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ABSTRACT
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We investigate the reason why increasing the number of basis spectra in a spectral imaging device does
not always improve the estimation merit. A particular filter is not the cause of this observation but the
components of the inverse of the transformation matrix which map the coefficient of the basis spectra to
the color of the sample. We found out that the large magnitude of the components of the inverse of the
transformation matrix results in error in the calculation of the coefficients. This error leads to a drop in
the spectral estimation merit even when the number of basis spectra is increased. Therefore, it is not
enough that the filter used in an imaging spectrometer is not a linear multiple of other filters and nonzero
to any of the wavelengths in the range of interest. Filters must also be arranged in a sequence such that
the inverse of the transformation matrix will have components with small magnitude.

INTRODUCTION

Microscopic spectral imaging techniques have been
developed, but they require special optics to be attached
to the microscope (Schrock et al., 1996; Youvan et al.,
1997). Recently, simpler and more compact imaging
spectrometers have been introduced (Saloma et al., 2004;
Connah et al., 2001; Kasari et al., 1999; Andres et al.,
2004) which use lesser number of images by employing
dimension-reduction algorithms. Dimension-reduction
algorithms such as singular-value decomposition (SVD)
(Soriano et al., 2002) and principal component analysis
(PCA) (Imai et al., 2000) calculate basis spectra so that
the spectrum of a sample may be represented by a
weighted superposition of the basis spectra.

Theoretically, as the number of images and basis spectra
are increased, the accuracy of spectral estimation of
the sample should also increase. However, this is not
always the case. For example, Connah et al. (2001)
report anomalous result in using six basis spectra.

Kasari et al. (1999) observed that using four bases is
better than using five or six, while Andres et al. (2004)
found that the estimation error does not consistently
fall with increasing number of bases. All of them were
unable to explain why this deviation from the theoretical
prediction happens.

Using our developed spectral imaging method, we have
found an explanation why increasing the number of
images does not always increase the amount of
information in the spectrum of the sample. The result of
this investigation is not applicable only to our developed
method, but also to other spectral imaging techniques
such as that of Connah, Kasari, Andres, and others which
utilize filter and dimension-reduction algorithms.

METHODS

SVD rotates the component axes wherein the data are
most widely spread. If we assume an existence of a
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spectral library (ensemble of spectra of different
samples), the axes represent the basis spectra. The
basis spectra are then arranged into decreasing
eigenvalue; that is, the first basis spectrum has a greater
eigenvalue than the second basis, and so on.

After obtaining the basis spectra ei(l), the estimated
spectrum Cest(l; x, y) of the reference spectrum C(l; x,
y) can be expressed in terms of the first few significant
ei(l):

, (1)

where an is the coefficient of the nth e(l). The
summation is taken from n = 1 to n = N, where N is the
number of ei(l) that is utilized for estimation. The basis
spectra are already known after the application of a
dimension-reduction algorithm. Thus, N can be easily
adjusted.

Relating the estimated spectrum to the output of the
camera, we obtain

      , (2)

where Q is an M-column vector containing the channel
output of a color camera (pixel color) and T is M×N
transformation matrix that maps the expansion
coefficients in a to the image space colors Q (Soriano
et al., 2002). The elements {Tnm} of T is described by

      , (3)

where en(l) is the nth basis spectra and Sm(l) is the mth
camera sensitivity given by

    , (4)

where η may be 1 (red channel), 2 (green channel), or
3 (blue channel). F(l) is the transmission of the lightly
colored filter used.

Since ei(l) are immediately known after applying SVD
and the sensitivity of the camera and the transmission
of the filter used are either obtained from the
manufacturer or measured independently, Tnm is just a
constant for a set of basis spectra, camera sensitivity,
and filter transmittance.

In spectral imaging, the image output channels {Qm(x,
y)} and the spectral library {Ck(l)}are known and the
immediate task is to determine the component values
of a. After a is known, one uses Eq. (1), to solve for
the corresponding spectral estimation Cest(l; x, y) which
describes the optical spectrum at the location (x, y) of
the two-dimensional (2D) image of the fluorescing
sample.

For a colored image, the values for the different Qm(x,
y)’s for every pixel location (x, y) of the two-
dimensional image are taken from the red (R), green
(G), and blue (B) channel outputs (M = 3) of the camera.
The unknown coefficients {an(x, y)} are determined
via

         , (5)

where T–1 is the inverse of T. The inversion matrix T–1

is defined only if T is a square matrix because the size
of T is equal to M×N, i.e., T–1 exists only if N = M.

To increase the number M of color channels, the sample
is image-captured with a lightly colored transmission
filter placed before the camera. With the insertion of a
filter, the fluorescent sample is imaged under three more
independent channels (M = 6), in addition to the original
three (for R, G, and B) provided by the 3CCD camera
in the absence of a filter (null filter). In this study, five
filters are used—null, pale lavender, pale apricot, lime,
and pale yellow green.

The accuracy of estimation was measured using fidelity
f:

 , (6)

where 〈 ·〉  is the average value and C is the theoretical
spectrum.

Fidelity describes the general similarity between
theoretical and estimated spectrum. Perfect estimation
occurs when f = 1.

RESULTS AND DISCUSSIONS

Increasing the number of basis spectra increases the
cumulative eigenvalue. Thus, the information that can
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estimate the spectrum of the sample are also increased.
Figure 1 shows the camera sensitivities of the 3CCD
camera used with a null filter. The transmission of the
lightly colored filters is shown in Fig. 2.

Figures 3 and 4 illustrate the average fidelity of
estimation of each spectrum in the spectral library (with
423 emission spectra of fluorescent dyes and
microspheres) using the same set of filters but of a
different sequence. For example, a null filter is used to
generate the first three sensitivities of the camera and
pale lavender for the next fourth to sixth sensitivities.
As the number of basis spectra increases, fidelity
approaches unity. Standard deviation also decreases
both for the two cases. This means that with the
increased number of bases spectral estimation becomes
more accurate and more precise. However, a
prominent drop in fidelity and a sudden increase in

standard deviation are observed using 11 and 9 basis
spectra for Figs. 3 and 4, respectively. This contradicts
our prediction.

The 11th basis spectrum in Fig. 3 corresponds to the
green channel of the camera with lime filter. If this
filter causes the anomalous observation, we will expect
that the effect must also be present to more set of basis
spectra. However, this is not observed in using 12–15
bases.

It may be hypothesized that the anomalous effect of
the lime filter cancels out as the number of basis spectra
is further increased. Thus, the effect is present only in
the 11th camera channel. If that is the case, if we
rearrange the first three filters and make the last two
filters fixed, we will expect to observe anomalous
estimation merit again in using 11 basis spectra.
However, the effect is seen in using nine basis spectra,
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as shown in Fig. 4. Pale apricot is the filter that
corresponds to the ninth camera channel and the lime
filter has no contribution yet since it is used in generating
the 10th, 11th, and 12th camera channels. Therefore,
the lime filter is not the cause of the deviation from the
expected result.

From Eq. (1), spectral estimation is done using basis
spectra and coefficients. For a given spectral library,
the basis spectra are fixed values. Coefficients are
calculated using the inverse of the transformation
matrix and the pixel color as shown in Eq. (5). For a
given sample, pixel color is fixed for a particular
channel of the camera. Thus, the only freedom we have
is choosing the filter to increase the number of camera
channel. The sensitivity of the camera channel affects
the calculation of the coefficient through the inverse
of the transformation matrix.

Tables 1 and 2 show the components of the inverse of
the transformation matrix of Figs. 3 and 4, respectively,
using nine basis spectra. Comparing the two tables,
Table 2 has components with larger magnitude, with a
difference of one order indicated by the shaded cell,
compared with Table 1. An anomalous result in using
nine bases is observed only using the inverse of the
transformation matrix of Table 2. This observation is
also seen (not shown) in comparing the inverse of
transformation matrices of Figs. 3 and 4 with 11 basis
spectra.

Hence, the unexpected drop in fidelity as the number
of basis spectra is increased is attributed to the large
magnitude of the components of the inverse of the
transformation matrix. This large magnitude leads to

the instability of the equation resulting in a large
calculation error of the coefficients.

In practice, camera output is taken from the average
of the gray value level of several pixels depending on
the signal-to-noise ratio (SNR) of the sample. Any noise
or deviation in color values will propagate when
multiplying with the inverse of the transformation
matrix. Thus, an increase in error is observed.

On the other hand, using a transformation matrix with
components of smaller magnitude gives a smaller error
since standard deviation is less amplified. Thus, it
becomes more robust to fluctuation, noise, and
quantization errors of the digitizer.

For a limited set of filters an anomalous result may be
avoided by choosing the best arrangement that will give
small components of the inverse of the transformation
matrix. Another way is by finding the optimum filter
that will minimize the magnitude of each component
for any number of basis spectra.

This result implies that the conditions that (1) the filter
is not correlated with other filters used and that (2) in
the wavelength range considered the filter transmittance
must be nonzero (Soriano et al., 2002; Imai et al., 2000)
are not enough considerations in choosing the filter for
spectral imaging. We add another constraint; that is,
that (3) the arrangement of the generated camera
sensitivity from the filter should make the components
of the inverse of the transformation matrix stable.



Oblefias, Soriano, and Saloma

88

SUMMARY

Using our developed technique in spectral imaging, we
illustrate why an increase in number of basis spectra is
not always accompanied by an increase in the spectral
estimation merit. It is shown that the cause of this is
the large magnitude of the components of the inverse
of the transformation matrix. We present that the cause
is not a particular filter, but the arrangement of the
filters.
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