A Hybrid LBFGS-DE Algorithm for Global Optimization of the Lennard-Jones Cluster Problem

Ernesto Padernal Adorio
Department of Mathematics, College of Science, University of the Phillipines, Diliman, Quezon City 1101
E-mail: adorio@math.upd.edu.ph; eadorio@yahoo.com
Bobby Ondoy Corpus
Department of Computer Science, Collge of Engineering, University of the Philippines, Diliman, Quezon City 1101
E-mail: bcorpus jr@yahoo.com

The Lennard-Jones cluster conformation problem is to determine a configuration of n atoms in threedimensional space where the sum of the nonlinear pairwise potential

$$
f(x, y, z)=\sum_{i<j} \frac{1}{r_{i, j}^{12}}-\frac{2}{r_{i j}^{6}}
$$

function is at a minimum. In this formula, $r_{i, j}$ is the distance between atoms i and j. This optimization problem is a severe test for global optimization algorithms due to its computational complexity: the number of local minima grows exponentially large as the number of atoms in the cluster is increased. As a specific test case, a better cluster configuration than the previously published putative minimum for the 38atom case was found in the mid-1990s.

Various algorithms have been tried for determining putative global minimum of Lennard-Jones clusters, for example, simulated annealing and genetic algorithm. There is a fast multistart two-step algorithm which can sometimes find the minimum potential energy clusters in seconds, but it works with a modified Lennard-Jones potential formula.

In this paper we present a hybrid limited memory BFGS (L-BFGS) algorithm and a modified differential evolution (DE) algorithm for determining the global minimum potential energy configurations of atom
clusters using the unbiased or unmodified potential Lennard-Jones function. It performed with 100% reliability for clusters containing $2-50$ atoms. The algorithm has excellent potential for solving other difficult global nonlinear optimization problems.

The work of the two authors was supported by a research grant from the Natural Sciences Research Institute (NSRI).

