We make the width curves, determined by the
parameter δ  in E + iδ , wide enough so that the
fundamental features can be seen. The numbers

Finally, we want to make a comment on our choices of
the transverse widths. It will come out in the next section
that superconductivity is suppressed for transverse
widths in the order of 20 Bohr or less. This means that
our choices of tL  are not at all appropriate. We made
those choices to illustrate with clarity the fundamental
features of the Andreev-bound states. If we choose a
larger transverse width in which no suppression of
superconductivity occurs, many states will appear and
the picture would have been quite crowded. The
fundamental features, however, remain unchanged.
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in parentheses denote the mode to which the energy
belongs. In Fig. 3, the transverse width is determined
by the condition that 2

xFk = ∆ for the mode (2,2) in which
one finds that tL = 12.5676 Bohr; and in Fig. 2 the
transverse width is tL = 13 Bohr, which is slightly larger
than the critical width, but has the same allowed modes.
In Fig. 2, the exact results and the AA results coincide
and only three states are found, one for each mode. For
the critical width shown in Fig. 3, the states for the first
two modes are almost unchanged, but for the (2,2) mode
many states are found. The peaks corresponding to the
AA are split in the exact treatment.
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Self-consistent gap function

We first present the results of the self-
consistent gap calculation for a bar-shaped
superconductor. In about 80 iterations, the
gap values stabilize. In Fig. 4, we show the
self-consistent gap values plotted against

tL for a bar-shaped superconductor. It can
be seen that there are oscillations of the gap
whose amplitudes decrease as tL increases.
These oscillations can be attributed to the
discreteness of the transverse wave
vectors. As tL increases, the transverse
wave vector approaches the continuous
regime, which can be gauged from the gap
becoming closer to its bulk value obtained
by integrating, instead of summing over, the
transverse wave vectors. Another
interesting thing which can be seen in the
figure is the suppression of superconductivity
for narrower transverse widths. We notice
that as the temperature increases, the onset
of the suppression of the superconductivity
occurs at higher values of tL .

For the SNS system, our initial gap profile
is the step-like gap shown in Fig. 1. By
following the algorithm outlined in the theory,
we obtain the results shown in Fig. 5. In
Fig. 5a, the gap is depressed near the
interface. This occurs because of the
proximity of the superconductor to the
normal metal. This phenomenon is known
as the “proximity effect”. In Fig. 5b, we
show the pair amplitude or density of Cooper
pairs. It is evident that even in the normal
metal, Cooper pairs still exist. This is another
manifestation of the proximity effect.
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