Fission and fusion schemes and the action of the diagonal group $D(T, n)$

Priscila Alejandro Kazanidis*
Institute of Mathematics, College of Science
University of the Philippines, Diliman, Quezon City
Email: cristyale35@yahoo.com
Date submitted: March 15, 2006; Date accepted: July 9, 2008

Abstract

This paper is a closer look at associate classes of an association scheme. The orbitals of a subgroup $D(T, n)$ of the full automorphism group of the association schemes served as building blocks for the fusion schemes.

Keywords: association scheme, fusion and fission schemes, orbital, intersection number, permutation, group action

SOME IMPORTANT DEFINITIONS

Definition 1. Let Ω be any non-empty set. Let R be a partition of $\Omega \times \Omega$. (Ω, R) is a coherent configuration if the following axioms are satisfied:
(a) The set $\{(\alpha, \alpha) \mid \alpha \in \Omega\}$ is a union of some elements of R. This set is called the diagonal.
(b) For each class $C \in R$, the transpose C^{*} which is defined as $\{(\beta, \alpha) \mid(\alpha, \beta) \in \mathrm{C}\}$ is a class in R.
(c) For all $C_{i} C_{j}$ and C_{k} in R and for any $(\alpha, \beta) \in$ C_{k}, there is a non-negative number $p^{k}{ }_{i j}$ such that the number of γ satisfying

$$
\begin{equation*}
(\alpha, \gamma) \in C_{i} \wedge(\gamma, \beta) \in C_{j} \tag{1}
\end{equation*}
$$

is equal to $p^{k}{ }_{i j}$. This number is independent of the choice of $(\alpha, \beta) \in C_{k}$.

If G is a permutation group on Ω and R is the set of orbitals then, (Ω, R) is called the coherent configuration associated with G. The group G is said
*Corresponding author
to be generously transitive on Ω if given any (α, β) $\in \Omega \times \Omega$, there is an element $g \in G$ such that

$$
\begin{equation*}
(\alpha, \beta)^{g}=(\beta, \alpha) \tag{2}
\end{equation*}
$$

Replace item (b) by

$$
\text { (b') For each class } C, C^{*}=C \text {. }
$$

With (b'), the coherent configuration is called association scheme. If item (a) is replaced by
(a) The diagonal is one class in R,
then, (Ω, R) with R as a set of orbitals is called an association scheme associated with the transitive permutation group G. A group G with association scheme (Ω, R) which is generously transitive is necessarily transitive on the elements of Ω.

Some relations between association schemes are defined here.

Definition 2. Consider the following association schemes.

$$
\begin{equation*}
A 1=\left(\Omega, R_{1}\right) \wedge A_{2}=\left(\Omega, R_{2}\right) \tag{3}
\end{equation*}
$$

The association scheme A_{1} is finer than A_{2} if for all $C_{k} \in R_{1}$, there exists $C_{l} \in R_{2}$ such that $C_{k} \subset C_{l}$. Also, A_{2} is said to be coarser than A_{1}. The association scheme A_{1} is fission scheme while A_{2} is called a fusion scheme.

THE DIAGONAL GROUP

Diagonal groups were defined by Cameron (Cameron, 1999) and the following are their definition in terms of generators (Alejandro, et al., 2003). A diagonal group $D(T, n)$ where T is a group and n a positive integer is a permutation group acting on a non-empty set Ω given by

$$
\begin{equation*}
\Omega=\left\{\left[x_{1}, x_{2}, \ldots, x_{n}\right] \mid x_{i} \in T\right\} \tag{4}
\end{equation*}
$$

The following are the generators of $D(T, n)$:
(a) the group T^{n} acting by right translation, that is the permutations

$$
\begin{equation*}
\left[x_{1}, x_{2}, \ldots, x_{n}\right] \mapsto\left[x_{1} t_{1}, \quad x_{2} t_{2}, \ldots, x_{n} t_{n}\right] \tag{5}
\end{equation*}
$$

for $t_{1}, t_{2}, \ldots, t_{n} \in T$;
(b) the automorphism group of T, acting coordinatewise, that is,

$$
\begin{equation*}
\left[x_{1}, x_{2}, \ldots, x_{n}\right] \mapsto\left[x_{1}^{\alpha}, x_{2}^{\alpha}, \ldots, x_{n}^{\alpha}\right] \tag{6}
\end{equation*}
$$

for $\alpha \in \operatorname{Aut}(T)$;
(c) the symmetric group S_{n}, acting by permuting the coordinates, that is,

$$
\begin{equation*}
\left[x_{1}, x_{2}, \ldots, x_{n}\right] \mapsto\left[x_{1} \pi, x_{2} \pi, \ldots, x_{n} \pi\right] \tag{7}
\end{equation*}
$$

where $\pi \in S_{n}$;
(d) the permutation τ acting as follows:

$$
\begin{equation*}
\left[x_{1}, x_{2}, \ldots, x_{n}\right] \mapsto\left[x_{1}^{-1}, x_{1}^{-1} x_{2}, \ldots, x_{1}^{-1} x_{n}\right] \tag{8}
\end{equation*}
$$

Another way of looking at diagonal groups is by their action on the right cosets of a point-stabilizer. Define a group G as follows:

$$
\begin{equation*}
G=T^{n+1}\left(O u t(T) \times S_{n+1}\right) \tag{9}
\end{equation*}
$$

Consider the subgroup

$$
\begin{equation*}
H=A u t(T) \times S_{n+1} \tag{10}
\end{equation*}
$$

The inner automorphisms are identified with the diagonal subgroup

$$
\begin{equation*}
\{(t, t, \ldots, t) \mid t \in T\} \tag{11}
\end{equation*}
$$

of T^{n+1}. This is how diagonal groups are described in the O'Nan-Scott Theorem. Each right coset of H in G has a unique coset representative $\left(1, x_{1}, \ldots, x_{n}\right) \in$ T^{n+1}. This representative is denoted $\left[x_{1}, \ldots, x_{n}\right]$. Now, let us observe the action of G on the coset representatives:

$$
\begin{align*}
{\left[x_{1}, \ldots, x_{n}\right]\left(1, t_{1}, \ldots,\right.} & \left.t_{n}\right)=H\left(1, x_{1}, \ldots, x_{n}\right)\left(1, t_{1}, \ldots, t_{n}\right) \\
& =H\left(1, x_{1} t, 1 \ldots, x_{n} t_{n}\right) \\
& =\left[x_{1} t_{1}, \ldots, x_{n} t_{n}\right] . \tag{12}
\end{align*}
$$

Thus we obtain the permutations in (a). A conjugation by an element $t \in T$ is uniquely a product of an element of T^{n+1} with first coordinate 1 and the diagonal element (t, \ldots, t) as seen below:

$$
\begin{align*}
{\left[\begin{array}{ll}
x_{1}, \ldots, x_{n}
\end{array}\right](t, \ldots, t) } & =H\left(1, x_{1}, \ldots, x_{n}\right)(t, \ldots, t) \\
& =H\left(t, x_{1} t, \ldots, x_{n} t\right. \\
& =H\left(1, t^{-1} x_{1} t, \ldots, t^{-1} x_{n} t\right) \\
& =\left[t^{-1} x_{1} t, \ldots, t^{-1} x_{n} t\right] \tag{13}
\end{align*}
$$

Hence, $\operatorname{Inn}(T)$ is a subset of T^{n+1}. The remaining automorphisms in (b) are exactly the outer automorphisms of T. Observe the following action of $\tau:$

$$
\begin{align*}
{\left[x_{1}, \ldots, x_{n}\right]^{\tau} } & =H\left(1, x_{1}, \ldots, x_{n}\right)^{\tau} \\
& =H\left(x_{1}, 1, x_{2}, \ldots, x_{n}\right) \\
& =H\left(1, x_{1}^{-1}, x_{2}, \ldots, x_{1}^{-1} x_{n}\right) \\
& =\left[x_{1}^{-1}, x_{1}^{-1} x_{2}, \ldots, x_{1}^{-1} x_{n}\right] \tag{14}
\end{align*}
$$

The symmetric group S_{n+1} is generated by the symmetric group S_{n} in (c) and the transposition $\tau=(1,2)$ in (d).

Diagonal groups $D(T, n)$ where $n \geq 8$ and T abelian are generously transitive permutation groups. All orbitals in $\operatorname{Orbl}(\Omega, D(T, n))$ are symmetric and this gives a commutative association scheme. Some association schemes result from fission schemes. For the case of $\operatorname{Orbl}(\Omega, D(T, n))$, a fission scheme is formed by looking
at a proper subgroup K of $D(T, n)$. A special set of generators is used to construct the subgroup K. By taking union of elements of $\operatorname{Orbl}(\Omega, K)$, the association scheme from $\operatorname{Orbl}(\Omega, D(T, n))$, is obtained. The character tables corresponding to the basis algebra of $\operatorname{Orbl}(\Omega, K)$ and $\operatorname{Orbl}(\Omega, D(T, n))$ will be investigated by making each entry a function of T and n.

THE ORBITALS

Let T be a permutation group acting on itself by right translation. Let $A u t T$ be the automorphism group of T acting on the elements of T naturally. The semi-direct product $T^{2} \times$ Out T acts on T the following way:

$$
\begin{equation*}
x^{\left(\left(t_{1}, t_{2}\right), \gamma\right)}=\left(t_{1}^{-1} x t_{2}\right)^{\gamma} \tag{15}
\end{equation*}
$$

for all $x \in T$ and for all $\left(t_{1} t_{2}\right)^{\gamma} \in T^{2} \times \operatorname{Aut} T$.
The orbitals of T^{2} acting on T is the set of orbits resulting from the induced action of T^{2} on $T \times T$. The orbitals of Out T in T is defined similarly. The two actions are shown below:

$$
\begin{gather*}
\left(x_{1}, x_{2}\right)^{\left(t_{1}, t_{2}\right)}=\left(t_{1}^{-1} x_{1} t_{2}, t_{1}^{-1} x_{2} \cdot t_{2}\right) \\
\left(x_{1}, x_{2}\right)^{\gamma}=\left(x_{1}^{\gamma}, x_{2}^{\gamma}\right) \tag{16}
\end{gather*}
$$

The discussion below shows that the orbitals of $T^{2} \times$ OutT can be computed using the above orbitals.

The following is a detailed discussion of an important part of the proposition. Let $\left(\alpha_{1}, \beta_{1}\right)$ be any element of $(\Omega \times \Omega)$. Suppose that for some $\gamma \in \operatorname{AutT},\left(\alpha_{1}, \beta_{1}\right)^{\gamma}=$ $(\bar{\alpha}, \beta)$. Also, for some $\left(t_{1}, t_{2}\right) \in T \times T(\bar{\alpha}, \bar{\beta})^{\left(t_{2}, \psi^{(\gamma)}\right)}=\left(\alpha_{2}, \beta_{2}\right)$. Then, $\left(\alpha_{2}, \beta_{2}\right)$ is in a T^{2}-orbital containing an image of $\left(\alpha_{1}, \beta_{1}\right)$ under an automorphism γ.

Proposition 1. Let T be a group and OutT its outer automorphism group. Then, an orbital O of $T^{2} \times$ Out T containing the element $\left(\alpha_{1}, \beta_{1}\right)$ in $\Omega \times \Omega$ in the action previously defined is the union of all T^{2} orbitals and all AutT-orbitals containing images of $\left(\alpha_{1}, \beta_{1}\right)$.

Proof. Let O be an orbital of $T^{2} \times A u t T$ containing (α_{1}, β_{1}). Suppose that $\left(\alpha_{2}, \beta_{2}\right)$ is an element of O satisfying the following:
(a) For $\mathrm{l} \in A u t T$

$$
\begin{align*}
\left(\alpha_{1}, \beta_{1}\right)^{\left.\left(t_{1}, t_{2}\right), 1\right)} & =\left(t_{1}^{-1} \alpha_{1} t_{2,} t_{1}^{-1} \beta_{1} t_{2}\right) \\
& =\left(\alpha_{2}, \beta_{2}\right) \tag{17}
\end{align*}
$$

(b) For $t \in T$

$$
\begin{align*}
\left(\alpha_{1}, \beta_{1}\right)^{((1,1), \gamma)} & =\left(\alpha_{1}^{\gamma}, \beta_{1}{ }^{\gamma}\right) \\
& =\left(\alpha_{2}, \beta_{2}\right) \tag{18}
\end{align*}
$$

(c) For some non-identity elements, $t_{1}, t_{2} \in T$ and also non-identity auto-morphism $\gamma \in$ Aut T

$$
\begin{align*}
\left(\alpha_{1}, \beta_{1}\right)^{\left(\left(t_{1}, t\right), \gamma\right)} & =\left(\left(t_{1}^{-1} \alpha_{1} t_{2}\right)^{\gamma},\left(t_{1}^{-1} \beta_{1} t_{2}\right)^{\gamma}\right) \\
& =\left(\alpha_{2}, \beta_{2}\right)^{2} \tag{19}
\end{align*}
$$

In case (a) $\left(\alpha_{2}, \beta_{2}\right)$ is trivially in the T^{2}-orbital containing $\left(\alpha_{1}, \beta_{1}\right)$. In case (b) $\left(\alpha_{2}, \beta_{2}\right)$ is again trivially in the AutT-orbital containing (α_{1}, β_{1}). For case (c), let $\bar{\alpha}:=\alpha_{1}{ }^{\gamma}$, $\bar{\beta}:=\beta_{1}{ }^{\gamma}, \overline{t_{1}}=t_{1}{ }^{\gamma}$ and $\overline{t_{2}}:=t_{2}{ }^{\gamma}$. Then

$$
\begin{equation*}
\left(\alpha_{2}, \beta_{2}\right)=\left(\bar{t}_{1}^{-1} \bar{\alpha} \bar{t}_{2}, \bar{t}_{1}^{-1} \bar{\beta} t\right) \tag{20}
\end{equation*}
$$

This proves that $\left(\alpha_{2}, \beta_{2}\right)$ is in the T^{2}-orbital containing $(\bar{\alpha}, \bar{\beta})$ which in turn is the image of $\left(\alpha_{1}, \beta_{1}\right)$ under γ.

The three cases cover all possible images of $\left(\alpha_{1}, \beta_{1}\right)$ under the induced action of the semi-direct product T^{2} \times AutT .

Therefore,

$$
\begin{equation*}
\left(\cup O_{T}\right) \cup(\cup O A u t T) \subset O \tag{21}
\end{equation*}
$$

where the union is taken over all orbitals containing images of $\left(\alpha_{1}, \beta_{1}\right)$.

As a remark, to get the orbital O containing (α_{1}, β_{1}) under the semi-direct product $T^{2} \times A u t T$, all $A u t T$-orbitals containing all elements of the T^{2}-orbital must be listed. Additionally, all T^{2}-orbitals containing all elements of the AutT-orbital containing (α_{1}, β_{1}) must also be listed. This result was used in a GAP program (The GAP Group, GAP- Groups, Algorithms and Programming, Version 4, http://www.gap-system.org) implemented to compute fission and fusion schemes.

THE SET OF ORBITALS AS THE FINEST ASSOCIATION SCHEME

The fusion schemes will be constructed based on the fact that the finest association scheme preserved by
$T^{n+1} \times O u t T$ is its set of orbitals resulting from its action on T.

Recall that an automorphism of an association scheme is a permutation of the set of points Ω which preserves associate class C_{i} for each $i=0,1, \ldots, m$ where m is the number of associate classes.

The set of all orbitals O forms association scheme as discussed here. Consider the orbitals O_{i}, O_{j} and O_{k} which are not necessarily distinct. Let $(\alpha, \beta) \in O_{k}$. It can be shown that the intersection number $p^{k}{ }_{i j}$ is independent of the choice of (α, β). Denote by G the group $T^{n+1} \times O u t T$. Suppose that $p^{k}{ }_{i j}$ is the non-negative number which gives the cardinality of the set

$$
\begin{equation*}
\left\{\gamma \mid(\alpha, \gamma) \in O_{i} \wedge(\gamma, \beta) \in O_{j}\right\} \tag{22}
\end{equation*}
$$

Let $(\delta, \lambda) \in O_{k}$. It can be shown that (δ, λ) has the same intersection number. Let $g \in G$ such that $(\delta, \lambda)=$ $(\alpha, \beta)^{g}$. Then $\left\{\gamma^{g} \mid\left(\alpha^{g}, \gamma^{g}\right) \in O_{i} \wedge\left(\gamma^{g}, \beta\right) \in O_{j}\right\}=$ $\left\{\gamma^{g} \mid\left(\delta, \gamma^{g}\right) \in O_{i} \wedge\left(\gamma^{g}, \lambda\right) \in O_{j}\right\}$. Since g is a permutation of T, the cardinality of this set is constant given by $p_{i j}^{k}$. This means that the intersection number is independent of the choice of (α, β).

The set of orbitals O is the finest association scheme preserved by the the permutation group G. The following is an explanation. Suppose that there is a finer association scheme preserved by G. Let \tilde{O}_{i} be an associate class of a finer one which is properly contained in orbital O_{i}. For some $g \in G, \tilde{O}_{i}^{g} \neq \tilde{O}_{i}$ because the group G is transitive on the elements of its orbitals. Therefore, \tilde{O}_{i} is not preserved by G. This contradicts our assumption that the finer association scheme is preserved by the group G.

The associate classes of fusion schemes are union of orbitals of $T^{n+1} \times O u t T$ acting on the elements of T. The group $T^{n+1} \times O u t T$ preserves these associate classes because it preserves its orbitals. Hence, it is a subgroup of the full automorphism group of the fusion scheme.

INTERSECTION NUMBERS AND INCIDENCE MATRICES

The last axiom of the definition of association scheme deals with intersection numbers. This section discusses intersection numbers and its relation to the product of incidence matrices.

The incidence matrix A_{i} corresponding to the associate class C_{i} will be constructed by using the elements of Ω as the row and column indices. The matrix A_{i} is defined as follows:

$$
A_{i}(\alpha, \beta)=\left\{\begin{array}{l}
1 \text { if }(\alpha, \beta) \in C_{i} \tag{23}\\
0 \text { otherwise }
\end{array}\right.
$$

If A_{i}, A_{j} and A_{k} are respectively the incidence matrices of associate classes C_{i}, C_{j} and C_{k}, then the product $A_{i} \cdot A j$ can be written as

$$
\begin{align*}
A_{i} \cdot A_{j} & =p^{0} \cdot A_{0}+p^{1}{ }_{i j} \cdot A_{1}+\cdots+p^{m}{ }_{\mathrm{ij}} \cdot \mathrm{~A}_{\mathrm{m}} \\
& =\sum_{k=1}^{k=m} p_{\mathrm{ij}}^{k} A_{k} \tag{24}
\end{align*}
$$

where m is the number of associate classes. The (α, β)-entry of the product $A_{i} \cdot A_{j}$ is non-zero if and only if there is at least one γ such that (α, γ)-entry of A_{i} and (γ, β)-entry of A_{j} are both 1 . This is equivalent in saying that there is at least one γ such that $(\alpha, \gamma) \in C_{i}$ and $(\gamma, \beta) \in C_{j}$. The intersection number $p^{k}{ }_{i j}$ gives the number of such γ if and only if $(\alpha, \beta) \in C_{k}$. Hence, the intersection number $p^{k}{ }_{i j}$ is the coefficient of A_{k} in the linear expansion of $A_{i} \cdot A_{j}$.

FUSION SCHEMES FROM GROUPS ISOMORPHIC TO Z_{P}

Proposition 2. The semi-direct product $T^{2} \times$ AutT is sharply 2-transitive on Ω where $T \cong Z_{p}$ for some prime number p.

Proof. Let ρ be a generator of the group Z_{p}. Consider the following arbitrary pairs of distinct elements of $Z_{p} \times Z_{p}$.

$$
\begin{equation*}
\left(\rho^{a}, \rho^{b}\right) \wedge\left(\rho^{c}, \rho^{d}\right) \tag{25}
\end{equation*}
$$

where $a, b, c, d \in\{0,1, \ldots, p-1\}$. Since we would like to prove sharp 2-transitivity, we shall consider ordered pairs whose first component is distinct from the second component. Hence, the following conditions are satisfied.

$$
\begin{equation*}
a \not \equiv b \bmod p \text { and } \mathrm{c} \not \equiv \mathrm{~d} \bmod \mathrm{p} \tag{26}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
a-b \not \equiv 0 \bmod p \text { and } \mathrm{c}-\mathrm{d} \not \equiv 0 \bmod \mathrm{p} \tag{27}
\end{equation*}
$$

We shall find an element $\left(\left(t_{1}, t_{2}\right), \gamma\right) \in T^{2} \times A u t T$ such that

$$
\begin{equation*}
\left(\rho^{a}, \rho^{b}\right)^{\left(\left(t_{1}, t_{2}\right), \gamma\right)}=\left(\rho^{c}, \rho^{d}\right) \tag{28}
\end{equation*}
$$

There is an element $\left(\rho^{\mathrm{v} 1}, \rho^{\mathrm{v} 2}\right) \in T \times T$ such that

$$
\begin{align*}
\left(\rho^{a}, \rho^{b}\right)^{\left(\left(\rho_{1}, \mathrm{p}_{2}\right), \mathrm{l}\right)} & =\left(\rho^{-\mathrm{vl} 1+a+\mathrm{v} 2}, \rho^{0}\right) \\
& =\left(\rho^{w}, \rho^{0}\right) \tag{29}
\end{align*}
$$

From above, we deduce the following equation:

$$
\begin{equation*}
b \equiv\left(\mathrm{v}_{1}-\mathrm{v}_{2}\right) \bmod p \tag{30}
\end{equation*}
$$

The element w of Z_{p} satisfy the following:

$$
\begin{equation*}
w \equiv(a-b) \bmod p \tag{31}
\end{equation*}
$$

There is an ordered pair $\left(d_{1}, d_{2}\right)$ where $d_{1}, d_{2} \in\{0,1, \cdots, p-1\}$ such that

$$
\begin{equation*}
d \equiv\left(-d_{1}+d_{2}\right) \bmod p \tag{32}
\end{equation*}
$$

Now, let $x \in\{0,1, \cdots, p-1\}$ such that

$$
\begin{equation*}
x \equiv(c-d) \bmod p \tag{33}
\end{equation*}
$$

Then, using the assumptions above, we have

$$
\begin{equation*}
w \not \equiv 0 \bmod p \text { and } \mathrm{x} \not \equiv 0 \bmod \mathrm{p} \tag{34}
\end{equation*}
$$

It is known that the full automorphism group $A u t T$ of T is transitive on its non-identity elements. Hence, there exists $\gamma \in A u t T$ such that $\left(\rho^{w}\right)^{\gamma}=\rho^{x}$. Thus,

$$
\begin{equation*}
\left(\rho^{a}, \rho^{b}\right)^{\left.\left(\varphi_{\rho} v_{1}, \rho v_{2}\right), 1\right)},\left(\left(_{\rho} 0, \rho^{0}\right), \gamma\right)=\left(\rho^{x}, \rho^{0}\right) \tag{35}
\end{equation*}
$$

Applying $\left(\left(\rho^{d_{1}}, \rho^{d_{2}}\right), \mathrm{l}\right)$, we get

$$
\begin{align*}
\left(\rho^{x}, \rho^{0}\right)^{\left(\left(\rho d_{1}, \rho d_{2}\right), 1\right)} & =\left(\rho^{x-d_{1}+d_{2}}, \rho^{-d_{1}+d_{2}}\right) \\
& =\left(\rho^{c}, \rho^{d}\right) \tag{36}
\end{align*}
$$

Therefore, the element $\left(\left(t_{1}, t_{2}\right), \gamma\right)$ will be the product of the three elements of $T^{2} \times A u t T$ given below:

$$
\begin{equation*}
\left(\left(\rho^{(\mathrm{v} 1}, \rho^{\mathrm{v} 2)},{ }^{\imath}\right)\left(\left(\rho^{0}, \rho^{0}\right), \widetilde{\gamma}\right)\left(\left(\rho^{-d_{1}+d_{2}}, \rho^{-d_{1}+d_{2}}\right), \mathrm{l}\right)\right. \tag{37}
\end{equation*}
$$

Hence, the semi-direct product $T^{2} \times A u t T$ is sharply 2transitive on T .

Corollary 1. If $T \cong Z_{p}$ where p is a prime number, then the semi-direct product $T^{2} \times$ Aut T is generously transitive in its action on T.

Proof. Take the two ordered pairs of distinct elements in the proposition above to be $\left(\rho^{a}, \rho^{b}\right)$ and $\left(\rho^{b}, \rho^{a}\right)$. \square

These results explain why there is only one fusion scheme for the case when the group T is isomorphic to the cyclic group Z_{p} of prime order. Such fusion schemes are the set of orbitals $\left\{C_{0}, C_{1}\right\}$ where C_{0} is the diagonal orbital and C_{1} is its complement in $\Omega \times \Omega$.

It can also be observed that for all the T considered, the orbitals are all symmetric. This implies that the semidirect product $T^{2} \times A u t T$ for these groups T are generously transitive in its action on the elements of T. The following is a discussion of commutativity of incidence matrices of these orbitals. Let A_{i} and A_{j} be arbitrary incidence matrices. Recall the following equation

$$
\begin{gather*}
A_{i} \cdot A_{j}=p^{0}{ }_{i j} \cdot A_{0}+p^{1}{ }_{i j} \cdot A_{1}+\cdots+p^{m}{ }_{\mathrm{ij}} \cdot \mathrm{~A}_{m} \\
=\sum_{k=1}^{k=m} p^{k}{ }_{\mathrm{ij}} \mathrm{~A}_{k} \tag{38}
\end{gather*}
$$

where m is the number of associate classes. The (α, β) entry of the product $A_{i} \cdot A_{j}$ depends on the associate class where (α, β) belongs. It is $p^{k}{ }_{\mathrm{ij}}$ if $(\alpha, \beta) \in C_{k}$. Since C_{k} is symmetric and $p^{k}{ }_{i j}$ is independent of the choice of (α, β) by axiom (c) of the definition, the (β, α)-entry of the product is also $p^{k}{ }_{i j}$. This means that the product of incidence matrices A_{i} and A_{j} for $i, j \in\{0,1$, $\cdots, m\}$ is symmetric. This implies that the algebra of
matrices over the set of reals \Re generated by A_{0}, A_{1}, \cdots, A_{m} is a commutative algebra.

THE DIAGONAL GROUP AND THE FUSION SCHEMES

The diagonal group $D(T, n)$ contains $T^{n+1} \times O u t T$ as a proper subgroup for $n \geq 1$. If an association scheme is preserved by $D(T, n)$, then it is also preserved by every subgroup of $D(T, n)$. As a consequence, the fusion schemes preserved by $T^{n+1} \times O u t T$ are candidate association schemes preserved by $D(T, n)$. A complete list of all possible association schemes preserved by $D(T, n)$ can be derived from the fusion schemes preserved by $T^{n+1} \times$ Out T. This claim is shown in the following result:

Corollary 2. All association schemes preserved by $D(T, n)$ have associate classes which are union of orbitals of $T^{n+1} \times$ Out T

Proof. Let C be an associate class in an association scheme preserved by $D(T, n)$. Suppose that C is not a union of orbitals of $T^{n+1} \times O u t T$. Then there exists an orbital Oi of $T^{n+1} \times O u t T$ and $O_{i c} \subset O_{i}$ such that $O_{i c}=C \cap O_{i}$. Consider $x \in O_{i c}$ and $y \in O_{i}-O_{i c}$. There exists $g \in T^{n+1} \times$ Out T such that $x^{g}=y$ and hence $C^{g} \neq C$. This is a contradiction because C is an associate class for $D(T, n)$.

Association schemes preserved by $D(T, n)$ are coarser as compared with the association schemes preserved by $T^{n+1} \times$ Out T.

For the case when $n=1$ and $T \cong Z p$ for some prime number p, only the trivial association scheme is preserved by $D(T, n)$. The generous transitivity of $T^{2} \times$ Out T on Ω implies that of the diagonal group.

DISCUSSION

The automorphism groups of finitely generated groups can further be studied to characterize the resulting orbitals in the action of $T^{2} \times$ OutT. A diagonal group $D(T, n)$ is isomorphic to $\left(T^{n+1} \times\right.$ Out $\left.T\right)$ o S_{n+1}. The generators are as enumerated in the introductory section of diagonal groups. The GAP algorithm may further be implemented for those cases when $n \geq 2$.

ACKNOWLEDGEMENTS

This research was funded by the Natural Science Research Institute, University of the Philippines, Diliman.

REFERENCES

Alejandro, P.P., Bailey, R.A. and Cameron, P.J., 2003. Permutation Groups and Association Schemes. Discrete Mathematics 266, 47-67.

Cameron, P.J. 1999. Permutation Groups. Cambridge University Press.

Dixon, J.D. and Mortimer, B. 1996. Permutation Groups. Springer-Verlag, New York.

