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ABSTRACT

Science Diliman (July–December 2004) 16:2, 74–78

The calculation of basis spectra from a spectral library is an important prerequisite of any compact imaging
spectrometer. In this paper, we compare the basis spectra computed by singular-value decomposition
(SVD) and principal component analysis (PCA) in terms of estimation performance with respect to
resolution, presence of noise, intensity variation, and quantization error. Results show that SVD is robust
in intensity variation while PCA is not. However, PCA performs better with signals of low signal-to-noise
ratio. No significant difference is seen between SVD and PCA in terms of resolution and quantization
error.

INTRODUCTION

A common method to measure image spectrum is to
use a monochrome charge-coupled device (CCD)
camera with narrowband interference filters. For
example, to measure the spectrum from 400 to 700
nm at 1 nm resolution requires 301 filters and the same
number of images. Each color or grayscale value of
the image corresponds to the intensity of the band pass
of the filter used.

Singular-value decomposition (SVD) and principal
component analysis (PCA) (Hair et al., 1998) are used
to compress multivariate data such as spectra. Weighted
spectral estimation can be obtained by linear
superposition of the basis spectra computed using these
techniques.

We have designed, implemented, and characterized an
imaging spectrometer microscope for measuring
fluorescent and bioluminescent spectra (Oblefias,
2004). An imaging spectrometer microscope, as its

name suggests, is a microscope that not only delivers
the magnified image of a slide specimen but gives its
spectrum at each image point as well. This paper
presents the estimation performance of our device using
the basis spectra calculated from SVD and PCA. The
two methods are compared by measuring the fidelity
of estimation with respect to spectral resolution, noise
level, intensity variation, and quantization.

METHODS

SVD is a statistical method that looks for the component
space where the data are most efficiently represented.
If the data to be analyzed are spectra, each wavelength
l of the spectrum will be considered as one component
or axis. Thus, a spectral library with spectrum from
400 to 700 nm at resolution Dl equal to 1 nm will have
301 axes. Each spectrum will be considered as data
point. Figure 1 shows an example of data set with two
components (x1 and x2).



SVD vs PCA

75

In SVD the optimum component space is found by
rotating the coordinate axes with respect to the origin.
The first basis is the axis about which the data are
most widely spread, or where the data have the largest
variance. The second basis is the second axis,
perpendicular to the first, which has the next highest
data variance, and so on.

PCA, on the other hand, is a variation of SVD. Its main
difference with SVD is that the origin is translated to
the mean. Then the first basis is the axis about which
the data are most widely spread. Succeeding bases are
calculated in the same way as that of the SVD.

When the set of basis spectra ei(l) are obtained, the
estimated spectrum Cest(l; x, y) of the reference
spectrum C(l; x, y) can be expressed as a weighted linear
superposition of the first few significant ei(l):

, (1a)

       , (1b)

where 〈C(l)〉 is the mean of the spectral library {Ck(l)}
and an is the coefficient of the nth e(l). The summation
is taken from n = 1 to n = N, where N is the number of
ei(l) that is utilized for estimation. “a” in the equation
number refers to SVD, while “b” refers to PCA.

Relating the estimated spectrum to the output of the
camera, we obtain

      , (2a)

            , (2b)

where Q and Qmean are M-column vectors containing
the channel output of a color camera and average color
of the spectral library, respectively. T is an M×N
transformation matrix that maps the expansion
coefficients in a to the image space colors Q (Soriano
et al., 2002; Saloma et al., 2004).

In spectral imaging, the image output channels {Qm(x,
y)}, the spectral library {Ck(l)}, and the basis spectra
ei(l)’s are known and the immediate task is to determine
the component values of a. After a is known, one
proceeds via Eq. (1) to solve for the corresponding
spectral estimation Cest(l; x, y) which describes the
optical spectrum at location (x, y) of the image of the
spatially extended fluorescent sample.

For a colored image, the values for the different Qm(x,
y)’s for every pixel location (x, y) of the two-
dimensional image are taken from the R, G, and B
channel outputs (M = 3) of the camera. The unknown
coefficients {an(x, y)} are determined via

         , (3a)

  , (3b)

where T–1 is the inverse of T. The inversion matrix  T–1

is defined only if T is a square matrix because the size
of T is equal to M×N, i.e., T–1 exists only if N = M.

To increase the number M of color channels, the sample
is image-captured with a lightly colored transmission
filter placed before the camera. With the insertion of a
filter, the fluorescent sample is imaged under three more
independent channels (M = 6), in addition to the original
three (for R, G, B) provided by the three CCD camera
in the absence of a filter (Imai et al., 2000).

Accuracy of estimation was measured using fidelity f
given by

(4)

Q Ta=

Fig. 1. Diagram of SVD for two-dimensional data.
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where  〈·〉 is the average value and C is the theoretical
spectrum.

Fidelity describes the general similarity between
theoretical and estimated spectra. Perfect estimation
occurs when f = 1.

RESULTS AND DISCUSSIONS

Bases spectra were computed using PCA and SVD
from 423 spectra of fluorescence emissions.

A Gaussian emission spectrum

 , (5)

where lo is the peak wavelength and s is the variance
related to the width of the spectrum, was used to
determine the narrowest spectrum that can be estimated.
It was found that 15 basis spectra can be used to
estimate a spectrum whose s  is 14 nm and fidelity is
approximately equal to unity. This is equivalent to a
full width at half maximum (FWHM) of 33 nm.
Variance of less than 14 nm, a narrower spectrum, does
not give estimation merit of unity even when the
number of basis spectra are equal to 15.

Using s = 14 nm, two Gaussian curves were
superimposed with different lo. The minimum peak
separation that can be resolved both by SVD and PCA
is 28 nm. Two peaks are said to be resolved if the ratio
of the intensity at the midpoint to that at the maxima is
0.811 in accordance with the Rayleigh criterion.

The smaller peak separation of the two Gaussian curves
is estimated as a unimodal spectrum. More than 15
basis spectra, equivalent to more than five colored
images, are needed to estimate an emission spectrum
that has a FWHM of less than 33 nm. The same number
of basis spectra can also resolve two peaks that are
separated by less than 28 nm.

In this study, however, the above result is already
sufficient to estimate the emission of bioluminescent
and naturally fluorescing samples since they are not
usually narrow. Two emission peaks also rarely occur
(Herring, 1993).

Figure 2 shows the minimum FWHM and peak
separation of a bimodal spectrum that can be resolved
as the number of basis spectra increases using SVD
and PCA. Bimodal spectrum cannot be resolved with
less than five bases no matter how large the FWHM is.
Using the best fit curve, a FWHM of 1 nm and a peak
separation of 2 nm can be resolved by using 301 basis
spectra. However, this is not practical for our purpose
because fluorescing bioluminescent samples do not
have narrow spectra.

Experimentally, the increase or decrease in the intensity
of emission of the sample cannot be fully controlled.
The greater the intensity of the excitation light, the
greater the intensity of the emission. The sample may
also undergo photobleaching after long exposure to the
excitation source that decreases the emission intensity.
Ideally, the estimated emission spectrum should not
change if the intensity of the excitation is varied since
emission spectrum is independent of the intensity of
the excitation source.

Figure 3 shows the effect in average fidelity computed
from 423 spectra in changing the intensity of the sample
emission. SVD is robust against changes in intensity.
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Fig. 2. Resolution with increasing number of basis spectra.
(a) minimum FWHM that can be estimated and (b) minimum
peak separation that can be resolved.
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Estimation merit is not affected by either an increase
or a decrease of intensity.

PCA, however, is intensity dependent. Increase in
intensity has little effect as the number of basis spectra
is increased. At the seventh basis spectra, estimation is
the same as if there is no change in intensity. To remove
the dependency of PCA with intensity, at least 12 basis
spectra must be used. This is equivalent to using at
least four images.

Noise becomes more apparent with signals of low
intensity. Increase in noise results in low SNR. Figure
4 shows the effect of additive white Gaussian noise at
estimation merit. The SNR was varied and calculated
as

   , (6)

where Co is the energy of the theoretical signal and CD

is the difference between the energy of the theoretical
signal and the energy of the actual signal. The unit of
the SNR is decibel (dB).

At low SNR, estimation merit is greatly affected.
Increasing the number of basis spectra when SNR is
equal to 20 dB does not improve the estimation. As
SNR increases, the difference between the estimation
merit with noise and that without noise decreases. At
high SNR, even if noise is present, its effect is negligible
when the number of basis spectra is increased. When
SNR is gradually increased, noise is negligible in SVD
when SNR is 42 dB, while in PCA, noise is negligible
when SNR is 40 dB. Thus, at low SNR PCA performs
better than SVD.

Quantization error is the result of the finite number of
bits in the digitizer that converts the voltage output of
the camera into grayvalue levels. Figure 5 shows the
fidelity using 8 bits for each camera channel.
Improvement in spectral estimation can be seen from
one to seven basis spectra. Spectral estimation
degrades after the seventh basis spectra. This means
that for such number of bits, using up to three images
only is advisable.

Fig. 3. Fidelity with intensity. Light and dark lines are the
result with intensity reduced to one fourth and intensity
increased by four, respectively. (a) SVD and (b) PCA.
Continuous light line in b is for no variation in intensity.
Standard deviation is not shown.
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Fig. 4. Fidelity with the addition of white Gaussian noise. (a)
SNR = 20 dB, and (b) SNR = 40 dB. Dark and light lines are
the result using SVD and PCA, respectively. Continuous dark
line is for SVD without noise and continuous light line is for
PCA. Standard deviation is not shown.

(a)

(b)



Oblefias, Soriano, and Saloma

78

Number of basis
spectra

Fi
de

lit
y

1

0

-1

-2

-3

3 6 9 15

Fig. 5. Fidelity with 8 bits digitizer. The dark line is for SVD
without noise and the light line is for PCA. Standard deviation
is not shown.

It was observed, however, that using more than three
images can be used to get better estimation for samples
having a FWHM of greater than 56 nm. Fidelity of
narrower spectra follows the curve of Fig. 5.

As the number of bits increases, the graph of fidelity
with the number of basis spectra approaches the value
of Fig. 3. Significant improvement is observed up to
16 bits. Using more than 16 bits does not give further
improvement. Comparison of performance of SVD and
PCA when quantization is present shows no significant
difference.

SUMMARY

Singular-value decomposition (SVD) and principal
component analysis (PCA) were used to calculate the
basis spectra.

Using five colored images (15 basis spectra), both SVD
and PCA can accurately estimate a unimodal spectrum
whose minimum FWHM is 33 nm and a bimodal
spectrum with peak separation of 28 nm.

When intensity variation is considered, SVD has a
greater advantage than PCA. Thus, in an actual
experiment provided that the sample has enough SNR,
SVD is recommended since the intensity of emission
cannot be controlled due to photobleaching and
intensity variation of the excitation source.

The threshold SNR to have good estimation merit is 42
dB for SVD, while it is 40 dB for PCA. A SNR that is
lower than the threshold fails to estimate the spectrum
correctly even when the number of basis spectra is
increased. Thus, PCA should be used for low SNR as
long as photobleaching and intensity variation of the
sample can be ignored.

The digitizer should have at least 8 bits for samples
with FWHM greater than 56 nm. Increasing the number
of bits shows improvement in spectral estimation.
However, using more than 16 bits does not give further
information.
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