
Cloud-Edge Orchestration for Smart Cities:
A Review of Kubernetes-based Orchestration
Architectures
Sebastian Böhm∗ and Guido Wirtz

Distributed Systems Group, University of Bamberg, Bamberg, Germany

Abstract

Edge computing offers computational resources near data-generating devices to enable low-latency access.
Especially for smart city contexts, edge computing becomes inevitable for providing real-time services, like
air quality monitoring systems. Kubernetes, a popular container orchestration platform, is often used to
efficiently manage containerized applications in smart cities. Although it misses essential requirements of
edge computing, like network-related metrics for scheduling decisions, it is still considered. This paper
analyzes custom cloud-edge architectures implemented with Kubernetes. Specifically, we analyze how
essential requirements of edge orchestration in smart cities are solved. Also, shortcomings are identified in
these architectures based on the fundamental requirements of edge orchestration. We conduct a literature
review to obtain the general requirements of edge computing and edge orchestration for our analysis. We map
these requirements to the capabilities of Kubernetes-based cloud-edge architectures to assess their level of
achievement. Issues like using network-related metrics and the missing topology-awareness of networks are
partially solved. However, requirements like real-time resource utilization, fault-tolerance, and the placement
of container registries are in the early stages. We conclude that Kubernetes is an eligible candidate for cloud-
edge orchestration. When the formerly mentioned issues are solved, Kubernetes can successfully contribute
latency-critical, large-scale, and multi-tenant application deployments for smart cities.

Received on 14 March 2022; accepted on 23 May 2022; published on 25 May 2022

Keywords: Edge computing, Edge orchestration, Cloud computing, Container orchestration, Kubernetes

Copyright © 2022 Boehm and Wirtz, licensed to EAI. This is an open access article distributed under the terms of the
Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits unlimited
use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eetsc.v6i18.1197

1. Introduction
Over the years, Information and Communications
Technologies (ICTs) have become inevitable and
permeated more and more areas in everyday life.
Besides the traditional usage in business-related
contexts, ICTs are used in urban areas, which is
also known as the concept of Smart City (SC).
In SCs, various technologies sustainably enhance
urban life [1]. Many fundamental areas in cities are
equipped with sensors to gather data from community
services, like transportation, power plants, information
systems, and crime detection [2]. The goal to build
a SC is accompanied by an increasing number of
sensors and traffic volume. This development also

∗Corresponding author. Email: sebastian.boehm@uni-bamberg.de

affects applications that run in SC-related applications.
Requirements like the provision of computational
resources on-demand, low-latency in multiple regions,
and flexible moving of services in a city must be
tackled [3]. Comprehensive data collection is necessary
to realize a SC. Often Internet of Things (IoT) devices
are used [4–7]. An IoT device is a resource-constrained
member of a larger network that consists of similar
devices. Those devices, mainly sensors, collaborate on a
common goal and need sophisticated management [8].
Since these sensors are often placed in different areas, a
large amount of data needs to be collected, processed,
and analyzed to decide accordingly to the long-term
goal. Furthermore, real-time capabilities and fault-
tolerance are inevitable for these services to be stick
to the goals of SCs [9, 10]. These requirements set new
challenges for designing software architectures.

1

EAI Endorsed Transactions
on Smart Cities Research Article

EAI Endorsed Transactions
on Smart Cities

03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

http://creativecommons.org/licenses/by/3.0/
mailto:<sebastian.boehm@uni-bamberg.de>

Sebastian Böhm and Guido Wirtz

So far, cloud computing, which offers a large pool
of centralized resources, is the mean of choice for
collecting and processing data from IoT devices [11].
In recent years, many SC architectures emerged that
facilitate IoT devices and contributed to various
challenges that are within the scope of SCs. Mostly,
these architectures tackle the challenges of SCs by
digitalizing more and more public services [4, 12–14].

Since the number of IoT devices is continuously
increasing, the cloud may not be able to serve a large
number of requests with a particular latency [15].
Furthermore, due to the highly distributed nature
of placing IoT devices in different areas in an
urban region, connectivity and bandwidth issues
may arise. These issues make it hard to use the
cloud without unfavorable implications [16, 17]. In
the context of SCs, many digitalized services (like
city monitoring and public transport) require real-
time capabilities to operate efficiently [7, 14, 18].
Hence, the average response time must be reduced.
To overcome this situation, edge computing comes
into play as an additional layer to the cloud,
offering computational capacity near data-generating
devices. This realizes low latency and better network
reliability for service-requesting devices [19, 20].
Consequently, edge computing offers the ability to
selectively upload data to the cloud, contributing to
enhanced privacy. Providing computation capacities
for SCs, using the edge computing paradigm, can be
a complex task. The assignment of workloads must
be done according to the available infrastructure,
which often consists of heterogeneous and resource-
constrained devices [21]. In addition, a lot of different
services need to be deployed in a SC, depending on
the public services, which must be supported [10].
At this, assigning computational workloads for data
processing is mostly done with containers, a lightweight
alternative to Virtual Machines (VMs). Those containers
are managed by a container engine and contain all
necessary dependencies. This nominates them as an
ideal candidate for edge computing [22–24].

Even if the complexity of deployments is simplified
by container technology, new challenges, like latency
requirements, arise. In consequence, an efficient man-
agement of container instances is required by taking
resource demands and capacities into consideration.
This is also known as edge orchestration [25]. Large-
scale container orchestration is a rather complex task
that requires a sophisticated management. For this,
various container orchestration tools emerged, like the
popular Kubernetes (K8s)1. It offers high availability,
scalability, and fault-tolerant management of a large
number of containers. In the context of SCs, a lot of

1Kubernetes

solutions emerged over time that are using K8s as
orchestration system [1, 26–29]. So far, no comprehen-
sive survey of already existing K8s-based architectures
has been done to verify whether K8s is still worth
considering for edge orchestration. This targets deploy-
ments for SCs as well, where container technology is
becoming critical to provide low-latency deployments
in line with resource demand and supply.

Therefore, this paper aims to provide a detailed
overview of existing K8s-based implementations for
edge orchestration, partly for a SC context as well. For
this, we analyze essential requirements of cloud-edge
orchestration, also with a focus on SCs. In an additional
step, we use the obtained criteria for an evaluation
of existing K8s-based solutions. Finally, the results of
the evaluation are used to assess if K8s is an eligible
solution for cloud-edge orchestration, even in a SC
context. This leads to the following research questions:

• RQ1: What are the most critical requirements for
cloud-edge orchestration and are covered by K8s?

• RQ2: What are the benefits and drawbacks of
already established cloud-edge architectures that
are based on K8s?

• RQ3: Are the potentially identified drawbacks of
the investigated solutions in K8s solvable with a
realizable amount of effort?

• RQ4: Is K8s an eligible candidate for providing
demand- and supply-aware deployments, also for
a SC context?

To answer our research questions, we perform a
literature review. At this, we extract fundamental
characteristics of cloud-edge orchestration with a focus
on SCs. This contributes to RQ1. To answer RQ2, we
review already existing cloud-edge architectures that
are using K8s for advanced orchestration, also in the
area of SCs. We map the obtained characteristics to
the existing solutions to identify the strengths and
weaknesses of the implementations to answer RQ3.
Lastly, we answer, based on our prior results, if K8s can
still be considered as an eligible candidate for cloud-
edge orchestration in the context of SCs (RQ4).

This paper starts with a conceptual overview of SC,
edge computing, edge orchestration, and K8s (Sec-
tion 2). Section 3 discusses related works eval-
uating cloud-edge orchestration solutions. In Sec-
tion 4, K8s, K8s-based orchestration architectures, lim-
itations, and potential solutions are further analyzed.
The investigated shortcomings of the solutions are cov-
ered in Section 5. We discuss our work in Section 6 with
a critical assessment of our findings and the threats to
validity. Finally, we conclude our work in Section 7 with
a short summary and the plan for our future work.

2 EAI Endorsed Transactions
on Smart Cities

03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

https://kubernetes.io/

Cloud-Edge Orchestration for Smart Cities: A Review of Kubernetes-based Orchestration Architectures

2. Concepts
This section gives a short overview of the core
concepts required to survey cloud-edge orchestration
architectures. First, we introduce SCs to outline the
need for complex orchestrations. We describe the
principles of edge computing in a second step. Finally,
we conclude this section with a short introduction on
the orchestration of cloud-edge architectures.

2.1. Smart City
In the following section, the concept of SC is explained
in detail. Besides the definition of SC, fundamental
characteristics and arising challenges are discussed.

Definition. In recent years, SCs have become very
popular. By the usage of ICTs, living in cities should be
made more comfortable. Although there is no standard
definition and understanding of the term SC, there are
a couple of definitions with different perspectives on
the topic, as researched by [30]. All of them have in
common to improve the quality of life of citizens by
usage of ICT in basic needs, as outlined in Section 1.
Many authors, like [30] and [31], come to this inference.

According to the emerging popularity of SCs, a lot
of different architectures emerged that should simplify
establishing smart services. There are also a few surveys
that investigate the emerged architectural proposals
and work out the granular differences [32–34]. Quite
common is the three-tier architecture, where multiple
layers are used to define and classify SC architec-
tures (Figure 1). The architecture, taken from [5], as
representative architecture for a SC mainly consists of
three tiers, namely the urban environment, the com-
munication layer with further separation into different
steps, and finally, the service layer. The urban envi-
ronment has many different sensors that are continu-
ously collecting data. For example, this targets technical
installations for smart traffic control systems, air qual-
ity monitoring systems, and video surveillance [35].
Also, the core infrastructure is covered in this tier to
connect all the devices to data-receiving endpoints, e.g.,
by using ethernet, wireless, or mobile broadband con-
nections. The first step, which is performed by the com-
munication layer, is data collection from all the devices
placed in a SC environment (➀). After collection, the
data processing is triggered (➁). This step includes
transforming heterogeneous data into homogeneous
data for further processing. The data is also enriched
with additional information, like metadata, to create
semantic relationships between data entities. This step
is essential for the data integration, which takes place as
the third step in the communication layer (➂). In data
integration, the processed data is further analyzed by
an inference engine to draw conclusions from the data.
This might be a complex process that requires sophis-
ticated methods and the expertise of domain experts.

Data collection

Data processing

Data integration

Devices

Tier 3: Service layer

Tier 1: Urban environment with sensors

Enriched data

Structured data

Preprocessed data

Raw sensor dataTi
er

 2
: C

om
m

un
ic

at
io

n
la

ye
r

2

3

4

1

Figure 1. General Smart City Architecture (three-tier) [5]

However, this step is inevitable to inform stakeholders,
especially citizens, about important events. That is cov-
ered in step ➃. Finally, SC architectures allow for sev-
eral customized services that have access to the formerly
presented data processing pipeline. For example, in the
service layer, the government or third-party software
developers can create web applications, dashboards, or
other services that contribute to the aims of SCs. Typical
use cases are also presented (Section 2.4).

Characteristics. Over the years, many attempts were
performed to conceptualize the term and determine
aspects of SCs in a broader sense. One frequently
cited characterization of SC was done by [18]. They
describe a SC in six aspects, mainly based on the
findings of [36] with a critical assessment. This
characterization comprises a holistic view by including
the social, economic, and technical perspectives and
allows a well-balanced overview of how a SC should be
designed [18]. These characteristics can be summarized
and reorganized in different application domains
for a SC that enables particular benefits for the
urban development and the quality of life. In [34],
a popular classification is presented that helps to
organize the contributions and benefits a SC can
accomplish. The authors outline that SCs can lead
to a (i) more efficient government, for example, by
monitoring and managing public safety. Furthermore,
(ii) real-time information in daily life leads to happier
citizens [4]. (iii) More efficient logistics and supply
chain platforms can make businesses more prosperous.
(iv) Finally, also due to climate change, a SC can
foster environmental sustainability by reducing and
preventing pollution using real-time systems. In [37],
a Smart IoT Based Building and Town Disaster

3 EAI Endorsed Transactions
on Smart Cities

03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

Sebastian Böhm and Guido Wirtz

Management System for SCs was designed, which
allows efficient monitoring and management for public
safety. Another solution [38] deployed a system of
interconnected modules into a SC to monitor events.
The solution aims to support disaster management and
did not rely on any additional infrastructure. Systems
like this contribute to a more efficient government. In
regards to real-time analytics, [39] mention that smart
traffic control systems have a positive influence on
avoiding traffic jams and mitigating traffic congestion
in the city. For this, the city was equipped with video
surveillance technology. This improves the quality of
living. As a further example, SC-related activities can
foster new business models [40]. In [41], comprehensive
data collection for commercial purposes was suggested.
According to the density of smartphones in a particular
area, a new price structure for billboards has been
established. Furthermore, it is possible to organize
parking spaces in a more efficient way [42]. Optimizing
waste disposal is also mentioned as an area for
further optimization [43]. Tackling climate change,
various attempts have already been made to monitor
pollution in SCs and launch countermeasures, e.g., by
prohibiting particular car classes from driving into
the inner-city [44, 45]. This helps improve the air
quality and finally the healthiness of citizens in large
cities. However, several challenges are accompanied
by establishing SC architectures. As already indicated,
the concept of SC is strongly associated with the IoT
paradigm. Those devices undertake essential tasks to
realize the characteristics a SC should have. Improving
citizens’ well-being needs a sophisticated provision of
high-quality smart services [2, 31]. Popular application
areas that contribute to the goals of SCs also imply
challenges, which are discussed in the following.

Challenges. Fundamental challenges occurring by
establishing SC architectures that handle a large set
of workloads and requests are two-fold. First, general
organizational issues come up because there are a
lot of stakeholders and distributed responsibilities
that result in complex decision-making. Multiple
industry partners, institutes, and public services
must collaborate to achieve an efficient solution.
This collaboration also comprises the appropriate
sharing and management of network infrastructure,
computational resources, and eventually data centers
and their derivatives in edge computing [1]. Secondly,
besides sharing and agreeing on a common data
platform, further challenges must be considered as soon
the organizational aspects and core infrastructure is set
up. A major concern is providing an efficient allocation
of applications for low-latency use cases that are quite
common in SC contexts. In addition, because critical
areas like smart traffic control systems must be served,
an appropriate fault-tolerance is inevitable [9]. Since

the number of requesting devices is still increasing
and needs to be managed, redundancy, reliability, and
real-time capabilities are inevitable for an appropriate
orchestration of large-scale deployments [10].

2.2. Principles of Edge Computing
Edge computing adds an additional layer to the cloud
by placing computational resources close to data-
generating devices, like sensors, actuators, or other
entities. This new placement strategy aims to reduce
latency and improve bandwidth capabilities [46, 47].
In contrast to the cloud, where all data is transmitted
to and stored in a centralized way, edge computing
provides additional resources to take the load from
the cloud [48]. Especially low-latency application fields,
like real-time analytics or video surveillance, can
benefit from the increased bandwidth and reduced
latency realized by edge computing [49, 50]. Also, the
geographically distributed nature of large IoT networks
is prone to unstable network connections [51]. The core
requirement of edge computing, minimizing the latency
and increasing bandwidth for real-time services, might
be violated by long distances between client and
servers. The length of the physical distance between
clients and servers has a coherence with latency [19].
Edge computing as general technology has different
types, also called edge technologies [52]. Common types
are Mobile Edge Computing (MEC), Cloudlet, Micro
Data Center (mDC), and Fog. All of these offer different
provision models (Figure 2).

MEC was introduced by Nokia and placed computa-
tional resources (e.g., computing, network, and storage)
mainly next to mobile Radio Access Network (RAN) sta-
tions. This type of edge computing aims to provide low-
latency network access to low-power devices, often to
process time-critical tasks, like real-time analytics. The
placement next to mobile RAN stations enables fast and
dynamic provisioning of applications, which offer real-
time services. Accordingly, the provision of applications
near the data-generating devices reduces the traffic sent
to the cloud and reduces network congestion. There is
no common understanding if MEC is a substitute for
the cloud. It is unclear whether data must or must not
be forwarded to the cloud in any case [52, 53].

Cloudlets form virtualized clusters with a set of
decentralized devices for running low-latency applica-
tions. They are self-managing, fast and easy to deploy
by local administrators and aim to provide computa-
tional resources close to data-generating devices. Work-
loads and applications are supposed to be transmit-
ted as VM overlays. The overlays are executed on top
of a base image that is already available on the tar-
get device. It is necessary to shift these VM overlays
rapidly, for example, if the service-requesting devices
change their position continuously, for example, in

4 EAI Endorsed Transactions
on Smart Cities

03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

Cloud-Edge Orchestration for Smart Cities: A Review of Kubernetes-based Orchestration Architectures

Edge
MEC Cloudlet Micro

Data Center

(III) Edge-only

Fog

Cloud

Data center 0 Data center 1 Data center n

IoT

(II) Offloading(I) Scaling

Figure 2. Cloud-Edge Architecture with Provision Models and
Edge Technologies [58]

smart traffic control systems. Therefore, it is inevitable
that cloudlets have a reliable network connection with a
high bandwidth available [54]. Besides using VM over-
lays, [55] introduced lightweight containers for shifting
workloads among devices in cloudlets. In addition,
Linux containers were used [56, 57] to realize perfor-
mance enhancements with a lightweight alternative.

Similar to cloudlets, mDCs want to reduce response
times by collaborating with the cloud as an additional
layer. mDCs support multi-tenancy and need, therefore,
a strong hardware- and software-based protection
against unauthorized access. They run in an isolated
and secured unit in terms of physical and virtual access.
For data exchange with the cloud, they usually have a
reliable, fast, and durable connection.2

Fog computing, often also called edge computing [48,
51, 59], follows similar principles. Although there
is a high similarity between fog computing and the
formerly presented edge technologies, fog computing
can be interpreted as one step closer to data-generating
devices and is explicitly designed in a decentralized
way [49]. In fog computing, large-scale networks of
heterogeneous devices cooperate and communicate to
realize low latency for the lower layers [11, 60, 61]. It
is still an unanswered question if there is a substantial
discrimination between edge and fog computing. Since
edge and fog computing share common goals for many
devices and act as an additional layer to the cloud, one
can assume both terms can be treated equally. Many
authors [47, 48, 51, 59, 60] follow this interpretation
and do not introduce an explicit differentiation.

Figure 2 shows different ways to deploy applications
with low-latency requirements. Utilizing the full
architecture of cloud-edge environments, different

2Microsoft researcher: Why Micro Datacenters really matter to
mobile’s future

techniques on how to deploy applications have emerged
over time. The most common, so-called provision
models, are (I) scaling, (II) offloading, and (III) edge-
only deployments. For the last provision model, it is
noteworthy that the edge is not supposed to replace
the cloud side entirely [52, 53]. In the following, the
different provision models are explained in detail:

• (I) Scaling: This type of provision model is also
known under distributed offloading. Applications
are running simultaneously in the cloud and edge,
collaborating to achieve better performance. Both
layers can scale out if a particular application runs
out of resources (e.g., storage or latency) [62].

• (II) Offloading: The most frequent approach is
offloading from cloud to edge and the other
way round. For example, entire applications or
application stacks are moved from the cloud to
the edge layer, e.g., to meet a particular latency
requirement. In addition, applications may be
moved to the cloud if load decreases or the latency
requirements get relaxed [63].

• (III) Edge-only: In this deployment type, applica-
tions are only placed and moved on the edge layer
to fulfill the needed latency. Therefore, offloading
is not required for this technique. However, many
solutions use offloading techniques nonetheless to
perform edge placement strategies [64].

2.3. Orchestration of Cloud-Edge Architectures
Using cloud-edge architectures for running a large set
of different services comes along with new complexities.
These complexities arise because of the additional
edge layer, different edge technologies, and provision
models. Cloud-edge orchestration is responsible for
assigning workloads to the cloud, edge, and IoT layer
based on a particular set of objectives (Section 2.2).

The most important aspect that must be covered is
an efficient placement of applications dependent on
the origin of potential requests. Also, the required
real-time latency and bandwidth of devices must be
considered to achieve the claimed application response
times. For this, complex decision and orchestration
models are required that consider demand and supply
of resources like CPU, memory, disk, and network uti-
lization [48]. Fault-tolerance and resilience is a further
core requirement of cloud-edge architectures [65]. As
already mentioned in the former section, cloud-edge
systems are used in critical areas, like smart traffic
control systems. Outages because of broken nodes in
the architecture should not happen. The complexity
of managing those architectures is further intensified
due to the decentralized, distributed, and large-scale
nature of the edge layer. In addition, a heterogeneous

5 EAI Endorsed Transactions
on Smart Cities

03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

https://www.networkworld.com/article/2979570/microsoft-researcher-why-micro-datacenters-really-matter-to-mobiles-future.html
https://www.networkworld.com/article/2979570/microsoft-researcher-why-micro-datacenters-really-matter-to-mobiles-future.html

Sebastian Böhm and Guido Wirtz

Autonomic Controller

Orchestrator

Cloud0

Edge0

Container
Registry

Cloud1 Cloudi

Edge1 Edgej

(I) Scaling (II) Offloading (III) Edge-only

Strategy
Algorithm

Policy

Figure 3. Generic Orchestration Architecture, based on [67]

set of devices, often low-power devices, needs to be
managed appropriately [59, 63]. Dynamically scaling
down and up the number and types of nodes in cloud-
edge architectures must be supported to realize large-
scale deployments in the right way [66]. Also notewor-
thy are security considerations like supporting multi-
tenancy for edge technologies like cloudlets and mDCs,
which are offering a shared model (Section 2.2). Security
mechanisms like authentication and authorization are
strongly required to operate cloud-edge systems [65],
especially if they are publicly accessible [59].

As already outlined in the former sections, the
provision models present several challenges that
must be met. Workloads should be fast and easy
to deploy and moved across the layers in the
architecture. Meanwhile, container technology is the
de facto standard running workloads in cloud-edge
architectures. Containers follow the principle of
lightweight virtualization and contain the application,
libraries, and the runtime environment. They are
executed in an isolated way by a so-called container
engine which restricts the amount and type of resources
a particular container can use (i.e., CPU, memory,
and storage). The container engine itself runs on
an operating system and shares the kernel with the
container instances. Container technology has been
widely accepted for this area because containers are
small in size, have a fast startup time compared to
traditional VMs [24], and can be easily ported to other
physical nodes [22, 23].

The eligibility of container technology for orchestra-
tion activities requires an appropriate architecture that
is able to realize the provision models. In Figure 3, a
general and generic architecture based on [67] is shown.
A container registry provides containerized applica-
tions. In case of a deployment instruction, correspond-
ing nodes download the container image and execute it
with the required configuration. A so-called autonomic
controller creates these deployment instructions. This
controller includes an orchestrator that assigns contain-
ers to nodes given a strategy, algorithm, or policy. This
workflow can be applied to all provision models that are
covered in this paper.

2.4. Edge Computing in Smart City Contexts
Edge computing and its related technologies have
meanwhile a large application field in SC contexts.
Over the years, many architectures emerged, like
the rainbow architecture from [68] that aims to
provide easy development of SC applications for
large sensor networks. The authors followed an agent-
based approach using fog computing to implement
their architecture. Also, for the sake of air quality
monitoring, [69] proposed an architectural design
for SCs. In the work of [70], a managed, programmable,
and virtualized edge platform was presented using
container technology as an underlying technology.
The authors tested different applications, like air
quality monitoring, sound classification, and image
recognition. Other solutions consider similar tasks and
proposals using edge computing or related approaches
for real-time traffic monitoring [71–73] or video
streaming [74]. Further approaches focus on real-time
use cases as well [7, 14, 18]. Especially the latter
proposal aims to move workloads during runtime
from edge nodes to other edge nodes. In regards to
the already introduced edge technologies, there are
architectures that either require or support cloud,
edge, MEC, fog [75, 76], or finally cloudlets [77] as
fundamental edge technology. Distributing and shifting
of workloads and tasks in SCs was covered in [78, 79].
They formulated complex task allocation algorithms
to further reduce the end users’ latency. Lastly, edge
computing and related orchestration activities also
contribute to better privacy and security [77, 80].

Edge computing and in specific edge orchestration is
an essential component providing additional compu-
tational capacities for SCs. There are a lot of different
use cases. However, most of them have an explicit
requirement that must be met, especially in terms of
latency and bandwidth to operate normally. The highly
distributed nature of SC architectures can be efficiently
supported by edge computing and further by edge
orchestration, where an advanced and flexible shifting
of workloads is possible and different provision models
are fully supported.

3. Related Work
We first analyzed publications that defined and
investigated characteristics of cloud-edge computing.
Then, we performed an evaluation based on a set of
criteria. In [81], a literature survey on fog computing
and other edge technologies was performed. They
stated limitations, research directions, and potential
solutions for fog orchestration. Their study mapped
these limitations and research directions to potential
solutions and summarized plenty of aspects for future
work. [61] conducted a literature survey to investigate
orchestration challenges for edge and fog computing.

6 EAI Endorsed Transactions
on Smart Cities

03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

Cloud-Edge Orchestration for Smart Cities: A Review of Kubernetes-based Orchestration Architectures

Also, the authors provided a mapping between
challenges and discussed a set of potential solutions.
[82] investigated requirements like infrastructure-,
platform-, and application-related criteria. Following
the qualitative study design, these criteria were used
to evaluate established fog architectures. The authors
collected a comprehensive set of resource allocation
and scheduling algorithms for orchestration. These
criteria were used to evaluate a set of solutions that
try to tackle this problem domain. In [59], a discussion
of motivations, challenges, and opportunities in edge
computing was provided. The authors assembled a set
of criteria for orchestration-related activities.

In a second step, we consider works that investigate
cloud-edge or edge orchestration architectures in spe-
cific. [83] set a focus on requirements for orchestration
in regards to the management of nodes (e.g., join-
ing/leaving the cluster or scheduling). In specific, they
evaluated container orchestration tools like Mesos, K8s,
and Docker Swarm. They defined requirements for
orchestration systems, however, without any compari-
son of cloud-edge architectures implemented with the
different container technologies. In the work of [65], the
state-of-the-art of fog orchestration was further investi-
gated with a focus on the core requirements an archi-
tecture must comply with. Accordingly, they evaluated
well-established fog orchestration architectures. They
inferred that most of the considered architectures could
deal with the general requirements of fog computing.

Lastly, plenty of contributions are in close relation
to our study that investigate only one particular aspect
of cloud-edge orchestration in detail: Architectural
and algorithmic challenges for resource provisioning
and scheduling were further investigated in [84].
This literature review showed a comprehensive set
of limitations that have been matched to potential
solutions. In addition, starting points have been
mentioned for further investigations. [62] analyzed
offloading strategies that are an essential part of
cloud-edge architectures. Similarly, [85] presented an
overview of several offloading algorithms and evaluated
them based on a set of criteria.

As shown in the former paragraphs, several solutions
have already investigated challenges, research direc-
tions, and potential solutions for issues in cloud-edge
orchestration activities. However, there is no overview
of K8s-based cloud-edge and edge architectures in spe-
cific. Furthermore, there has not been a detailed analy-
sis of the requirements of SCs for cloud-edge environ-
ments and orchestration yet. Hence, this contribution
aims to provide a detailed analysis of modifications
made to K8s to make it ready for the requirements of
edge environments in SCs.

4. Kubernetes as Edge Orchestration Platform
This section covers K8s as a candidate for running
cloud-edge and edge orchestration environments. First,
we explain the general architecture and functionality
of K8s. In a second step, we discuss K8s-based orches-
tration architectures that we obtained from a literature
review by using the search term Kubernetes ∧ (edge

∨ fog) ∧ (computing ∨ orchestration). For the
literature review, we used the following popular
databases: IEEE Explore, SpringerLink, and ArXiv. We
considered only those papers which identified short-
comings of K8s and offered solutions for the identified
issues. Finally, we cover general limitations and poten-
tial solutions for K8s as an edge orchestration platform.

4.1. Kubernetes as Container Platform
The container platform K8s is used to execute con-
tainerized workloads on a set of nodes. Furthermore, it
implicitly implements the generic orchestration archi-
tecture shown in Section 2.3. Figure 4 shows a minimal
working cluster, consisting of one master node and
one worker node. The master node, also called control
plane, runs all essential system services for the cluster.
To run containerized workloads, at least one worker
node is needed. It is possible to assign workloads to the
master node that, however, this is not recommended.3

In general, containerized workloads are executed in
pods, the smallest deployable unit in K8s that provides
the execution environment for containers.

Managing the set of worker nodes and assigning
containerized workloads to the worker nodes is
done by the master node. At this, the managing
services are also running as containers and can be
distributed to multiple nodes, e.g., to achieve high
availability. In specific, a K8s cluster includes the
following components: All running nodes in the cluster
are observed by the controller-manager (c-m). This
component also keeps track of the current state to
plan future actions and deployments. For example,
the controller-manager can restart workloads on other
nodes if the currently used node is failing or not
operational anymore. The Kube Scheduler (KS) is in
charge of assigning workloads to worker nodes (named
sched in Figure 4). This assignment is realized based
on a scoring model to find the most suitable node.
For example, manually set constraints and available
resources can be regarded. Cluster data, for example,
currently running assignments, are stored in a strongly
consistent and distributed key-value store, named etcd.
In case of a redundant deployment, either with multiple
master nodes or a unique etcd cluster, the data will
be replicated across all instances. The api is exposed

3Kubernetes documentation - Nodes

7 EAI Endorsed Transactions
on Smart Cities

03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

https://kubernetes.io/docs/concepts/architecture/nodes/

Sebastian Böhm and Guido Wirtz

Kubernetes cluster
Worker nodeMaster node / Control plane

etcd ContainerPod

Custom
component

key=value

Label
Custom

Figure 4. General Kubernetes Architecture [58]

as REST API and allows the interaction with the
system components in the cluster. The Horizontal Pod
Autoscaler (HPA), omitted in Figure 4, dynamically
scales in and scales out the number of pods based
on metrics like CPU and memory utilization.4 The
kubelet that is available on all worker nodes serves as
a communication endpoint for the controller-manager.
The major responsibility of this component is managing
the lifecycle of nodes according to the commands
received from the controller-manager. In addition,
the current state of the node is transmitted to the
controller-manager as well. The component k-proxy
opens ports and forwards traffic according to the
deployed workloads and the configuration.5

K8s is modularly built and allows replacing several
components, as shown in Figure 4. For example,
the scheduler component can be replaced completely.
Furthermore, additional information in the form of
labels can be attached to nodes. This might be helpful
in enriching the data basis for complex scheduling
processes in case the scheduler component has been
replaced. External components, e.g., for advanced
scheduling and scaling, can interact with the API
or custom containerized components to achieve a
particular outcome. These components might even be
deployed on a K8s cluster as control plane components
when the built-in scheduler is supposed to be replaced.6

4.2. Kubernetes-based Edge Orchestration
Architectures
In our study, we classify K8s-based edge orchestration
systems into three categories. The first category
comprises open-source frameworks and solutions that
aim to realize essential orchestration features in
edge computing. Solutions that implement custom
modifications and introduce new extensions to K8s are
part of the second category. The last category reveals
those solutions that tackle only the edge layer with a
modified K8s.

4Kubernetes documentation - Horizontal Pod Autoscaling
5Kubernetes documentation - Kubernetes Components
6Kubernetes documentation - Extending Kubernetes

Platform-based Solutions. The first category comprises
frameworks like KubeEdge (KE)7, Baetyl8, OpenYurt
(OY)9, or ioFog10. These platforms deploy custom com-
ponents as containerized workloads to an unmodi-
fied K8s cluster to implement their orchestration logic.
Usually, these platforms provide only mechanisms for
an easy setup process of cloud-edge architectures. Easy-
to-use routines are included to roll out the required
infrastructure components, like software-defined net-
works, message brokers, service and event bus end-
points, and management capabilities. Setting up and
running cloud-edge architectures is simplified such that
users can easily deploy devices and monitor their state.
In addition, platforms like KE advertise resource opti-
mization that enables the usage of low-power devices.
However, the platforms lack dynamic workload alloca-
tion capabilities. Support for different provision models
of edge computing is somewhat limited. For example,
the platforms might not be able to perform dynamic
placement decisions or placement changes based on
the current utilization of a set of devices. Furthermore,
provision models like offloading from cloud to edge
and vice versa, as well as scaling out to the edge,
are not supported in particular [86]. To overcome this
limitation, several solutions considered in this study
used the modifiability and extensibility of K8s (Sec-
tion 4.1). They implemented custom components to
meet the requirements of more sophisticated cloud-
edge and edge architectures.

Custom Cloud-Edge Architectures. The second category
comprises architectures that consider the cloud and
the edge layer in collaboration. [86] introduced KaiS.
This framework improves the long-term rate of request
processing and system overhead by using the edge
in cooperation with the cloud. The orchestration
activities are planned centralized in the cloud to assign
workloads to edge nodes. The actual workload is
dispatched only to the edge. The proposed solution
uses advanced learning techniques and orchestration
fundamentals. As a result, KaiS can increase the
throughput rate and reduce the scheduling costs
compared to K8s. Minimizing interference and energy
consumption of deployments was covered in [87] as
a multi-objective optimization problem and is called
KEIDS. All nodes in the cluster were equipped with
custom containers to fulfill the requirements of co-
allocation of dependent workloads on a single node.
This solution aims to reduce the carbon footprint of the
orchestration architecture. The authors implemented
KEIDS and a modified version of KEIDS. They

7KubeEdge
8Baetyl
9OpenYurt
10Eclipse ioFog

8 EAI Endorsed Transactions
on Smart Cities

03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/extend-kubernetes/
https://kubeedge.io/en/
https://baetyl.io/en
https://github.com/openyurtio/openyurt
https://iofog.org/

Cloud-Edge Orchestration for Smart Cities: A Review of Kubernetes-based Orchestration Architectures

compared the results to a First Come First Serve
algorithm and inferred that KEIDS led to different
improvements in carbon footprint, performance, and
energy minimization. Swirly, a solution proposed
by [88], is a scheduler that creates a service topology
to simplify orchestration activities. It runs in the cloud
and supports large-scale deployments by considering
the topology with a small number of containers.
Also, real-time resource utilization is considered,
like CPU, memory, and finally latency for the end
users. For that, they equipped all nodes with custom
container components. Based on a benchmarking
study, they concluded that the solution is able
to handle up to 300000 devices. [26] suggested
a cloud-edge solution with a focus on location-
aware scheduling for an air monitoring service. To
achieve location-aware scheduling, they implemented
custom schedulers and modified K8s. They compared
their location- and network-aware scheduler to the
default KS and approaches based on integer linear
programming. The architecture with the modified
scheduler reveals a remarkable latency reduction.
In [89], K8s has been prepared for geographically
distributed clusters. Similar to the approaches before,
they attached custom components to each node and
added a custom scheduler component to consider the
network latency. This solution uses the cloud and
the edge layer for running workloads and calculates
latency-aware deployments based on periodic latency
checks. An evaluation revealed that the architecture
could adjust deployments according to real-time
conditions. [90] designed an architecture with support
for fault-tolerance, application isolation, data transport,
and multi-cluster management. Fault-tolerant message
broker clusters, deployed in cloud and edge, were used
to realize the storage layer. Master nodes deployed
in the cloud were replicated and operated in high
availability mode. Therefore, a two-node failure keeps
the proposed architecture operational. [91] propose
Fogernetes that provides network-aware and resource-
oriented deployments based on a labeling system. The
labeling system adds key-value pairs to nodes and
refers to them during deployment. For verification, they
implemented an architecture for video streaming with
devices placed in edge and cloud and defined the target
nodes for deployment in corresponding deployment
manifests. K8s used the former defined key-value pairs
and realized a location-aware deployment based on
labels and the definitions in the deployment manifests.

Custom Edge Architectures. The third category reveals a
conceptual overview of solutions that tackle the edge
layer specifically for orchestration purposes. In [92],
a fog architecture with K8s was proposed to deploy
multi-container applications on low-power devices.

Several plugins extended the default KS to accom-
plish an efficient and location-aware deployment of
containers. Multi-container applications are deployed
on neighboring nodes. An evaluation yielded that the
service quality was not compromised. [93] suggested a
decoupled and native modification for K8s to imple-
ment location-aware, latency-aware, and fault-tolerant
deployments. Deployments are calculated by the usage
of an external component that passes these deploy-
ments to an unmodified K8s cluster. A robust integra-
tion into K8s was achieved by running an additional
component directly on K8s that interacts with the API
of the cluster. To validate the solution, the authors
performed experiments on allocation performance and
failover time. [66] developed an edge solution for indus-
trial IoT that reduces the scheduling time. They applied
the technique of single-step scheduling via a custom
scheduler to pursue latency-aware deployments, an
improved deployment time, and a lower temperature
of all nodes in the cluster. In an evaluation, they
showed that the scheduling time could be reduced.
Also, they monitored latency, jitter, and packet loss dur-
ing the scheduling process. An agent-based approach
for orchestration of fog architectures was considered
in [94]. They addressed inherent issues of K8s, like
high-load on the master node in the scheduling process.
To overcome this problem, they replaced the default KS
that addresses only the fog layer. Selected scheduling
tasks (e.g., node filtering, sorting, and scoring) were
shifted to several nodes in the cluster. They evaluated
their identified solution for a small number of replicas
(< 10) and obtained that it needed less deployment time
compared to the default approach.

4.3. General Limitations of Kubernetes for Edge
Orchestration
This section discusses the limitations of K8s as an
orchestration platform for cloud-edge orchestration. We
categorized these limitations in resource-awareness and
architectural shortcomings. A graphical representation
of all shortcomings is depicted in Figure 5 and is
explained in detail in the following section with the
corresponding numbers 1 - 8 .

Resource-Awareness. A major challenge in cloud-edge
orchestration is dealing with real-time resource
demands and supplies. The most important
resources that must be tracked are CPU, memory,
storage, and network utilization. Circumstances
in cloud-edge environments can rapidly change.
Appropriate actions, like offloading and scaling,
in the environment must be triggered as soon as
possible. K8s shows several limitations in this regard,
as shown in Figure 5. Limitation 1 reveals that
the default KS (sched) considers only CPU and

9 EAI Endorsed Transactions
on Smart Cities

03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

Sebastian Böhm and Guido Wirtz

Multi-container application

Worker node W1
3.5 / 4 vCPU

3584 / 4096 MB

Worker node W2
0.5 / 1 vCPU
0 / 1024 MB

Master node / Control plane

etcd

Custom

Container C0
0.25 vCPU

256 MB

Container C3

Container C2

Container C1
0.25 vCPU

512 MB

Pod
C0

7

Worker node W3
0.5 / 1 vCPU

1280 / 2048 MB

C1

C2

C3

C0'

C0''

HPA

2
1

3

4

4

4

5

6

6

6 7

7

7
7

8

8

8

Control plane

(replicated)

Control plane

(replicated)

Cloud

Edge

Edge

Figure 5. Selected Limitations of Kubernetes as Platform for Cloud-Edge Orchestration

memory utilization during the scheduling process.
However, as outlined in the previous sections,
network-related metrics [21, 26, 66, 87, 92, 93]
and energy consumption [26, 87] are important to
meet the requirements in edge and IoT computing.
Especially latency plays a vital role in scheduling
containerized applications because the primary goal of
edge computing is to respond faster than comparable
cloud deployments. K8s does not provide a built-in
mechanism to run deployments based on latency
and bandwidth. This might limit the applicability
in cloud-edge environments [26, 87, 89, 92, 93].
Furthermore, the default KS assigns pods to nodes
by the usage of node filtering, sorting, and scoring.
New workloads are scheduled one by one at a time.
Potentially desirable priorities assigned to pods are not
considered [21, 26, 86, 92]. In addition, the default KS
assigns pods to nodes by using static resource demand
and supply. Resource requirements of a containerized
application are defined statically by the developers.
During the scheduling process, eligible nodes are
selected based on the remaining static resources. After
the successful assignment, the available resources are
reduced by the demanded resources of the container.
Figure 5 shows an example of the static resource
assignment: Container C0 requires 0.25 vCPU and
256 MB of memory. As next step, the KS applies node
filtering, sorting, and scoring and finally elects worker
node W1 in this example. The available resources on
W1 are reduced by the demanded resources of C0.
This temporarily leads to 3.75 vCPU and 3840 MB of
memory (not shown in W1). This static resource-based
procedure could lead to unassigned pods if no suitable

node can be found for an assignment. K8s will never
move pods from one node to another in order to free up
resources. In addition, this procedure may cause under-
utilization of particular nodes if resource assignments
are far away from the real usage [26, 92]. Limitation 2
shows how the HPA is acting if particular thresholds
are exceeded. In this example, the HPA scales out to
two additional instances, C0’ and C0”. Depending
on the available resources of the other nodes, pods
are assigned equally to the remaining nodes. This
results in one additional pod with C0’ on W1 and
one additional pod with C0” on W3, which finally
leads to 3.5 vCPU and 3584 MB of memory on W1. As
already mentioned, the scaling approach does only
work based on CPU and memory utilization that is
tracked in real-time. Therefore, these and other metrics
(e.g., latency and bandwidth) could even be used to
trigger offloading and scaling in cloud-edge systems.
However, it is noteworthy that the costs for shifting
applications or tasks from cloud to edge or vice versa
should be regarded in scaling and offloading activities.
This might prevent unnecessary offloading actions
that are also reducing carbon footprint [26, 87]. Since
optimizing latency is one of the primary goals in cloud-
edge orchestrations, multi-container applications
in different pods are supposed to be placed on the
same node or on nodes close to each other [26, 92].
As shown in limitation 3 , K8s does not necessarily
follow this requirement because it tries to achieve a
uniform distribution of applications among nodes. In
this example, only C1 and C2 are deployed in pods
on the same node (W2), whereas C3 is deployed in
one pod on W3. This finally leads to 0.5 vCPU and

10 EAI Endorsed Transactions
on Smart Cities

03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

Cloud-Edge Orchestration for Smart Cities: A Review of Kubernetes-based Orchestration Architectures

0 MB of memory on W2 and 0.5 vCPU and 1280 MB
of memory on W3. The last downside in regards to
resource-awareness is the missing understanding of
network topology. K8s treats all nodes as homogeneous
with similar capabilities even if they are placed at
geographically different locations. For example, W2
and W3 are low-performance edge devices with a
weak CPU and slow main memory and are placed
at the edge, as depicted in limitation 4 . However,
cloud-edge architectures are usually consisting of
heterogeneous nodes in a geographically distributed
environment [26, 86, 87, 89, 91–93, 95].

Architectural Shortcomings. The second category of
shortcomings of K8s as cloud-edge orchestration
systems are architecture-related. First, all worker
nodes in K8s are running k-proxy and kubelet as
system components to accept network traffic for
serving network services and to interact with the
master node to receive new instructions. However,
as shown in limitation 5 , both components are
permanently requested, which might burden low-
end devices and mitigate performance. K8s reveals a
centralized organization where the control plane is
managing the set of worker nodes. In edge computing,
the decentralized nature is one core characteristic that
might break if K8s is used to assign workloads to
nodes. Even if the control plane is fully replicated
and running in high availability mode [90], as
shown in limitation 6 , the requirement providing
computational resources in a decentralized manner is
violated [86, 92, 94]. Limitation 7 covers that edge
computing networks consist of a large number of
devices, as already discussed in Section 2.2. However,
one single K8s cluster can manage at most 5000
nodes with 150000 pods and 300000 containers.11 Very
large edge computing networks must have additional
concepts to overcome this limitation, e.g., by the usage
of cluster federation [88, 95]. Lastly, limitation 8
reveals that K8s does not hold a network topology of
nodes in the cluster and can not deploy to specific
nodes. Hence, the distributed nature of cloud-edge
clusters is degraded because all nodes in the cluster are
assumed to be homogeneous [86].

4.4. Potential Solutions for Kubernetes as Edge
Orchestration Platform

The former section discussed several shortcomings
of K8s for cloud-edge orchestration. This section
presents potential solutions which help to overcome
these shortcomings.

11Kubernetes documentation - Considerations for large clusters

2

1

3

4 Custom Metrics Server

Custom

Real-time CPU, memory,
latency, bandwidth, and
jitter metrics

5

6

8

7

Neglectible
because of already established cloud-edge architectures

Multiple clusters, e.g., per region by cluster federation

Assign labels to nodes to introduce a topology

Custom Scheduling/Scaling

HPA

Adjusted recompiled,
native, or extended
scheduler running

instead of / alongside the
default scheduler (KS)R

es
ou

rc
es

A
rc

hi
te

ct
ur

e

Lightweight Kubernetes

Figure 6. Potential Solutions for Kubernetes as Cloud-Edge
Orchestration System

Providing Resource-Awareness. Figure 6 shows potential
solutions for the shortcomings of K8s for edge orches-
tration. The solutions are mapped to the shortcomings
described in Figure 5 with the corresponding num-
bers 1 - 8 . The most apparent limitation of K8s for
edge orchestration is the missing capability to con-
sider other metrics like CPU and memory resources,
as referenced by 1 and 2 . This applies especially
to latency, bandwidth, energy consumption, and costs
for offloading and scheduling activities, also in regards
to real-time monitoring capabilities. Several authors
implemented the collection of custom metrics, like
latency and bandwidth, with additional containerized
applications, which are running alongside the default
metrics server. The collected metrics are further ana-
lyzed by custom schedulers that are running alongside
the default KS [86, 88, 89, 94, 95]. In addition, the
expandability of K8s allows for an implementation of
custom and native schedulers that can run in collabo-
ration with the default scheduler or exclusively.12 Also,
there are already implementations that are using the KS
with so-called scheduler extenders to alter the schedul-
ing algorithm and outcome of the default KS [26, 92].
For example, the filter and scoring step based on predi-
cates can be modified. Recompiling the default KS with
modified and additional predicates leads to overcoming
the already outlined shortcomings, as shown by [92].
Another possibility to alter the workload allocation
policy is to calculate new deployments with custom
orchestrators running as containers in the cluster, as
done by [91, 93]. Moreover, the issue with unscheduled
pods in case of an inefficient distribution of pods on

12Kubernetes documentation - Configure Multiple Schedulers

11 EAI Endorsed Transactions
on Smart Cities

03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

https://kubernetes.io/docs/setup/best-practices/cluster-large/
https://kubernetes.io/docs/tasks/extend-kubernetes/configure-multiple-schedulers/

Sebastian Böhm and Guido Wirtz

nodes must be addressed. In this case, schedulers can
divide the deployment and distribute the containers to
different nodes [92]. Moving containers might be an
option as well [89]. However, this solution lets the issue
of static resource assignments unresolved. A potential
under- and over-utilization is still at risk. For this,
custom schedulers and custom metrics servers can be
implemented to allow for real-time metrics, even dur-
ing scheduling. Placing multi-container applications on
different nodes is a further issue, as shown in limita-
tion 3 . To optimize latency, applications consisting of
multiple containers should be actually deployed on the
same node, respectively, on nodes near to each other.
Based on labels, so-called affinities, and custom sched-
ulers, K8s can be forced to perform the deployment
only on a subset of nodes [89, 91–93]. This strategy is
also used to introduce a network topology covered as
an architectural shortcoming. Lastly, K8s assumes all
nodes to be homogeneous as summarized by limita-
tion 4 . This is not a problem in the first place since
scheduling and scaling with the HPA works with the
nodes’ individual resource supply. However, as already
discussed, the performance may suffer if devices with
weak specifications are treated equally as powerful
devices. Since cloud-edge architectures consist of het-
erogeneous devices, deployments must be fairly dis-
tributed. For this, labels, affinities, and custom sched-
ulers can be used to provide efficient deployments [26].

Implementing Cloud-Edge Architectures. K8s requires the
nodes to run additional components to operate as a
cluster member, as depicted in limitation 5 . This
involves some additional overhead on the single cluster
members. However, there are plenty of studies that
have benchmarked K8s and lightweight distributions
that are especially suitable for the edge and IoT
devices. As a result, the additional components
do only have a small impact on the performance,
especially if lightweight K8s is used [96]. Actually,
cloud-edge architectures should be in line with the
characteristics of a decentralized architecture, as
referenced by 6 . Therefore, they should not use
any centralized architecture, as is the case with K8s.
However, this requirement can be relaxed because
there are a lot of examples already that are using
centralized architectures for all essential activities
of orchestration [86, 89, 91]. Especially agent-based
approaches have already been implemented with K8s
in the field of edge computing [86, 94]. Limitation 7
shows that single K8s clusters have a limitation of
at least 5000 nodes with 150000 pods and 300000
containers in total. This limitation is solvable by
introducing multiple independent clusters (e.g., by
region) or by cluster federation, as shown by [88,
95]. The missing network topology of K8s can be

seen as the most serious issue for running cloud-
edge orchestrations and is listed as limitation 8 .
Section 2.2 discussed various provision models that
must be supported by edge orchestration. For example,
edge offloading requires detailed knowledge about the
location and assignments of nodes to layers. Hence, for
orchestration of cloud-edge environments, K8s must be
aware of the network topology to support the different
edge technologies and provision models. As a potential
solution, labels can be assigned to nodes, and with so-
called affinities and anti-affinities, the assignment of
pods to nodes can be controlled. The solutions that have
been investigated in this paper use affinities to address
a particular layer and add supplementary context
information, like the geographical target location [89,
91–93] or the device type [26].

5. Limitations of the Proposed Solutions
The investigated implementations showed plenty of
solutions to overcome the mentioned resource- and
architecture-related limitations. However, these solu-
tions still have unresolved issues and shortcomings that
must be regarded when running cloud-edge architec-
tures. This section presents an overview of the short-
comings we identified in the considered solutions. In
line with Section 4.3 and Section 4.4, we present the
limitations divided in resource and architectural solu-
tions. Table 1 shows an overview of the resource and
architectural requirements and their degree of achieve-
ment. We differentiate between fully supported (●),
partially supported (❍), not supported (no circle), or
where no details could be found (✲).

5.1. Resource-related Solutions
Most of the considered solutions are regarding the cloud
and the edge layer. The most frequent architectural
design consists of a cloud node and a set of worker
nodes located in the edge layer. The cloud node
runs the control plane with modified components and
the edge nodes are in charge of running the actual
workloads. However, there are plenty of solutions
that include only the edge layer in their architecture.
Most of the authors have used custom containerized
schedulers that are replacing the native KS. [93]
and [26] are running a custom scheduler [93] or an
extender [26] alongside an unmodified default KS (❍).
Some proposals are working without any modifications
on the scheduling component and have used implicit
scheduling [90, 91]. Another approach used only
affinities and anti-affinities to modify the scheduling
behavior [91]. Only one solution provided a recompiled
scheduling component that is responsible for the entire
cloud-edge orchestration [92]. Almost all solutions
considered at least CPU, memory, and disk resources.
Most of the solutions are only aware of static

12
EAI Endorsed Transactions

on Smart Cities
03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

Cloud-Edge Orchestration for Smart Cities: A Review of Kubernetes-based Orchestration Architectures

Table 1. Comparison of Resource-Awareness and Architectural Capabilities in Different Kubernetes Implementations for Cloud-Edge
Architectures [58]

Resource-Awareness Architectural Capabilities
C

lo
ud

Ed
ge

Io
T

R
ec

om
pi

le
d

N
at

iv
e

Ex
te

nd
er

C
us

to
m

C
P

U

M
em

or
y

D
is

k

En
er

gy

La
te

nc
y

B
an

dw
id

th

K
8s

A
P

I

C
us

to
m

C
lo

ud

Ed
ge

Io
T

Sc
al

in
g

O
ffl

oa
di

ng

Ed
ge

-o
nl

y

C
lu

st
er

C
on

tr
ol

pl
an

e

C
lu

st
er

st
or

ag
e

C
lo

ud

Ed
ge

R
ep

lic
at

ed

Authors Year Layer Scheduler Resources Network Metrics Topology Provision
model

Fault-
tolerance

Container
registry

[86] Han 2021 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

[92] Kayal 2020 ● ● ❍ ❍ ❍ ❍ ❍ ● ● ●

[87] Kaur 2020 ● ● ● ● ● ● ● ✲ ❍ ❍ ❍ ❍ ● ● ✲

[93] Eidenbenz 2020 ● ❍ ● ❍ ❍ ❍ ● ● ● ● ✲

[88] Goethals 2020 ● ● ● ❍ ❍ ❍ ● ❍ ● ● ● ✲

[21] Ogbuachi 2020 ● ● ● ● ● ● ● ● ● ●

[26] Santos 2019 ● ● ❍ ● ● ❍ ❍ ❍ ❍ ❍ ❍ ● ● ● ❍ ● ● ● ●

[94] Casquero 2019 ● ● ❍ ❍ ❍ ❍ ● ● ●

[89] Haja 2019 ● ● ● ❍ ❍ ❍ ● ❍ ● ● ● ● ● ✲

[90] Javed 2018 ● ● ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ● ❍ ✲

[91] Wöbker 2018 ● ● ❍ ❍ ❍ ❍ ❍ ● ● ● ❍ ● ●

● = fully supported; ❍ = partially supported; no circle = not supported; ✲ = n/a

resource assignments (❍) for scheduling decisions.
A few solutions used real-time metrics (●) even
for scheduling decisions. [87] also integrated the
energy consumption for such decisions that might
be important when devices are running on battery.
Latency-aware deployments are inevitable in edge
computing. For this, latency and bandwidth must
be considered properly. Most solutions have used
periodic latency measurements (●) to achieve those
deployments. Other solutions relied on predefined and
static assignments (❍). For bandwidth, which was
rarely considered in the investigated solutions, there
are periodic (●) checks [87] as well as static (❍)
definitions [26]. For measuring the current CPU and
memory utilization, usually, an unmodified version of
the K8s API (❍) is used. To extend the set of metrics
that can be used for scheduling and scaling, plenty of
the investigated solutions just used the unmodified K8s
API. [88] and [89] enriched this API with custom (●)
containers and functionalities. One solution [93] is
replacing the K8s API entirely with a version that
is fully compatible to K8s and measures the latency
between nodes. Missing explanations were also the
case (✲).

5.2. Architectural Solutions
After reviewing resource-awareness, we will evaluate
the architectural capabilities. Topology-awareness can
be seen as one of the most important requirements.
Only a few authors allow for deployment and
scheduling to cloud and edge nodes explicitly (●). The
solutions presented by [87, 90] take cloud and edge

nodes as one single topology (❍) to run workloads.
Mostly, only the edge layer is fully considered. Also,
workloads are not supposed to be shifted among the
cloud and edge layers. Solutions proposed by [26, 86,
91] support the scaling model where workloads can
be run on cloud and edge simultaneously (●). The
implemented schedulers of [87, 90] support scaling
to edge only implicitly (❍). Explicit offloading (●) is
seldom supported because, as already outlined, the
cloud layer is usually used for the cluster managers and
orchestrators and not workloads. Implicit offloading (❍)
occurs if nodes are failing and workloads are shifted
and restarted on other nodes by K8s automatically.
This is only possible for architectures where workloads
are potentially running on cloud and edge. Nearly
all architectures fully facilitate edge-only deployments
where workloads are deployed on the edge layer to
reduce latency (●). Perhaps, workloads are also moved
across the edge layer during application runtime to
improve the latency further. In case users or the HPA are
increasing the number of replicas and only edge nodes
are available as computational resources, workloads are
partially scaled out (❍). Fault-tolerance of K8s itself
was poorly covered in the orchestration architectures.
Even if the deployments of applications offer high
availability, crashing master nodes that are carrying the
control plane with essential components for scheduling,
scaling, monitoring, and resiliency features mitigate the
fault-tolerance of the entire architecture and limit the
application in critical areas. [86] and [87] are using
geographically independent (●) K8s clusters for fault-
tolerance. The control plane, however, is not replicated
using at least three master nodes (●) for production

13
EAI Endorsed Transactions

on Smart Cities
03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

Sebastian Böhm and Guido Wirtz

environments.13 A fault-tolerant architecture was only
developed by [90] with three master nodes that are
running replicas of the distributed key-value store etcd
as cluster storage. This kind of deployment is also
called stacked cluster storage setup (❍).14 As a general
recommendation, it is worth considering decoupling
etcd from the master nodes and providing an
independent external cluster storage (●). This external
cluster storage achieves better resiliency and reduces
the load on the master nodes as well. Particularly, this
is recommended for environments that need to handle
a large number of nodes.15 Container registries are
mainly located in the cloud in a non-geographically
replicated manner. However, the geographical location
of these registries is essential because the highly
distributed edge nodes need to download containerized
workloads in a small amount of time, for example,
if workloads are supposed to be scaled, offloaded,
or moved following the edge-only provision model.
It is inevitable to follow a reasonable strategy by
placing container registries at different locations to
follow the superior goal of latency reduction in
edge computing and edge orchestration. In the set
of implementations, only one implementation [26]
has used a fully replicated container registry across
cloud (●) and edge (●). One further solution, provided
by [91], placed the container registry on the edge
layer (●) to accelerate the deployment process. In most
of the works considered in this survey, the placement
of container registries is neglected and not specified or
further discussed (✲).

6. Discussion
This section discusses the evaluation of the K8s-based
solutions in the former section. In Section 6.1, we
present a summary of our results by answering the
research questions. Afterward, Section 6.2 discusses the
limitations of our study. We conclude this section with a
short assessment if the efforts making K8s ready for the
edge computing and edge orchestration, even for SCs,
should be retained.

6.1. Findings
In this work, we performed an analysis of the capabili-
ties of K8s to orchestrate cloud-edge architectures, also
for SCs. For this, we obtained fundamental characteris-
tics of the SC concept, edge computing, edge orchestra-
tion, and K8s as container orchestration platform.

We analyzed several studies that considered K8s
as a basis for cloud-edge orchestration activities. The

13Kubernetes documentation - Production environment
14Kubernetes documentation - Options for Highly Available Topology
15Kubernetes documentation - Production environment

findings from these steps allow us to answer RQ1,
in which we want to identify the most critical
requirements for cloud-edge orchestration and their
coverage by K8s.

RQ1. We categorized the essential requirements of
cloud-edge orchestration in resource- and architecture-
related ones. First, we identified the set of layers a
cloud-edge orchestrator should manage. Second, we
obtained that considering real-time resource utilization
and providing network awareness are a primary focus,
especially with dynamic changes over time. For the
architectural requirements, it is important to consider
the network topology as most important aspect. Further,
the support of different provision models and the
implementation of fault-tolerance, also for all core
services, are essential for cloud-edge environments
with production readiness. K8s already provides some
of these required aspects. Scheduling and horizontal
scaling based on CPU and memory are supported.
In addition, K8s allows for setting up clusters in
high availability mode. As stated by [83], cloud-edge
architectures are subject to dynamic changes in the
infrastructure. In specific, it is a common event that
the number of nodes changes over time by adding and
removing nodes [66]. However, this was not covered
in our study in detail because K8s supports adding
and removing nodes during runtime by default.16

Security was also not in the scope of our study because
the communication of the system components of K8s
are secured via HTTPS by default and provide a
built-in system for authentication and authorization.17

As already indicated, there are various shortcomings
of K8s for cloud-edge orchestration. First, resource-
awareness is only partially covered. K8s is mainly
built for the cloud and not designed for working
on a heterogeneous structure [93]. A further issue is
the missing support for real-time resource utilization
during scheduling. The most severe shortcoming is
that no network-related metrics in scheduling and
scaling tasks are considered. Regarding architectural
shortcomings, the missing topology-awareness limits
the orchestration capabilities significantly. Hence,
the usage of K8s might be restricted to edge-only
deployments exclusively. K8s implements a centralized
scheduler to perform assignments of workloads to
nodes and to manage the overall cluster. This violates
the decentralized notion of edge computing. We argue
that this issue can be relaxed because there are already
established non-K8s-based cloud-edge architectures,
even with centralized components that take care of the
architecture [97, 98]. For orchestration activities like

16Kubernetes documentation - Safely Drain a Node
17Kubernetes documentation - Controlling Access to the Kubernetes
API

14
EAI Endorsed Transactions

on Smart Cities
03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

https://kubernetes.io/docs/setup/production-environment/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/ha-topology/
https://kubernetes.io/docs/setup/production-environment/
https://kubernetes.io/docs/tasks/administer-cluster/safely-drain-node/
https://kubernetes.io/docs/concepts/security/controlling-access/
https://kubernetes.io/docs/concepts/security/controlling-access/

Cloud-Edge Orchestration for Smart Cities: A Review of Kubernetes-based Orchestration Architectures

task offloading, a centralized management is used very
frequently, as shown in a comprehensive survey by [85].

This work also analyzed the state-of-the-art of K8s-
based cloud-edge orchestration. In addition, we dis-
cussed general limitations for edge orchestration. These
steps allow answering RQ2 that aims to investigate the
benefits and drawbacks of cloud-edge architectures
based on K8s.

RQ2. There are many solutions that solve essential
shortcomings of K8s for edge computing. Especially
the capabilities in regards to resource-awareness
have been significantly improved by adding custom
schedulers that regard other resources like CPU and
memory. In specific, the capabilities for network-aware
deployments were targeted. Besides that, topology-
awareness has been added to get K8s ready for
the edge by overcoming architectural shortcomings.
Nonetheless, there is still room for improvement.
Support for multiple provision models, fault-tolerance
of the cluster architecture, and the placement of
container registries must be implemented.

Based on the qualitative analysis of K8s-based
implementations for edge orchestration, we identified
drawbacks and are able to assess the solvability and
the corresponding amount of effort to answer RQ3.

RQ3. From our understanding, most of the problems
are solvable in an appropriate amount of time
because partial solutions can be combined to derive
a unified solution. We are convinced that resource-
related issues can be solved. Our survey showed that
many solutions considered only the edge layer to be
managed by K8s. However, if the number of nodes
and devices is increasing nonetheless, multiple clusters
can be connected by cluster federation18. Furthermore,
many components of K8s can be replaced or extended,
for example, the scheduler to implement the resource-
related shortcomings. Implementing a native scheduler
with custom scheduling algorithms and scaling policies
for the edge is a complex task [93]. This might be the
reason why we could not obtain a large number of
native implementations. Lastly, K8s allows modifying
the metrics sever to add further metrics that can
enhance the overall placement decisions.

We conclude that essential architectural shortcom-
ings can be solved as well. In specific, network topology,
support for different provision models, deployments,
and cluster setups with high availability and placement
of container registries were not a major focus in the
investigated solutions. Essential capabilities like fault-
tolerance by replicating clusters, their core services, or
geographically distributed container registries can be
implemented quickly. However, this requires accepting

18GitHub - kubefed

a trade-off. In favor of a unified and universal cloud-
edge orchestration, the criteria following a decentral-
ized architecture might be relaxed.

Finally, this work presented an overview of essential
aspects of SCs. Also, a short review of already
established approaches for edge computing in SC
contexts has been covered. This supports us to answer
RQ4 appropriately where we need to discuss if K8s
is an eligible candidate for providing demand- and
supply-aware deployments for a SC context.

RQ4. As outlined in Section 2.1, a SC aims to
improve the quality of living in urban life. From
an IT-related perspective, this is mostly done by the
usage of IoT technology. However, new challenges
arise due to the rising number of devices and the
emergence of critical services, like smart traffic control
systems. Based on our theoretical investigation, we
can argue that multi-tenancy, security, fault-tolerance,
and providing low-latency for real-time systems are
major concerns that are not fully resolved by the
existing solutions so far. A revised usage of K8s can
positively contribute to overcoming these issues. Also,
in SCs, the number of applications is continuously
increasing. The types of applications are also changing
over time, which requires a flexible management of
an IT infrastructure at scale. For such large-scale
deployments, an efficient orchestration system based
on K8s might be beneficial. From our perspective, K8s
fulfills several essential requirements already that can
be further improved. As discussed, real-time resource
supplies and demands, network-related metrics, and
the missing understanding of network topology are
major issues that should be solved if K8s is working as
a unified solution for deployments in SCs.

6.2. Threats to Validity
We aligned the set of evaluation criteria to critical
requirements of SCs, edge computing, edge orchestra-
tion, and the shortcomings of K8s. As a matter of fact,
the set of evaluation criteria might be incomplete and
a simplification. Also, it is still to question if the cus-
tom implementations are comparable because they fol-
low different approaches and objectives by solving the
shortcomings of K8s. In addition, we investigate cen-
tralized, decentralized, and mixed architectures equally
without further differentiation. Nonetheless, we argue
that mission-critical requirements in edge computing
for SC contexts must be met. Our evaluation assumed
that all solutions must support the essential provision
models in edge computing. According to our study,
edge-only deployments are the most frequent provi-
sion model. Therefore, it is to question whether all
solutions must cover all provision models. The same
applies to the layer aspect, where the layer might
depend on the goals of the proposed solutions. Lastly,

15
EAI Endorsed Transactions

on Smart Cities
03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

https://github.com/kubernetes-sigs/kubefed

Sebastian Böhm and Guido Wirtz

we considered a general K8s-based solution for edge
orchestration and did not filter the set of solutions
by those solutions that explicitly attempt to be used
for SCs. Some solutions [26, 88] were explicitly used
in SC environments and contributed to the validity of
our evaluation. Nonetheless, the principles, core con-
tributions, and requirements of related cloud-edge and
edge orchestration architectures are not significantly
different from architectures that cover SCs in specific.

7. Conclusion and Future Work
The vision of SCs equips urban environments with ICT
to improve citizens’ quality of life. However, the large
number of heterogeneous applications and devices
with different resource requirements constitute new
challenges. Cloud-edge orchestration offers an efficient
way to distribute workloads based on resource demands
and supplies. Especially reducing the communication
latency for real-time applications is one of the main
incentives to focus on these activities. Mostly, container
technology is used to distribute those workloads on a
set of nodes. For managing large and complex container
orchestration, K8s is considered to be the state-of-the-
art solution. However, many authors claimed that K8s,
which is mainly built for cloud computing, lacks
significant features. Therefore, they contributed several
improvements to make it ready for the edge.

This paper evaluated the most recent architectural
proposals that tackle the most significant issues
of edge orchestration. To perform our evaluation,
we based our survey on the essential requirements
of SCs, edge computing, edge orchestration, and finally
native K8s. This paper contributes a state-of-the-
art overview of established cloud-edge architectures
that are also suitable to manage the complexities of
SC architectures. It can be seen as an overview of
requirements that are already solved by these solutions
and issues that are still unresolved.

We identified plenty of benefits and drawbacks of
the investigated architectures, which also influence the
applicability of K8s to SC contexts. Issues like real-time
resource utilization, network-awareness, and network
topology have been solved quite well so far. However,
aspects like providing multiple provision models
(i.e., offloading, scaling, and edge-only deployments)
still have room for improvement. In addition, fault-
tolerant cluster architectures for managing cloud-edge
environments are still in the early stages. The ideal
placement strategy for container registries was also not
in focus of the cloud-edge environments we considered.
Furthermore, we assessed if the shortcomings of K8s
are solvable with an appropriate amount of effort to
enable a long-term cloud-edge orchestration with K8s.
In conclusion, since there are already partial solutions
for most of these issues, K8s should still be retained

as a container orchestration platform for cloud-
edge systems. Since K8s offers solutions for essential
requirements of cloud-edge orchestration and SC
environments, further research should still be in focus.
Using K8s as an advanced orchestration system in SC
context can foster the implementation of valuable
services that have a positive impact on people’s and
society’s well-being. Furthermore, the government can
be released through these developments since more and
more administrative tasks can be automated.

We still consider K8s as container orchestration plat-
form for cloud-edge architectures and plan to imple-
ment a unified orchestration platform. A high degree
in standardization (e.g., custom schedulers, custom
metric APIs, and architectural recommendations) can
support the relevance of K8s in cloud-edge architec-
tures. In the future, we plan to follow this defined
goal by providing architectural blueprints that help to
deploy K8s in production, in specific for a SC context
that requires a high degree of flexibility for different
demands. Furthermore, we want to foster the standard-
ization of generic cloud-edge orchestration strategies,
algorithms, and policies. Detailed instructions and pro-
viding standardized APIs can contribute to a broader
usage of K8s, even for standalone edge orchestration
algorithms, strategies, and policies that are using their
own container orchestration solution. The public avail-
ability of architectural blueprints in a centralized repos-
itory with established standalone solutions can foster
the popularity of K8s for edge orchestration. In order
to examine the feasibility of the proposed architectural
blueprints, we want to provide reference implementa-
tions that are tested at scale to evaluate if K8s can finally
run large-scale cloud-edge architectures.

References

[1] Sebrechts, M., Borny, S., Wauters, T., Volckaert, B. and
Turck, F.D. (2021) Service relationship orchestration:
Lessons learned from running large scale smart city
platforms on kubernetes. IEEE Access 9: 133387–133401.

[2] Ramaprasad, A., Sánchez-Ortiz, A. and Syn, T. (2017)
A unified definition of a smart city. In Lecture Notes in
Computer Science, 13–24.

[3] Santos, J., Vanhove, T., Sebrechts, M., Dupont, T.,
Kerckhove, W., Braem, B., Seghbroeck, G.V. et al. (2018)
City of things: Enabling resource provisioning in smart
cities. IEEE Communications Magazine 56(7): 177–183.

[4] Su, K., Li, J. and Fu, H. (2011) Smart city and
the applications. In 2011 International Conference on
Electronics, Communications and Control (ICECC) (IEEE).

[5] Gaur, A., Scotney, B., Parr, G. and McClean, S. (2015)
Smart city architecture and its applications based on IoT.
Procedia Computer Science 52: 1089–1094.

[6] hoon Kim, T., Ramos, C. and Mohammed, S. (2017) Smart
city and IoT. Future Generation Computer Systems 76:
159–162.

16
EAI Endorsed Transactions

on Smart Cities
03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

Cloud-Edge Orchestration for Smart Cities: A Review of Kubernetes-based Orchestration Architectures

[7] Eremia, M., Toma, L. and Sanduleac, M. (2017)
The smart city concept in the 21st century. Procedia
Engineering 181: 12–19.

[8] Atzori, L., Iera, A. and Morabito, G. (2010) The internet
of things: A survey. Computer Networks 54(15): 2787–
2805.

[9] Mohamed, N., Al-Jaroodi, J. and Jawhar, I. (2019)
Towards fault tolerant fog computing for IoT-based
smart city applications. In 2019 IEEE 9th Annual
Computing and Communication Workshop and Conference
(CCWC) (IEEE).

[10] Tcholtchev, N. and Schieferdecker, I. (2021) Sustain-
able and reliable information and communication tech-
nology for resilient smart cities. Smart Cities 4(1): 156–
176.

[11] Kumar, V., Laghari, A.A., Karim, S., Shakir, M. and
Brohi, A.A. (2019) Comparison of fog computing &
cloud computing. Int. J. Math. Sci. Comput 1: 31–41.

[12] Lau, B.P.L., Marakkalage, S.H., Zhou, Y., Hassan, N.U.,
Yuen, C., Zhang, M. and Tan, U.X. (2019) A survey of
data fusion in smart city applications. Information Fusion
52: 357–374.

[13] Shahrour, I. and Xie, X. (2021) Role of internet of things
(IoT) and crowdsourcing in smart city projects. Smart
Cities 4(4): 1276–1292.

[14] Balakrishna, C. (2012) Enabling technologies for smart
city services and applications. In 2012 Sixth International
Conference on Next Generation Mobile Applications,
Services and Technologies (IEEE).

[15] Laghari, A.A., He, H., Shafiq, M. and Khan, A. (2016)
Assessing effect of cloud distance on end user's quality
of experience (QoE). In 2016 2nd IEEE International
Conference on Computer and Communications (ICCC)
(IEEE).

[16] Cao, J., Zhang, Q. and Shi, W. (2018) Edge Computing: A
Primer (Springer International Publishing).

[17] Shi, W., Cao, J., Zhang, Q., Li, Y. and Xu, L. (2016)
Edge computing: Vision and challenges. IEEE Internet of
Things Journal 3(5): 637–646.

[18] Caragliu, A., Bo, C.D. and Nijkamp, P. (2011) Smart
cities in europe. Journal of Urban Technology 18(2): 65–
82.

[19] Satyanarayanan, M. (2017) Edge computing. Computer
50(10): 36–38.

[20] Laghari, A.A., He, H., Memon, K.A., Laghari, R.A.,
Halepoto, I.A. and Khan, A. (2019) Quality of
experience (QoE) in cloud gaming models: A review.
Multiagent and Grid Systems 15(3): 289–304.

[21] Ogbuachi, M.C., Reale, A., Suskovics, P. and Kovács,

B. (2020) Context-aware kubernetes scheduler for edge-
native applications on 5g. Journal of communications
software and systems 16(1): 85–94.

[22] Morabito, R. (2017) Virtualization on internet of things
edge devices with container technologies: A performance
evaluation. IEEE Access 5: 8835–8850.

[23] Pahl, C. and Lee, B. (2015) Containers and clusters for
edge cloud architectures – a technology review. In 2015
3rd International Conference on Future Internet of Things
and Cloud (IEEE).

[24] Amaral, M., Polo, J., Carrera, D., Mohomed, I.,
Unuvar, M. and Steinder, M. (2015) Performance eval-
uation of microservices architectures using containers.
In 2015 IEEE 14th International Symposium on Network
Computing and Applications: 27–34.

[25] Barika, M., Garg, S., Zomaya, A.Y., Wang, L., Moorsel,

A.V. and Ranjan, R. (2019) Orchestrating big data
analysis workflows in the cloud. ACM Computing Surveys
52(5): 1–41.

[26] Santos, J., Wauters, T., Volckaert, B. and Turck, F.D.

(2019) Resource provisioning in fog computing: From
theory to practice †. Sensors 19(10): 2238.

[27] Barriga, J.J., Sulca, J., León, J., Ulloa, A., Portero, D.,
García, J. and Yoo, S.G. (2020) A smart parking solution
architecture based on LoRaWAN and kubernetes.
Applied Sciences 10(13): 4674.

[28] Ogawa, K., Kanai, K., Nakamura, K., Kanemitsu,

H., Katto, J. and Nakazato, H. (2019) IoT device
virtualization for efficient resource utilization in smart
city IoT platform. In 2019 IEEE International Conference
on Pervasive Computing and Communications Workshops
(PerCom Workshops) (IEEE).

[29] Kristiani, E., Yang, C.T., Huang, C.Y., Wang, Y.T.

and Ko, P.C. (2020) The implementation of a cloud-
edge computing architecture using OpenStack and
kubernetes for air quality monitoring application. Mobile
Networks and Applications : 1–23.

[30] Albino, V., Berardi, U. and Dangelico, R.M. (2015)
Smart cities: Definitions, dimensions, performance, and
initiatives. Journal of Urban Technology 22(1): 3–21.

[31] Dameri, R. and Cocchia, A. (2013) Smart city and digital
city: twenty years of terminology evolution. ITAIS : 1–8.

[32] Wenge, R., Zhang, X., Dave, C., Chao, L. and
Hao, S. (2014) Smart city architecture: A technology
guide for implementation and design challenges. China
Communications 11(3): 56–69.

[33] Anthopoulos, L. (2015) Defining smart city architecture
for sustainability.

[34] Yin, C., Xiong, Z., Chen, H., Wang, J., Cooper, D. and
David, B. (2015) A literature survey on smart cities.
Science China Information Sciences 58(10): 1–18.

[35] Al-Farabi, M., Chowdhury, M., Readuzzaman, M.,
Hossain, M., Sabuj, S. and Hossain, M. (2018) Smart
environment monitoring system using unmanned aerial
vehicle in bangladesh. EAI Endorsed Transactions on
Smart Cities .

[36] Hollands, R.G. (2008) Will the real smart city please
stand up? City 12(3): 303–320.

[37] Park, S., Park, S., Park, L., Park, S., Lee, S., Lee, T., Lee,
S. et al. (2018) Design and implementation of a smart IoT
based building and town disaster management system in
smart city infrastructure. Applied Sciences 8(11): 2239.

[38] Sakhardande, P., Hanagal, S. and Kulkarni, S. (2016)
Design of disaster management system using IoT based
interconnected network with smart city monitoring. In
2016 International Conference on Internet of Things and
Applications (IOTA) (IEEE).

[39] Tönjes, R., Barnaghi, P., Ali, M., Mileo, A., Hauswirth,

M., Ganz, F., Ganea, S. et al. (2014) Real time iot stream
processing and large-scale data analytics for smart city
applications. In European Conference on Networks and

17
EAI Endorsed Transactions

on Smart Cities
03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

Sebastian Böhm and Guido Wirtz

Communications (sn): 10.
[40] Hafez, R. (2018) A methodical plan towards smart econ-

omy in new egyptian cities. EAI Endorsed Transactions on
Smart Cities .

[41] Mulligan, C.E.A. and Olsson, M. (2013) Architectural
implications of smart city business models: an evolution-
ary perspective. IEEE Communications Magazine 51(6):
80–85.

[42] Saharan, S., Kumar, N. and Bawa, S. (2020) An
efficient smart parking pricing system for smart city
environment: A machine-learning based approach.
Future Generation Computer Systems 106: 622–640.

[43] Baker, N., Szabo-Müller, P. and Handmann, U. (2018)
Transfer learning-based method for automated e-waste
recycling in smart cities. EAI Endorsed Transactions on
Smart Cities .

[44] Siregar, B., Nasution, A.B.A. and Fahmi, F. (2016)
Integrated pollution monitoring system for smart city.
In 2016 International Conference on ICT For Smart Society
(ICISS) (IEEE).

[45] Honarvar, A.R. and Sami, A. (2019) Towards sustainable
smart city by particulate matter prediction using
urban big data, excluding expensive air pollution
infrastructures. Big Data Research 17: 56–65.

[46] Bagchi, S., Siddiqui, M.B., Wood, P. and Zhang, H.

(2019) Dependability in edge computing. Communica-
tions of the ACM 63(1): 58–66.

[47] Laghari, A.A., Jumani, A.K. and Laghari, R.A. (2021)
Review and state of art of fog computing. Archives of
Computational Methods in Engineering 28(5): 3631–3643.

[48] Svorobej, S., Bendechache, M., Griesinger, F. and
Domaschka, J. (2020) Orchestration from the cloud to
the edge. In The Cloud-to-Thing Continuum, 61–77.

[49] Laghari, A.A., Wu, K., Laghari, R.A., Ali, M. and Khan,

A.A. (2021) A review and state of art of internet of things
(IoT). Archives of Computational Methods in Engineering
29(3): 1395–1413.

[50] Laghari, A., Laghari, R., Wagan, A. and Umrani, A.

(2018) Effect of packet loss and reorder on quality
of audio streaming. ICST Transactions on Scalable
Information Systems .

[51] Premsankar, G., Francesco, M.D. and Taleb, T. (2018)
Edge computing for the internet of things: A case study.
IEEE Internet of Things Journal 5(2): 1275–1284.

[52] Bilal, K., Khalid, O., Erbad, A. and Khan, S.U. (2018)
Potentials, trends, and prospects in edge technologies:
Fog, cloudlet, mobile edge, and micro data centers.
Computer Networks 130: 94–120.

[53] Ahmed, E. and Rehmani, M.H. (2017) Mobile edge
computing: Opportunities, solutions, and challenges.
Future Generation Computer Systems 70: 59–63.

[54] Satyanarayanan, M., Bahl, P., Caceres, R. and Davies,

N. (2009) The case for VM-based cloudlets in mobile
computing. IEEE Pervasive Computing 8(4): 14–23.

[55] Al-Tarawneh, M.A.B. (2020) Mobility-aware container
migration in cloudlet-enabled IoT systems using inte-
grated muticriteria decision making. International Jour-
nal of Advanced Computer Science and Applications 11(9).

[56] Qiu, Y., Lung, C.H., Ajila, S. and Srivastava, P. (2017)
LXC container migration in cloudlets under multipath
TCP. In 2017 IEEE 41st Annual Computer Software and

Applications Conference (COMPSAC) (IEEE).
[57] Qiu, Y., Lung, C.H., Ajila, S. and Srivastava, P. (2019)

Experimental evaluation of LXC container migration for
cloudlets using multipath TCP. Computer Networks 164:
106900.

[58] Böhm, S. and Wirtz, G. (2021) Towards orchestration
of cloud-edge architectures with kubernetes. EAI Edge-
IoT 2021 - 2nd EAI International Conference on Intelligent
Edge Processing in the IoT Era .

[59] Varghese, B., Wang, N., Barbhuiya, S., Kilpatrick, P.

and Nikolopoulos, D.S. (2016) Challenges and oppor-
tunities in edge computing. In 2016 IEEE International
Conference on Smart Cloud (SmartCloud): 20–26.

[60] Bonomi, F., Milito, R., Zhu, J. and Addepalli, S. (2012)
Fog computing and its role in the internet of things. In
Proceedings of the first edition of the MCC workshop on
Mobile cloud computing - MCC '12 (ACM Press).

[61] Vaquero, L.M., Cuadrado, F., Elkhatib, Y., Bernal-

Bernabe, J., Srirama, S.N. and Zhani, M.F. (2019)
Research challenges in nextgen service orchestration.
Future Generation Computer Systems 90: 20–38.

[62] Aazam, M., Zeadally, S. and Harras, K.A. (2018)
Offloading in fog computing for IoT: Review, enabling
technologies, and research opportunities. Future Genera-
tion Computer Systems 87: 278–289.

[63] Hong, C.H. and Varghese, B. (2019) Resource manage-
ment in fog/edge computing. ACM Computing Surveys
52(5): 1–37.

[64] da Silva, D.M.A., Asaamoning, G., Orrillo, H., Sofia,
R.C. and Mendes, P.M. (2019) An analysis of fog
computing data placement algorithms. In Proceedings
of the 16th EAI International Conference on Mobile and
Ubiquitous Systems: Computing, Networking and Services
(ACM).

[65] Velasquez, K., Abreu, D.P., Assis, M.R.M., Senna, C.,
Aranha, D.F., Bittencourt, L.F., Laranjeiro, N. et al.
(2018) Fog orchestration for the internet of everything:
state-of-the-art and research challenges. Journal of
Internet Services and Applications 9(1).

[66] Pahl, C., Ioini, N.E., Helmer, S. and Lee, B. (2018) An
architecture pattern for trusted orchestration in IoT edge
clouds. In 2018 Third International Conference on Fog and
Mobile Edge Computing (FMEC) (IEEE).

[67] Casalicchio, E. (2017) Autonomic orchestration of
containers: Problem definition and research challenges.
In Proceedings of the 10th EAI International Conference on
Performance Evaluation Methodologies and Tools (ACM).

[68] Giordano, A., Spezzano, G. and Vinci, A. (2016) Smart
agents and fog computing for smart city applications. In
Smart Cities, 137–146.

[69] Cicirelli, F., Guerrieri, A., Spezzano, G. and Vinci,

A. (2017) An edge-based platform for dynamic smart
city applications. Future Generation Computer Systems 76:
106–118.

[70] Hsieh, Y.C., Hong, H.J., Tsai, P.H., Wang, Y.R., Zhu,

Q., Uddin, M.Y.S., Venkatasubramanian, N. et al.
(2018) Managed edge computing on internet-of-things
devices for smart city applications. In NOMS 2018
- 2018 IEEE/IFIP Network Operations and Management
Symposium (IEEE).

18
EAI Endorsed Transactions

on Smart Cities
03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

Cloud-Edge Orchestration for Smart Cities: A Review of Kubernetes-based Orchestration Architectures

[71] Barthélemy, J., Verstaevel, N., Forehead, H. and
Perez, P. (2019) Edge-computing video analytics for
real-time traffic monitoring in a smart city. Sensors 19(9):
2048.

[72] Hossain, S.A., Rahman, M.A. and Hossain, M.A. (2018)
Edge computing framework for enabling situation
awareness in IoT based smart city. Journal of Parallel and
Distributed Computing 122: 226–237.

[73] Ahsaan, S. and Mourya, A. (2018) Prognostic modelling
for smart cities using smart agents and IoT: A proposed
solution for sustainable development. EAI Endorsed
Transactions on Smart Cities .

[74] Taleb, T., Dutta, S., Ksentini, A., Iqbal, M. and Flinck,

H. (2017) Mobile edge computing potential in making
cities smarter. IEEE Communications Magazine 55(3): 38–
43.

[75] Al-gaashani, M., Muthanna, M.S.A., Abdukodir, K.,
Muthanna, A. and Kirichek, R. (2020) Intelligent
system architecture for smart city and its applications
based edge computing. In 2020 12th International
Congress on Ultra Modern Telecommunications and Control
Systems and Workshops (ICUMT) (IEEE).

[76] Hussain, M.M., Alam, M.S. and Beg, M.S. (2018)
Computational viability of fog methodologies in IoT
enabled smart city architectures-a smart grid case study.
EAI Endorsed Transactions on Smart Cities .

[77] Gheisari, M., Pham, Q.V., Alazab, M., Zhang, X.,
Fernandez-Campusano, C. and Srivastava, G. (2019)
ECA: An edge computing architecture for privacy-
preserving in IoT-based smart city. IEEE Access 7:
155779–155786.

[78] Deng, Y., Chen, Z., Yao, X., Hassan, S. and Wu, J.

(2019) Task scheduling for smart city applications based
on multi-server mobile edge computing. IEEE Access 7:
14410–14421.

[79] Zheng, X., Li, M. and Guo, J. (2020) Task scheduling
using edge computing system in smart city. International
Journal of Communication Systems 34(6).

[80] Wang, D., Bai, B., Lei, K., Zhao, W., Yang, Y. and Han,

Z. (2019) Enhancing information security via physical
layer approaches in heterogeneous IoT with multiple
access mobile edge computing in smart city. IEEE Access
7: 54508–54521.

[81] Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K.,
Jalali, F., Niakanlahiji, A., Kong, J. et al. (2019) All
one needs to know about fog computing and related
edge computing paradigms: A complete survey. Journal
of Systems Architecture 98: 289–330.

[82] Naha, R.K., Garg, S., Georgakopoulos, D., Jayaraman,
P.P., Gao, L., Xiang, Y. and Ranjan, R. (2018) Fog com-
puting: Survey of trends, architectures, requirements,
and research directions. IEEE Access 6: 47980–48009.

[83] Hoque, S., Brito, M.S.D., Willner, A., Keil, O. and
Magedanz, T. (2017) Towards container orchestration
in fog computing infrastructures. In 2017 IEEE 41st
Annual Computer Software and Applications Conference
(COMPSAC) (IEEE).

[84] Mouradian, C., Naboulsi, D., Yangui, S., Glitho, R.H.,
Morrow,M.J. and Polakos, P.A. (2018) A comprehensive
survey on fog computing: State-of-the-art and research
challenges. IEEE Communications Surveys & Tutorials
20(1): 416–464.

[85] Wang, J., Pan, J., Esposito, F., Calyam, P., Yang, Z. and
Mohapatra, P. (2019) Edge cloud offloading algorithms.
ACM Computing Surveys 52(1): 1–23.

[86] Han, Y., Shen, S., Wang, X., Wang, S. and Leung,

V.C.M. (2021) Tailored learning-based scheduling for
kubernetes-oriented edge-cloud system. CoRR .

[87] Kaur, K., Garg, S., Kaddoum, G., Ahmed, S.H. and
Atiquzzaman, M. (2020) KEIDS: Kubernetes-based
energy and interference driven scheduler for industrial
IoT in edge-cloud ecosystem. IEEE Internet of Things
Journal 7(5): 4228–4237.

[88] Goethals, T., Volckaert, B. and de Turck, F. (2020)
Adaptive fog service placement for real-time topology
changes in kubernetes clusters. In Proceedings of the 10th
International Conference on Cloud Computing and Services
Science.

[89] Haja, D., Szalay, M., Sonkoly, B., Pongracz, G. and
Toka, L. (2019) Sharpening kubernetes for the edge.
In Proceedings of the ACM SIGCOMM 2019 Conference
Posters and Demos on - SIGCOMM Posters and Demos '19
(ACM Press).

[90] Javed, A., Heljanko, K., Buda, A. and Framling, K.

(2018) CEFIoT: A fault-tolerant IoT architecture for edge
and cloud. In 2018 IEEE 4th World Forum on Internet of
Things (WF-IoT) (IEEE): 813–818.

[91] Wöbker, C., Seitz, A., Mueller, H. and Bruegge, B.

(2018) Fogernetes: Deployment and management of fog
computing applications. In NOMS 2018 - 2018 IEEE/IFIP
Network Operations and Management Symposium (IEEE).

[92] Kayal, P. (2020) Kubernetes in fog computing: Feasibil-
ity demonstration, limitations and improvement scope :
Invited paper. In 2020 IEEE 6th World Forum on Internet
of Things (WF-IoT) (IEEE): 1–6.

[93] Eidenbenz, R., Pignolet, Y.A. and Ryser, A. (2020)
Latency-aware industrial fog application orchestration
with kubernetes. In 2020 Fifth International Conference
on Fog and Mobile Edge Computing (FMEC) (IEEE).

[94] Casquero, O., Armentia, A., Sarachaga, I., Perez, F.,
Orive, D. and Marcos, M. (2019) Distributed scheduling
in kubernetes based on MAS for fog-in-the-loop
applications. In 2019 24th IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA)
(IEEE).

[95] Goethals, T., DeTurck, F. and Volckaert, B. (2020)
Extending kubernetes clusters to low-resource edge
devices using virtual kubelets. IEEE Transactions on
Cloud Computing : 1–1.

[96] Böhm, S. and Wirtz, G. (2021) Profiling lightweight
container platforms: Microk8s and k3s in comparison
to kubernetes. In CEUR workshop proceedings (RWTH
Aachen): 65–73.

[97] Taherizadeh, S., Stankovski, V. and Grobelnik, M.

(2018) A capillary computing architecture for dynamic
internet of things: Orchestration of microservices from
edge devices to fog and cloud providers. Sensors 18(9):
2938.

[98] Yu, Z., Wang, J., Qi, Q., Liao, J. and Xu, J. (2018)
Boundless application and resource based on container
technology. In Edge Computing – EDGE 2018, 34–48.

All links were last followed on February, 28, 2022.

19
EAI Endorsed Transactions

on Smart Cities
03 2022 - 09 2022 | Volume 6 | Issue 18 | e2

	1 Introduction
	2 Concepts
	2.1 Smart City
	Definition
	Characteristics
	Challenges

	2.2 Principles of Edge Computing
	2.3 Orchestration of Cloud-Edge Architectures
	2.4 Edge Computing in Smart City Contexts

	3 Related Work
	4 Kubernetes as Edge Orchestration Platform
	4.1 Kubernetes as Container Platform
	4.2 Kubernetes-based Edge Orchestration Architectures
	Platform-based Solutions
	Custom Cloud-Edge Architectures
	Custom Edge Architectures

	4.3 General Limitations of Kubernetes for Edge Orchestration
	Resource-Awareness
	Architectural Shortcomings

	4.4 Potential Solutions for Kubernetes as Edge Orchestration Platform
	Providing Resource-Awareness
	Implementing Cloud-Edge Architectures

	5 Limitations of the Proposed Solutions
	5.1 Resource-related Solutions
	5.2 Architectural Solutions

	6 Discussion
	6.1 Findings
	RQ1
	RQ2
	RQ3
	RQ4

	6.2 Threats to Validity

	7 Conclusion and Future Work

