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A theoretical model that computes both for the gradient and scattering forces being exerted on a nonresonant
nonlinear (electro-optic Kerr effect) rigid nanosphere by a strongly focused continuous-wave laser beam
is presented. The incident wavelength of the laser beam is assumed to be appreciably larger than the
nanosphere radius a. Optical forces arising from the aforesaid interaction can be derived by a two-
component approach which determines individually the gradient force and scattering force. The behavior
of the trapping (gradient) force is plotted against several experimental parameters, e.g., incident beam
power, axial distance, sphere radius, wavelength, and refractive index difference between the surrounding
liquid and the nanosphere. Results have shown that the Kerr effect on the nanosphere can produce a
maximum of tenfold increase in the trapping force.

INTRODUCTION

The great advantage of using a single beam is that it
can be used as an optical tweezer to manipulate small
particles under typical inverted microscopes. Optical
tweezing has found its way to life science applications
particularly in cell manipulations and single-molecule
diagnostics. Bockelmann et al. (2002) have studied
mechanical properties of DNA by unzipping short
hairpin loops in an optical trap. Much effort has been
made to explain the nature of optical forces and describe
them quantitatively through sound theoretical models.

We have studied the behavior of the (time-averaged)
radiation that is exerted by a tightly focused cw
Gaussian beam on a nonlinear microsphere both in the
geometrical regime (Pobre & Saloma, 1997) (α=2πa/
λ > 100) and in the Mie regime (Pobre & Saloma, 2002)
(α ≤ 100). But to our knowledge, this problem has not
been addressed before for the case when the sphere

radius a is appreciably smaller than the incident
wavelength λ (α << l) or in the Rayleigh regime. From
an academic standpoint, the problem is worth pursuing
for it involves finding significant behaviors that could
accurately account for nonlinear effect, in particular
Kerr effect, on the optical trapping force.

THEORETICAL FRAMEWORK

Consider a nonresonant and nonmagnetic Kerr
nanosphere whose orientation with the incident
Gaussian beam can be shown in three-dimensional
Cartesian axes as illustrated in Fig. 1.

The nonlinear nanosphere is illuminated by a linearly
polarized Gaussian beam of the fundamental mode with
beam radius wo at it’s beam waist position propagating
from the negative z to the positive z direction whose
refractive index given by n2 = n2

(0)+n2
(1)I(R), where n2

(0)
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is the linear component of the refractive index, n2
(1) is

the nonlinear component, and I(R) is the intensity of
the Gaussian beam. The reference system of the
nanosphere is in the center of the Cartesian coordinate
system, which is located at the beam waist center. When
the beam is incident on the nanosphere, the nanosphere
in the Rayleigh scattering regime behaves like a particle
that acts as a simple point electric dipole. The total
radiation force, as shown in Fig. 2, acting on the dipole
at r1 for +q and r2 for –q can be expressed as

    . (1)

Since the particle is very small compared with the beam
width, incident electromagnetic (EM) fields can be
treated almost constant within the distance ⏐r⏐.
Moreover, the distance ⏐r⏐ is much smaller than the
incident wavelength, Eq. (1) can be expanded in r using
a power series. If we only consider limited terms in the
first order of ⏐r⏐, we can obtain the following
equations from Eq.(1):

        , (2)

where µ = qr is the electric dipole moment.

But the third term is very small in comparison to the
first and second terms, thus we can neglect the third
term. The time-averaged radiation force due to the
inhomogeneous force and Lorentz force can be written
as

 . (3)

For a complex monochromatic Gaussian beam, the EM
fields can be expressed as

         ,
(4)

            ,

while the complex-induced complex electric dipole and
it’s time derivative can be written as

      ,
(5)

         .

Using vector quantities and Eqs.(4) and (5), we can
reexpress Eq. (3) as

   . (6)

The first dispersive term corresponds to the dipole force
or gradient force, and the second dissipative term is
the scattering force. If you consider the Kerr
nonlinearity n2 = n2

(0)+n2
(1)I(R), Eq. (6) becomes

Fig. 1. Orientation of the microsphere with the Gaussian
beam in the 3D cartesian axes.

( ) ( )1 2q qF F r F r−= +

Fig. 2. An electric dipole moment µ whose opposite charges
(+q,-q) are separated by distance⏐r⏐.

( ) ( )( )ˆ expE R i R i tε φ ω= −

1ˆ ˆB E
iω

= − ∇×

where I(R) ≡⎥E(R)⎪2 is the intensity of the Gaussian
beam at R of Fig. 1. Notice that the first component is
dependent on the gradient of the intensity, while the
second term is intensity dependent. The first term points

F = (µ.∇) E (R,t) + µ ×B(R,t) + R,t) + R× (µ.∇)B(R,t)

〈 F 〉T =     Re [(µ* . ∇) Ê + µ*  × Β2
1 ˆˆ ˆ

. .
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to the direction of increasing spatial intensity, while the
second term points to the direction of the intensity
spread or scattering of the incident Gaussian beam on
the Kerr nanosphere.

RESULTS AND DISCUSSION

Figure 3 shows how the optical trapping force could
generate a pulling action or a pushing action on the
Kerr nanosphere. When gradient force or trapping force
pulls a nanosphere either 〈Fz〉 is negative at z > 0 or
〈Fz〉 is positive at z < 0. For other cases the nanosphere
is pushed away from the beam focus at z = 0. It is shown
that Kerr nonlinearity increases the magnitude of the
trapping force for all pulling situations. Quantitatively,
a tenfold increase between the maximum trapping force
of a Kerr nanosphere and the maximum trapping force
on a linear nanosphere is evident from the figure. Unlike
the previous plot, Fig. 4 demonstrates how stiff the
trapping system is for both linear and nonlinear
nanospheres. As illustrated in Fig. 4, the trapping
stiffness for the Kerr nanosphere is much larger than
the linear nanosphere which indicates a deeper trapping
mechanism.

Figures 3 and 4 are consistent trapping force profiles
for both the geometrical ray computation (Pobre &
Saloma, 1997) and the Mie computation (Pobre &
Saloma, 2002) but at varying orders of magnitude.

However, unlike previous works (Pobre & Saloma,
1997; Pobre & Saloma, 2002), the result in Fig. 5 shows
a decrease in the trapping stiffness as the particle size

is reduced from 10 to 2 nm. Smaller particles both in
the geometrical ray regime and Mie regime result in an
increase in the trapping force which points to larger
trapping stiffness.

The last figure is a valuable data to experimentalists
who work in a tight budget under an optical trapping
system. Instead of using high numerical aperture (NA)
objective lens (an expensive optics), Fig. 6 would show
that it is feasible to trap a Kerr nanosphere even at low
NA. Even at high NA (e.g., 1.2) for the linear
nanosphere, a low NA (e.g., 0.5) can match the amount
of trapping force under the nonlinear counterpart given
the same optical parameters.

CONCLUSION

The optical trapping force consists of two governing
components. These are the gradient force component

Fig. 3. Axial force as a function of z in (µm). Parameters: zo=0,
r=0, p=100 mW, a=5 nm, NA=1.2, λ =1.064 um, n1=1.33 ,
n2

(0)=1.4, and n2
(1)=1.8 x 10–11 m2/W.
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Fig. 4. Stiffness of the trap (dF/dz) as a function of z. Same
parameters as in Fig. 3.
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Fig. 5. Tweezer stiffness versus power at different particle
sizes with the same parameters as before.
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Fig. 6. Axial force as a function of NA with the same optical
parameters as before.
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(the term that depends on the gradient of the intensity)
and the scattering force component. The mechanism
of the gradient force stems from two particular
mechanisms. The inhomogeneous field force serves
only the dipole or gradient force, whereas the Lorentz
force contributes both the gradient and scattering forces.
Thus, the mechanism of optical trapping is an interplay
between the inhomogeneous field force and some
component of the Lorentz force when the trapping
particle is within the Rayleigh regime. Calculations
have shown that both trapping force and trapping
stiffness are enhanced with Kerr nonlinearity. Two
significant result can be derived from the study. First
is the dispersivelike behavior of the trapping force for
a Kerr nanosphere, which means that by proper tuning
of the incident Gaussian beam you can control the
amount of trapping force for nanosized Kerr particles.
Second and last interesting observation is it’s ability to
trap even at low NA of the objective lens for Kerr
nanospheres. The theoretical model could be extended
for the case when it is dependent on the polarization of
the incident Gaussian beam. It could be added that size
validity between the Mie regime and Rayleigh regime
is still an unexplored area of investigation in the size
range of 0.1–1 mm.
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