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Abstract 

INTRODUCTION: Due to the high level of unpredictability and the complexity of the information requirements, disaster 

management operations are information demanding. Emergency response planners should organize response operations 

efficiently and assign rescue teams to particular catastrophe areas with a high possibility of surviving. Making decisions 

becomes more difficult when the information provided is heterogeneous, out of date, and often fragmented. 

OBJECTIVES In this research work a data fusion of different information sources and a data visualization process was 

applied to provide a big picture about the disruptive events in a city. This high-level knowledge is important for emergency 

management authorities This holistic process for managing, processing, and analysing the seven Vs (Volume, Velocity, 

Variety, Variability, Veracity, Visualization, and Value) in order to generate actionable insights for disaster management. 

METHODS: A CRISP-DM methodology over smart city-data was applied. The fusion approach was introduced to merge 

different data sources. 

RESULTS: A set of visual tools in dashboards were produced to support the city municipality management process. 

Visualization of big picture based on different data available is the proposed work. 

CONCLUSION: Through this research, it was verified that there are temporal and spatial patterns of occurrences that 

affected the city of Lisbon, with some types of occurrences having a higher incidence in certain periods of the year, such as 

floods and collapses that occur when there are high levels of precipitation. On the other hand, it was verified that the 

downtown area of the city is the most affected area. 
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1. Introduction

Natural and man-made disasters have become more 

common across the world, with devastating repercussions 

reflected in the loss of human life and material/facilities 

destruction [1]. In reality, 3 751 natural catastrophes such 

as earthquakes, tsunamis, and floods have been observed 

globally in the previous ten years, causing $1 658 billion in 

damages and affecting more than 2 billion people [2]. As a 
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result, disaster management measures must be 

implemented in order to reduce the risks. 

Catastrophe management is a comprehensive process 

with the core aims of avoiding, reducing, responding to, 

and recovering from disaster impacts in the system. 

Disaster response requires a variety of groups, including 

governmental, public, and private organizations, as well as 

several tiers of authority, due to the complexity of major 

situations [3].  The engagement of several entities in 

disaster management procedures emphasizes the need of 

cooperation and coordination systems, since these agencies 
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must communicate, coordinate, and work with one another 

in order to be effective in a catastrophe situation. 

Some issues, such as a lack of situational awareness or 

the difficulties in deploying technical solutions for disaster 

response due to their high costs, may make communication 

amongst stakeholders' problematics [4]. Cities must 

provide better services and infrastructure to their citizens 

since population density and the frequency of catastrophes 

have increased in recent years.  

In this environment, the Smart City (SC) concept 

emerges as the appropriate answer for overcoming the 

problems posed by globalization and urbanization [5]. 

Cities aiming to achieve SC status employ digital and 

networked technology to solve a variety of issues, 

including enhancing service quality, becoming more 

sustainable, boosting the local economy, improving quality 

of life, and ensuring the safety and security of their 

residents [6].  

Electronic devices and network infrastructures are 

combined in a SC to gain high-quality services, and when 

cities acquire the most up-to-date network infrastructure, 

smart devices, and sensors, a large quantity of data is 

collected, referred to as Big Data (BD). 

This data may contain a considerable quantity of 

contextual, geographical, or temporal information [7]. In 

catastrophe scenarios, BD plays a critical role in disaster 

management procedures because it is feasible to use data 

mining (DM) and analytical tools to examine trends and 

forecast disasters, allowing the creation of appropriate 

disaster management plans based on historical data [6]. In 

this sense, the use of BD technologies aids agents in 

decision-making by allowing them to recognize possible 

risks and, as a result, establish suitable plans to deal with 

catastrophic circumstances, so increasing the SC's 

resilience [2].  

The goal of this study is to use a data-driven strategy to 

extract knowledge regarding catastrophes in the context of 

a SC to improve the city's management. In order to achieve 

a descriptive and predictive analysis of data given by the 

Lisbon City Hall, which includes information on 

occurrences that have happened in the city. 

This research will be conducted using multiple data 

sources, where from the data collected of the firefighter’s 

incidences between 2011 and 2018, we will merge 

datasets containing the average age of the buildings in 

each parish, the number of populations, and temperature, 

allowing us to perform a complete and deep descriptive 

analysis finding patterns between these variables, the 

types of incidents and the area where they occur. 

The investigation was carried out in two parts in both 

situations, with the first phase focusing on a general 

examination of the reported events and the second phase 

focusing on occurrences that harmed city structures. 

2. State of the art

Due to the large number of works that have been produced, 

data-driven disaster management is a new sector that has 

been evolving [8].  

In this regard, using the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) 

approach [9] and the Systematic Literature Review stages 

described by Okoli and Schabram [10], a survey and 

critical appraisal of the literature related to the chosen issue 

was conducted. 

As a result, a systematic search was done on the issue in 

two electronic databases: Scopus [11] and Google Scholar 

[12], with the primary goal of identifying and selecting 

research publications relating to data-driven disaster 

management research. With this in mind, a question was 

posed in order to narrow down the work done in this area. 

The question is as follows: (("Disaster Management" 

OR "Incident Management") AND ("smart city" OR "data 

analysis" OR "data mining" OR “big data”)). Additionally, 

a ten-year time window was defined (2010-2020), and the 

research covered areas such as Decision Science, 

Computer Science, Environmental Science, and 

Engineering. In terms of document typology, only journal 

articles, articles, and book chapters were considered. The 

documents were selected through the abstract and in cases 

where the information contained in the abstract was not 

sufficiently complete, the document was consulted in its 

entirety.  The work done in this area covers both natural 

and man-made disasters. 

2.1. Natural disasters 

Natural catastrophes are distinguished by the significant 

influence they have on society, disrupting its regular 

functioning. In the field of data-driven disaster 

management, work has been done to develop decision 

support systems that aid decision-makers in making faster 

and better-informed judgments based on analytical results. 

With this in mind, Jeong and Kim [13] undertook a 

statistical study of electrical mishaps such as fires and 

system failures that occurred in Korea as a result of climate 

change. A relationship was established between climate 

change and electrical-equipment-related incidents in this 

investigation. 

In 2017, another research [14] found a correlation 

between BD systems and disaster management. To 

examine hydroclimate data, Big Data Analytics tools were 

applied to a dataset from Malaysia's National Hydraulic 

Research Institute. The purpose was to gain knowledge 

about climate change and use it to prepare for, reduce, 

respond to, and recover from natural catastrophes. The use 

of BD technologies enabled the identification of 

exceptional precipitation and runoff events, as well as the 

tracking of drought occurrences. Briones-Estébanez and 

Ebecken [15] used DM approaches to discover and 

evaluate trends in the incidence of widespread and intense 

occurrences, such as floods, river overflows, and 

landslides, in five Ecuadorian cities. Other works have 

been produced to undertake a quantitative study of the 
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damage caused by natural disasters, in addition to works 

made to assess catastrophes from a spatial and temporal 

perspective. Park et al. [16] used a similar technique to 

evaluate the potential impacts or effectiveness of damage 

caused by three types of catastrophes in Korea, including 

typhoons, severe rain, and earthquakes, on water delivery 

systems. 

The work done in the field of data-driven disaster 

management is diverse, since different methodologies are 

used to make data available to decision-makers. In the work 

by Saha, Shekhar, and Sadhukhan [17], the analytical 

results were presented in a more iterative manner by 

constructing a dashboard to forecast and identify flood-

prone locations in West Bengal, India, utilizing geographic 

map visualization. Other research [18]–[21] created 

catastrophe susceptibility maps using a mix of DM and GIS 

methodologies. The main goal of these studies is to identify 

and classify places that are prone to natural catastrophes, 

with the exception that various DM models are employed 

in different research projects. 

2.2 Man-made disasters 

In the case of man-made disasters, Smith et al. [22] 

conducted study on the use of Big Data technology for 

disaster management. They analysed a dataset about fires 

that happened in Australia using the statistical program R, 

as well as its graphical capabilities.  

Balahadia et al. [23] used the K-means clustering 

technique to establish patterns and build clusters of fire 

incidents based on data from fires that happened in Manila, 

Philippines. In summary, the purpose was to collect fire 

event characteristics that might be utilized for risk 

assessment and risk management in the case of such 

catastrophes, as well as to aid in the creation of 

preventative measures. 

Asgary et al [24] attempted to evaluate the geographical 

and temporal patterns of fire-related occurrences in 

Toronto, Canada, using spatiotemporal approaches. The 

link between the economic, physical, and environmental 

features of distinct communities and the overall number of 

fires that occurred in those neighbourhoods was analysed 

to extract insights. 

A DM technique based on utilizing Bayesian Network 

to model building fires in urban settings was suggested by 

Liu et al. [25]. They examined the potential fire risk based 

on building design characteristics and environmental 

variables using historical data of fires in a Chinese city 

between 2014 and 2016. Lee et al. [26] used the Support 

Vector Machine model to investigate the link between 

building attributes, inhabitants, and fire incidences in 

Sydney in another study aimed at analysing fire trends. 

Finally, in a study by Wan, Xu, He, and Wang  [27], BD 

technologies were used to investigate the distribution and 

influence factors of harmful gases in the Chongqing city's 

urban underground sewage pipe network, as well as the 

impact of smart city developments on harmful gases in the 

urban underground sewage pipe network. 

In the particular case of Lisbon, we can see that author 

on study [28], aim to increase catastrophe resilience in a 

smart city, offering an integrated resilience system that 

connects interrelated vital infrastructures, increasing the 

total resilience capability of the city by allowing it to plan, 

adapt, absorb, respond, and recover from disasters by 

utilizing the linkages between its numerous essential 

infrastructures. 

Regarding incidents management and data analytics 

over Road Accidents, authors on studies [29], [30], 

recurring to the data fusion of several data sources, achieve 

conclusions that the accidents are due to human factors, 

occurring mostly on good weather, and where 

environmental factors may impact their severity, and 

noticing that most incident occur on the historical part of 

the city, where the majority of older buildings are present. 

In summary, the literature review revealed that the 

majority of the research in this field was conducted in 

China, and that the research in this field covers both natural 

and man-made disasters, with a predominance of flood 

incident analysis in natural disasters and fire-related 

incident analysis in man-made disasters.  

3. Methodology

This study analysis has its main focus that on performing a 

spatial-temporal analysis of occurrences collected in 

Lisbon to extract knowledge about the circumstances in 

which they occur. The dataset from the Fire Brigade 

Regiment was subjected to the Cross-Industry Standard 

Process for Data Mining (CRISP-DM) [31] technique to 

extract insights on disasters that impact the city of Lisbon 

with a focus on buildings.  

The CRISP-DM methodology-based analysis approach 

began with a business knowledge that allowed the project's 

scope to be contextualized and understood. 

In this way, a commercial problem was assessed by 

looking at several features of the city of Lisbon from 

multiple views, such as demographic, climatic, and 

educational perspectives. Following the completion of the 

business understanding phase, the following phases were 

data understanding, data preparation, modelling, and 

assessment. 

In order to make the data more valuable and extract 

more information from it, it was necessary to use data 

mining techniques such as feature engineering, creating 

new variables from the ones we have, making the 

information more valuable, and using data integration and 

data fusion techniques, where we join several data sources, 

bringing more richness and knowledge to our dataset and 

study 

The firefighter's dataset, given by Lisbon City Hall, is a 

CSV file that provides information on the incidents that the 

firemen have reported. The description of the event, the 

date of the occurrence, the location of the occurrence (i.e., 

latitude, longitude, and address), and the human (number 

of people) and material resources (number of vehicles) 

assigned to each occurrence are all covered by information. 
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There are 135 200 entries (rows in the CSV file) and 22 

characteristics in the dataset, which spans 2011 to 2018 

(columns in the CSV file). The columns are all of the type 

"object," and 13 of them have null values. 

During the data preparation, it was discovered that the 

years 2011 and 2012 have much less data than the others, 

thus those years were omitted from the study so that all 

years have representative data. In addition, during this 

phase, cleaning procedures such as column format 

conversion were used, as well as the selection of relevant 

features/characteristics for analysis, with attributes that did 

not add value to the scope of the study being deleted. 

Because the null values could not be replaced by the mean 

or median because they are geographic coordinates, 

parishes, and descriptions of occurrences, the records with 

null values were removed. 

 In this study we have created new attributes from 

existing attributes, such as the type of street, where from 

the address of the occurrence, we have created a new 

variable that gives the information if the accident occurs on 

an Avenue, on a Street, on a Square, etc. We have also done 

data fusion between data from multiple source such as INE 

[32] and IPMA [33]. This external data brings valuable

information about the weather on the period of the

incidents, and demographic and architectural aspects of the

city of Lisbon. For example, we have merge data that gives

us the information of the average age of buildings on each

parish, as well as the fraction of structures in need of

substantial repairs or that are severely deteriorated.

Meteorological factors such as average air temperature,

relative humidity, average wind speed, and precipitation

define the city of Lisbon.

Finally, because there were so many different sorts of 

occurrences in structures, it was important to categorize 

them. Categorization helps with visual analysis. The 

"Occurrence Description" column contains information on 

the sorts of occurrences, and this property has 25 categories 

of occurrences established by the firefighters' occurrence 

management system. The following seven categories were 

created from the 25 different sorts of occurrences: 

Infrastructures – Collapse, Infrastructures – Floods, 

Infrastructures – Landslides, Fire, Accidents (with 

machinery or elevators), Industrial Technology – Gas 

Leak, and Industrial Technology – Suspicious Situations 

are all examples of industrial technology (check smoke or 

check smells). 

The modelling step begins when the data preparation 

phase is completed. This phase focuses on gathering 

information that will assist decision-makers in effectively 

managing the city in the event of a crisis. The first step in 

the process is to figure out how the data has changed over 

time. It was feasible to verify that the number of events 

recorded in the firefighter's occurrence management 

system decreased from 2013 to 2018, however this decline 

was not linear since there were fluctuations over the years. 

In the year 2013, there were 17 176 incidents, 17 607 

occurrences in 2014, 16 717 occurrences in 2015, 15 089 

occurrences in 2016, 17 582 occurrences in 2017, and 13 

368 occurrences in 2018. 

Firefighters are called to a variety of situations involving 

a variety of actions. The types of occurrences were 

evaluated for a better understanding of the actions 

conducted by firemen, and it was confirmed that the 

distribution is not balanced among the nine categories of 

occurrences reported in the dataset. There is an over-

representation of one category, namely Services, which 

accounts for 45.6 % of all occurrences in the dataset. Road 

cleaning, opening and closing doors, hospital transport, 

water supply, and preventative services during shows, 

sports, and patrols are all included in this category. 

Infrastructure and communication route incidents, 

which include collapses, floods, landslides, falling trees 

and structures, and falling electric wires, account for 14.7 

percent of the total number of occurrences in the dataset. 

Accidents, which include train accidents, road accidents, 

and accidents involving equipment (elevators, escalators), 

account for 10.1 percent of all occurrences. 

Activities, with 5.9% of the total occurrences, 

Industrial-technological with 5.1 percent, Legal conflicts 

with 0.5 percent, and civil protection incidents with 0.004 

percent of the total occurrences are the categories with the 

least representation in the dataset.  

The study focuses on the occurrences that occurred in 

the buildings of the city of Lisbon to classify them 

geographically and chronologically after a broad 

examination of the types of occurrences. 

As indicated in Figure 1, the types of incidents that most 

damage the structures in the city of Lisbon are collapses 

(1816 records) and floods (1778 records), followed by 

suspicious situations (including verification of odours and 

smoke) (1478 records). Failing structures, with a total of 

1234 records, accidents with equipment's with 1166 

records, fires in buildings with 926 records, and with 

equipment with 646 records. Other types of incidents, have 

a representation of 631 records. All have a considerable 

number of incidents but are less expressive when compared 

to the previously stated categories.   

Figure 1. Number of each type of incident 

When these events are evaluated over time, i.e., their 

distribution over years (Figure 2), it is confirmed that some 

occurrences, such as collapses, suspicious circumstances 

(checking smoke or odors), and floods accidents, occur in 

higher proportion over time. 

Flooding had a greater prevalence in 2013 and 2014, 

then declined in the following years.  

Focusing the analysis on each occurrence to extract 

insights about its pattern of occurrence over the course of 

the year, it is possible to verify that in the case of the 

infrastructure categories, i.e., collapses and floods. 

Represented in Figure 3, we can see that accidents related 

with equipment occur most during the middle of the 
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summer until the beginning of the winter, they are evenly 

distributed throughout the region of Lisbon, but with 

greater concentration in the city centre, with regard to the 

means of intervention, this type of incident requires an 

average of 6.2 persons and 1 vehicle. 

Figure 2. Types of Incidents per Year 

Figure 3. Equipment Incidents 

Regarding collapses, on Figure 4, we can see that this 

occurs more frequently in the autumn and winter months, 

with maximum values (over 150 records) in the months of 

October and January. The frequency of recordings of this 

sort of occurrence declines as the spring and summer 

months approach, peaking at lower levels in the summer 

peak. This type of incidents is mainly concentrated on 

downtown Lisbon and on the city centre, with an average 

of 7.2 people and 1,4 vehicles per intervention. 

Figure 4. Collapses 

Concerning Falling Structures, on Figure 5 it is 

noticeable the difference between the winter and the 

summer months, where they are considerable higher when 

we compare January and October with the others. This type 

of accidents, occur mostly on downtown Lisbon. 

Figure 5. Falling Structures 

On Figure 6, we can see the distribution of fires in 

buildings. This kind of accidents are the ones taking more 

personnel, with a number of vehicles that quadruples the 

average of the other accidents, and the triple number of 

people. The monthly distribution is almost evenly, with a 

higher number during the cold months, since it his when 

people turn on the heaters, being among them fireplaces 

and braziers. 

Figure 6. Fires in Buildings 

In terms of floods, Figure 7, shows us that the winter 

months have a greater incidence, with the greatest values 

in the months of October to January, whereas the summer 

months have significantly lower values when compared to 

the winter months.  

Figure 7. Floods 

On Figure 8, we can depict that suspicious situations 

occur more frequently in the winter months, especially in 

December, and are comparable to the categories outlined 

above.  
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Figure 8. Suspicious Situations 

The first analysis revealed that certain types of 

occurrences have a higher incidence in specific seasons of 

the year, such as collapses, floods, and suspicious 

situations (checking for smoke or odors), which have a 

higher incidence in the winter/spring months. The impact 

of weather conditions on the incidence of various types of 

events affecting the city of Lisbon has been confirmed. 

With this in mind, the impact of precipitation on various 

forms of occurrence data was examined during four 

separate periods: when it does not rain, when it rains 

lightly, when it rains moderately, and when it rains heavily. 

The development of these four categories allows for the 

classification of precipitation in terms of quality. An 

interquartile technique was used for this, and using the 

interquartile ranges, four datasets with the four 

precipitation amounts previously indicated could be 

created. 

It was feasible to deduce from the study of occurrences 

according to the four precipitation levels that there are two 

categories of occurrences, namely floods and collapses, 

that grow as precipitation levels rise. In the case of floods, 

it is noticeable from Figure 9, the increase in incidence 

based on precipitation levels is remarkable, since the 

incidence was 9% when there was light precipitation level, 

32% when there was moderate precipitation, 46% when 

there was heavy rain, and 8% when there were abnormal 

levels of precipitation.  

Heatmaps were created for the six categories of 

occurrences that most influence buildings in the city of 

Lisbon, shifting the focus to a study of occurrences from a 

spatial perspective to verify how occurrences are spread 

throughout the cities of Lisbon. From Figure 10, it is 

possible to see, how the Precipitation levels impact certain 

type of occurrences, where we can see that the highest peak 

is on flood, preceded by Falling Structures and Collapses. 

The regional distribution of collapses and flooding is 

depicted in Figure 11. 

According to the heatmaps presented on Figure 11, 

collapses, which are the type of event that most affects the 

city of Lisbon, have a higher concentration of points in the 

city's central zone, implying that collapses primarily affect 

parishes in the city's central area, such as Arroios, Santo 

António, So Vicente, Misericórdia, Campolide, Avenidas 

Novas, Penha de França, and areas of the Historical Center 

Floods, like collapses, have a larger concentration in the 

city's downtown region, with the exception that this type of 

event also occurs with a significant frequency in the north 

western portion of the city, notably the parishes of Benfica 

and So Domingos de Benfica. 

Figure 9. Heatmaps with the 4 types of precipitation 
and the number of incidents progression 

Because there is a concentration of events in a certain 

location of Lisbon, it was decided to gain a better 

understanding of the city by examining characteristics such 

as the condition of conservation of structures and the 

average age of buildings in different parishes. It is possible 

to create a relationship between the spatial concentration of 

occurrences and the condition of the structures through 

spatial visualization of buildings that are deteriorated or in 

need of repair, as well as the visualization of parishes 

where the oldest buildings are situated. 

Figure 10. Number of of people and Precipitation by 
each type of incident 

From the conclusions drawn from the two heatmaps shown 

in Figure 12, it is clear that areas with older buildings and 

a higher proportion of degraded buildings in need of repair 

are more vulnerable to events such as collapses, floods, 

suspicious situations (check smoke or smells), and gas 

leaks, which occur in greater numbers in these parts of the 

city. 

EAI Endorsed Transactions 
on Smart Cities 

03 2022 - 09 2022 | Volume 6 | Issue 18 | e3



 Data Fusion and Visualization towards City Disaster Management: Lisbon Case Study 

7 

Figure 11. Regional Distribution of Collapses and 
Floods 

On Figure 13 it is also possible to acknowledge that the 

accidents where the proportion of degraded buildings have 

more impact are on collapses, followed by Floods, 

Suspicious Situations (check smoke or smells) and Falling 

structures 

Figure 12. Figure A shows the spatial representation 
of the proportion of buildings that are degraded or in 
need of major repairs and figure B shows the spatial 
representation of the average age of the buildings per 
parish 

Figure 13. Number of people/vehicles and Proportion 
of degraded buildings by each type of incident 

On Figure 14 we can see almost the same pattern regarding 

the Age of the building, where we can conclude that the 

oldest buildings are also the ones in need of major repairs. 

Figure 14. Number of people/vehicles and 
Proportion of degraded buildings by each type of 

incident 

4. Conclusion

Big Data's importance in disaster management has evolved 

over time. Nowadays, scientists face one of the most 

daunting tasks of organizing massive amounts of data 
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collected after catastrophes. Due to the massive volume of 

data created by disasters, conventional data storage and 

processing systems are having difficulty meeting the 

performance, scalability, and availability requirements of 

big data. We propose a solution for data integration, 

aggregation, and visualization must be developed 

effectively while optimizing the decision-making process, 

as the quality of judgments made by disaster management 

authorities is dependent on the quality of accessible 

information 

Nowadays, visual analytics dashboards for decision 

support systems for disaster management are critical, as the 

frequency of such calamities continues to increase. It is 

very beneficial to make decisions in a time-sensitive 

situation using a broad variety of quick data. As a result, it 

is vital to minimize the overhead associated with data 

integration and visualization in order to facilitate decision 

making. Geographical map visualization may be a useful 

solution in these situations since it enables the extraction, 

integration, and presentation of disparate data. The purpose 

of this article is to construct an analytics dashboard for 

detecting and visualizing risk zones and susceptible 

locations organized by different accident types in a city. As 

a result, city management authorities will have more time 

to prepare and a more detailed strategy for solving 

disruptive events and relocating resources in a proper 

manner. 

Massive amounts of geographical and temporal data are 

created in a disruptive event in a city from a variety of 

sources. Because charts, tables, and static maps have 

limited exploratory capabilities, it is not feasible to 

efficiently interpret these large amounts of data. As a result, 

choices may be postponed. Our approach allows to create 

a geo-space and time visualization dashboards that can 

allow management authorities get big picture and 

prioritizes intervention teams using this knowledge 

preservation by communicating geospatial data, integrating 

it with other databases, and creating a dynamic 

environment that enables quicker decision-making. Geo-

visualization enables more interactive maps, such as the 

ability to explore various levels of the map, zoom in and 

out, and modify the map's visual look, which is often 

shown on a computer monitor. 

Additionally, risk indices may aid in allocating for example 

post-flood rescue and relief operations to high-risk zones 

in terms of shelter placement, central depot establishment, 

logistics, and evacuation strategy. Map depiction of these 

essential places using different colour codes may assist in 

delineating them and ensuring that they get preferential 

care. 

From this study, it is possible to conclude the areas that 

need more attention, since we can see those events, such as 

collapses and floods occur mostly in buildings that are very 

degraded and older. It is also possible to see that these 

buildings are mainly concentrated in the historic area and 

downtown of the city, which is also the area where most 

incidents occur. 

The suggested system requires various enhancements as 

part of future study. To make the dashboard more dynamic 

and engaging, real-time fluctuations in risk levels within a 

municipality may be integrated. Additionally, dynamic 

dashboard visualization may be accomplished using D3.js, 

JavaScript, CSS, and Bootstrap. 
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