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ABSTRACT
Modelling, simulation, and optimization play a crucial role
in the development and testing of autonomous vehicles. The
ability to compute, test, assess, and debug suitable config-
urations reduces the time and cost of vehicle development.
Until now, engineers are forced to manually change vehicle
configurations in virtual testbeds in order to react to inap-
propriate simulated vehicle performance. Such manual ad-
justments are very time consuming and are also often made
ad-hoc, which decreases the overall quality of the vehicle en-
gineering process. In order to avoid this manual adjustment
as well as to improve the overall quality of these adjust-
ments, we present a novel comprehensive approach to mod-
elling, simulation, and optimization of such vehicles. Instead
of manually adjusting vehicle configurations, engineers can
specify simulation goals in a domain specific modelling lan-
guage. The simulated vehicle performance is then mapped
to these simulation goals and our multi-agent system com-
putes for optimized vehicle configuration parameters in or-
der to satisfy these goals. Consequently, our approach does
not need any supervision and gives engineers visual feedback
of their vehicle configuration expectations. Our evaluation
shows that we are able to optimize vehicle configuration sets
to meet simulation goals while maintaining real-time perfor-
mance of the overall simulation.

Categories and Subject Descriptors
D.2.11 [Software]: Software Architectures—Domain-Specific
Architectures; I.2.11 [Artificial Intelligence]: Distributed
Artificial Intelligence—Multiagent System; I.3.1 [Computer
Graphics]: Hardware Architecture—Graphics Processor ;
I.6.8 [Simulation and Modeling]: Types of Simulation—
Parallel

Keywords
Virtual Testbed, Vehicle Simulation, Multi Agent System,
Discrete Event Simulation, GPU, CUDA, Domain Specific
Modelling
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1. INTRODUCTION
Typically, the engineering of vehicles consists of three main

steps: First, a mission scenario and corresponding require-
ments are defined, then engineers construct a vehicle that
should fulfill these specifications and finally, test runs for
fine-tuning of vehicle parameters, like fuel level or sensor
orientation, are performed (see Figure 1).

While the basic principle remained the same since the be-
ginning of modern engineering, the process has changed sub-
stantially during the past 40 years: The design moved from
the drawing board to the computer and test runs are not
only performed with physical prototypes in real hardware
environments [20] but have also moved more and more to
the computer.

In recent years, Virtual Reality (VR) has emerged as a key
technology for improving and streamlining the conceptual-
isation and design of vehicles by simulation [11][10]. These
testbeds give engineers the opportunity to interact with the
simulated vehicle in order to gain comprehensive understand-
ing of possible design flaws as early as possible during the
design process. They are frequently used in fields like space
robotics [10][22], underwater vehicles [7], or military ground
vehicles [20]. In addition, it is widely recognized that sim-
ulation is pivotal to vehicle development, whether manned
or unmanned [18]. Virtual testbeds are constituted by a so-
phisticated physically-based simulation of both the vehicle
and its designated environment, as well as real-time, immer-
sive rendering and 3D interaction techniques for the direct
feedback and manipulation of the vehicle. In addition to
the vehicle design process, the same virtual testbeds can of-
ten be re-used directly for later mission stages like training
and supervision. Furthermore, virtual testbeds are a cost-
efficient alternative e.g. for planetary exploration missions,
or other autonomous vehicle applications in which setting
up real mockups for testing and verifying is too expensive
[11].

However, even in state-of-the art virtual testbeds, it is
still challenging to identify the origin of errors. Engineers
can waste a lot of time in the fine-tuning vehicle parameters
while the error is in the vehicle design or even in the mission
specifications.
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Figure 1: Integration of virtual testbeds with the vehicle

engineering process: Simulation results are used to change

vehicle configurations in order to meet engineer expectations

if the simulated vehicle performance does not meet vehicle

mission or engineering expectations. In the traditional ap-

proach, virtual testbed development as well as actual vehicle

simulation take the most of the overall engineering process

time (left). Our approach (right) reduces this development

time significantly by introducing source code generation as

well as autonomous vehicle optimization without supervision.

We propose a novel approach that overcomes these draw-
backs. The main idea is to remove the last feedback-loop
of the current design process completely (see Figure 1). To
do that, we replace the manual parameter fine-tuning by an
optimization method that adjusts these parameters auto-
matically. This avoids the time-consuming and error-prone
manual tweaking and helps the engineers to concentrate on
their real work: the construction, testing and validation of
the vehicle. In order to give engineers direct access to the
virtual testbed, we additionally present a novel easy-to-use
domain specific interface that allows the intuitive definition
of simulation goals as well as vehicle parameters.

Consequently, we present a novel comprehensive approach
to modelling, simulation, and optimization of such vehicles
which greatly benefits the overall engineering process of au-
tonomous vehicles.

In detail, our contributions are:
• A GPU based multi-agent system (MAS) for the au-

tomatic vehicle parameter adjustment: It computes
objective and utility values for evaluating the current
vehicle configuration with respect to fuzzy logic based
simulation goals.
• A Domain Specific Modeling Language (DSML) which

allows the visual development of a vehicle configura-
tion and simulation as well as MAS based parameter
optimization.
• A massively parallel domain framework, which enables

wait-free discrete event simulation of autonomous ve-
hicles. Additionally, this domain framework minimizes
the synchronization overhead to the GPU to a mini-
mum for fast parallel computations, without affecting
the vehicle simulation performance.

In addition, our virtual testbed implements a 3D geomet-
ric visualization and functional vehicle simulation loop in-
corporating internal vehicle subsystems, sensors, actuators,

and environmental physical influences.
In order to test, validate, and verify the navigation, con-

trol and localization algorithms of vehicles, engineers simply
have to specify the simulation goals and the vehicle param-
eters in our novel DSML. Our virtual testbed supports in-
teractive real-time adjustment of vehicle specifications like
adding obstacles to the environment. The system computes
an optimal set of parameter for these new specifications on-
the-fly so that the engineer can inspect the results of the
changes immediately. Consequently, our approach reduces
the development and testing time significantly while simulta-
neously improving the quality of the parameter setting. We
have applied our new approach to an autonomous spacecraft
simulation. Our results show a real-time performance even
for large parameter sets.

In order to achieve this real-time performance and easy
code generation, we propose the use of a multi-agent sys-
tem as it can be easily integrated into our underlying wait-
free simulation system while maintaining easy code gener-
ation. Furthermore, multi-agent systems fully utilize the
advantages of our wait-free simulation system due to its de-
centralized, parallel solving process behavior.

2. RELATED WORK
The main task of virtual testbeds in the vehicle engineer-

ing process is to support engineers with simulation results,
based on simulation scenario and vehicle configuration. For
each simulation run, the vehicle configuration has to be ad-
justed if the simulated vehicle performance does not meet
mission or engineering expectations. Currently, this adjust-
ment of vehicle parameters in virtual testbeds is either done
externally by engineer experts that need to guide the adap-
tation, or the application has a number of scenarios. These
scenarios are pre-defined by engineer experts to cover almost
all aspects of the simulation.

The use of expert guidance can lead to quite effective sim-
ulation results. However, such experts are rare and expen-
sive. Additionally, its not always feasible to have an ex-
pert available for configuring and supervising the simulation.
Furthermore, pre-defined scenarios may lead to less optimal
adaptation [13]. Consequently, it would be beneficial to au-
tomatically adjust the simulation online without the need
of an expert guiding this process. Additionally, this online
adaptation can run in vast amounts of simulation runs to
find a vehicle configuration which can satisfy both mission
and engineering requirements.

However, the increasing complexities of mission scenar-
ios, goals and requirements as well as virtual testbed de-
velopment process demands sophisticated development ap-
proaches which should perform in distributed, parallelized
manner to attain real-time simulation behavior. Further-
more, the development approach should improve the overall
development time of the virtual testbed in order to support
the vehicle engineers as soon as possible in the engineering
process with simulation results. Additionally, mission goals
and requirements are often contradictory and define only
a subset of an overall system expectation. These system
expectations are in general non-manageable non-technical
system aspects which can not be easily formalized in a sim-
ulation.



Multi-agent systems (MAS) can deal with such problems
which are composed of a large number of interacting and
contradictory sub-problems. Additionally, MAS allow a sim-
pler modelling of the domain [16]. Furthermore, interactions
between agents can give birth to emergent phenomena (e.g.
patterns, organizations, behaviors) [16]. We consider the
vehicle configuration optimization as a complex problem for
which no specific solution exists beforehand. This makes
MAS interesting for dealing with such problems for which
no algorithmic solutions can be given in advance and there-
fore have to be designed in a bottom-up way.

The optimization system presented in this paper is there-
fore based on a modular hierarchical MAS in which self-
organization principles are used to make the collective be-
havior emerge from local ones.

The use of GPU based MAS has been successfully advo-
cated as a means to deal with this kind of complexity in
various other highly sophisticated simulation applications
such as astro-physics [8][28], graph algorithms [21], molecu-
lar dynamics [30], serious game adaptations [13], and traffic
simulation [6]. These approaches, and other evaluation of
GPU based MAS such as [3], show that GPU based MAS
can incorporate a drastic performance improvement up to
an average factor of 60 with respect to purely CPU based
implementations.

In addition, advancements in software engineering can
improve the development of sophisticated virtual testbeds.
Model Driven Development (MDD) allows aspects of virtual
testbeds to be represented formally as an abstract graphical
model which can be automatically transformed into software
artefacts and subsequently into complete simulation appli-
cations. MDD enables domain experts through a Domain
Specific Modelling Language (DSML) to produce virtual
testbeds for autonomous vehicles easily and quickly, as MDD
notably promises great benefits to its practitioners. From a
software development context, MDD offers an increase in
productivity, promotion of interoperability and portability
among different technology platforms, support for genera-
tion of documentation, and easier software maintenance [1].
In addition, it can also lead to production of better code
quality and reliability due to integration of domain rules
into the DSML. Such domain rules minimize modelling er-
rors and increase the reliability of mapping from model to
code [27], which is highly desirable for researchers, engineers,
and industry. Consequently, DSML lowers the development
time and increases overall comprehension of simulation and
optimization aspects of our virtual testbeds.

However, previous work on virtual testbeds for autonomous
vehicles focussed highly on specialized partial aspects such
as real-time simulation with state-of-the-art graphics [20][18],
visualization for mission analysis [7] or sensor data gen-
eration for space robotic applications [11]. As the ever-
increasing demand of sophisticated simulation as well as
appealing graphical visualization increases the amount of
interacting virtual testbed components, state-of-the-art vir-
tual testbeds introduce centralized simulation data struc-
tures which are concurrently shared by all virtual testbed
components [20][23][22][17][15]. Centralized data storages
deliver many advantages for virtual testbeds such as smart
simulation data logging, access rights management and ho-
mogeneous access to simulation data for the vehicle, envi-
ronment or rendering. Nevertheless, such centralized data
storages introduce a bottleneck to the overall virtual testbed

as the concurrent access to it has to be managed. Especially
multi-agent systems introduce a huge amount of software
components which data access has to be successfully syn-
chronized. In addition to this unsolved problem for state-of-
the-art centralized virtual testbeds, none of the existing ap-
proaches addressed the complex development process of such
virtual testbeds and how this development process could
be integrated into the vehicle engineering process. More-
over, these virtual testbeds are highly specialized and there-
fore present most diverse software architectures for vehicles
within their designated environments. Furthermore, none of
the approaches involved any adaptation or optimization of
the simulated vehicle. All state-of-the-art virtual testbeds
need engineer expert supervision if vehicle configurations has
to be adjusted as their primary objective is to give visual
feedback of the simulated vehicle. Consequently, existing
approaches are simply visual resemblances of the underly-
ing simulation with no more benefits to the engineers.

However, system adaptations can be found in other sim-
ulation related fields, such as military training in serious
games. Simulation and serious gaming is a strongly re-
lated field [19] in which system parameter adaptation is
well-founded. Current adaptation concerns automated sce-
nario generation, e.g. for military training purposes [2]. Such
adaptive applications can be effectively modelled with MAS
[12]. Furthermore, [13] showed in general how agents can be
used to define serious game applications.

3. VEHICLE SIMULATION APPROACH
Enabling MAS based vehicle configuration requires a vir-

tual simulation environment for the parameter optimization
to take place. In this section, we will describe our simula-
tion environment as well as domain framework and how they
are related to our DSML. Our modelling approach is based
on the lightweight DSML [25] approach. It introduces more
generalized model artefacts to be used in order to decrease
the overall development time when using DSML concepts.
Generalized model artefacts do not support complete source
code generation as their modelling concept focusses mainly
on the dataflow. However, for a generic virtual testbed,
which should support highly different vehicles or even other
domains, complete source code generation is no prerequisite.

Our lightweight DSML approach is used to define generic
components of a virtual vehicle simulation: the environment,
vehicle sensors and actuators, internal vehicle control com-
ponents, virtual objects as well as multi-agent system. All
components are situated in a vehicle simulation loop, which
ensures that the vehicle can only perceive its environment
via its sensors and that only actuator information are routed
to the environment. Our lightweight DSL enables modelling
of these components in a graphical manner as described in
the next sections.

From our DSML approach, graphical Platform Indepen-
dent Models (PIM) can be modelled by domain experts.
These PIM are then used to automatically generate the
source code of our virtual testbed, the Platform Specific
Model (PSM), via horizontal model transformations [27].

Figure 2 depicts our vehicle simulation and optimization
within our lightweight DSL approach.



Figure 2: Overview of our proposed approach. From a

lightweight DSL, graphical Platform Independent Mod-

els (PIM) are modelled which are used to generate our

virtual testbed with its vehicle simulation and configu-

ration optimization.

We will describe in the next sections our domain frame-
work with its data flow for vehicle simulation and how it
benefits the integration of GPU based multi-agent systems.
Additionally, we will describe the infrastructure, optimiza-
tion solving process and implementation of our GPU based
MAS.

3.1 Domain Framework and Data Flow
Within domain specific modelling, a domain framework

is used to execute generated code artefacts. Additionally,
a domain framework reduces the amount of generated soft-
ware clones as the domain framework encapsulates common
interfaces and data structures. This approach is well-known
from other applications, such as the Java Runtime Environ-
ment (JRE) [26].

The domain framework used in our approach should be
a centralized solution in order to maintain software engi-
neering advantages from current virtual testbed approaches
[18][17] but should not introduce a bottleneck to the over-

all simulation and multi-agent system optimization. We
presented a wait-free concurrency control management ap-
proach in [23][24][22]. This approach introduces a central-
ized data storage that drastically outperforms traditional
approaches by several orders of magnitude. Consequently,
we use our concurrency control management as the basis of
our domain framework. We will describe in this section how
we implemented a discrete event simulation and multi-agent
system optimization of vehicles within this control manage-
ment approach.

The core of our approach is a global dictionary, called
key-value pool (KVPool), a centralized data storage that
maintains the complete shared world state of the virtual
testbed. Each simulation component that reads or write
data to the KVPool is summarized as a Entity.

Each Entity that needs to share data to other Entities reg-
isters this shared data to the KVPool. Examples for such
shared data are simulation time, vehicle position, sensor
measurements or actuator commands. Registering shared
data means the creation of a key-value pair (KVPair) in the
global KVPool with a unique key which is required for fast
identification. If Entities want access to the data, they sim-
ply have to pass this key to the KVPool. Each KVPair can
be composed of arbitrary content, such as vectors, matrices,
arbitrary numerics or geometry. Consequently, one KVPair
can have an arbitrary amount of member data which makes
a KVPair universally usable.

We presented in [23][24] how Entities can access the com-
plete shared world state in wait-free manner. In contradic-
tion to traditional lock-based concurrency approaches which
are used by current virtual testbeds, Entities do not have to
acquire a lock before manipulating our concurrently shared
world state. Consequently, no synchronisation overhead is
needed when solving for concurrent access. This leads to
a dramatic performance increase with respect to traditional
locking approaches for massively parallel access up to several
orders of magnitude.

In addition to the wait-free access of the KVPool, the ap-
proach delivers a homogeneous interface for accessing the
simulation state as well as for Entity communication. Such
relationships are defined by a set of KVPair read and write
operations. This encapsulation as KVPairs leads to easier
DSL modelling concepts as the code generation for access-
ing simulation state as well as for simulation component data
exchange can be represented by simply delivering the cor-
responding key for read and write access. Current virtual
testbed data storage approaches even use full-fledged SQL
databases [17][15][5]. In contrast to our KVPool, such ap-
proaches would make code generation way more complicated
as complete SQL-queries would need to be generated for ac-
cessing the simulation state.

Consequently, our concurrency management approach de-
livers real-time performance as well as high software cohe-
sion which facilitates code generation of the overall virtual
testbed.

Within our KVPool approach, we describe a discrete event
simulation loop of our domain framework as follows:

A state S = (t, C, P,E) of our virtual testbed consists
of simulation time t and set of Entities C, key-value pairs
P , and events E. Additionally, a transition function δ is
defined:

δ(tn, C, P,E) = (tn+1, C, P
′, E′)



In each transition, the key-value pairs in the key-value pool
are updated by the Entities and new transition events are
generated by the system. To enable the modelling of vehicle
environment interaction, Entities can incorporate one of four
types:
• Environment: Defines simulation aspects from the en-

vironment in which the vehicle is situated. These as-
pects can incorporate physical forces such as gravita-
tion, air drag, pressure, kinematics, or even Virtual
Reality based approaches like collision detection.
• Interface: Defines the sensors and actuators of a vehi-

cle, e.g. thrusters, gyroscopes, cameras, or range finder
sensors.
• Vehicle: Defines internal vehicle components such as

control loops, localization concepts, sensor fusion al-
gorithms, BDI-structures or target detection.
• Agent: Defines an agent for observing and optimizing

an associated vehicle configuration parameter.
For delivering a highly generic framework which can be

adapted to many hardware configurations, those Entities can
be situated in our discrete event simulation loop in one of
two ways: First one being a CPU-GPU hybrid, second one
being a purely CPU based approach.

In both versions, Entities that simulate the vehicle in its
designated environment are directly mapped to our generic
vehicle simulation loop, imposing a clear engineering concept
even on source code level.

The versions differentiate in the way that the computa-
tion of the multi-agent system is either done on the GPU
or CPU. In the first case, the multi-agent system will be
computed on the GPU and the data transfer is done via one
Entity. In the CPU based approach, every agent is modelled
as one Entity. In both versions, all Entities benefit from our
massively parallel domain framework, which enables access
to the KVPool with no synchronisation overhead.

Figure 3 additionally depicts these two approaches.

4. OPTIMIZATION OF
VEHICLE CONFIGURATION

The adaptation system proposed here is based on a hi-
erarchical MAS which aims at dynamically tuning all the
vehicle parameter values with respect to the simulated ve-
hicle performance.

We will start with an overview which describes the over-
all MAS infrastructure with its modular agent organizations
and relationships to the vehicle simulation. Following this,
we describe the input and output data as well as communi-
cation structure of the agents. Additionally, we will describe
the adaptation solving process with its negotiation mecha-
nisms and how even contradictory simulation goals can be
satisfied.

Our MAS is composed of several agent organizations which
aim at optimizing each a subset of vehicle parameters to
attain a pre-defined simulation goal by improving the sim-
ulated vehicle performance. These agent organizations are
defined for each specified simulation goal and consist of a
hierarchy of two agent types: objective and negotiation.

A objective-agent is used to measure one vehicle param-
eter. Consequently, there can be an arbitrary amount of
objective-agents measuring the same vehicle parameter, each
one measuring different simulation goal satisfaction values.
Each agent type implements a certain functionality in order

Figure 3: Entities are mapped to our generic vehicle

simulation loop, consisting of the environment, sensors,

actuators and internal vehicle components. Our MAS is

either computed on the CPU with n Entities or on the

GPU as one Entity with a single CUDA kernel for all

agents.

to maximize the related simulation goal, even if they are
contradictory. For example, one simulation goal could be to
minimize the vehicle fuel consumption. Therefore, the sim-
ulation goal could refer to the fuel tank capacity parameter
of the vehicle, the propulsion fuel consumption efficiency or
the number of allowed thrust ignitions. If more than one
objective-agent is attached to a vehicle parameter, the cor-
responding optimization can be contradictory. For example,
increasing the vehicle fuel capacity has an impact on the
overall vehicle mass which reduces the main thrust efficiency.
Therefore, negotiation-agents are used if several objective-
agents refer to the same vehicle parameter. In addition to
their objective value, objective-agents also deliver a utility
value. These values are described in the next section. Figure
4 illustrates this agent organization concept with respect to
the overall vehicle simulation.

Figure 4: One agent organization is generated for each

simulation goals. Each organization searches through the

corresponding vehicle parameter space by measuring the

vehicle performance and by adapting the configuration

until the organization finds a satisfying solution.



4.1 Parameters, Objectives and Utilities
When building a vehicle configuration optimization sys-

tem, all manipulable vehicle parameters needs to be uniquely
identified. Additionally, a range for each of these parameters
is given, defining the allowed values for this specific param-
eter. All adjustable vehicle parameters PAR constitute the
input of our multi agent system; it is defined as follows:

PAR = {p1...pn}

pi ∈ {pmin...pmax} ⊂ R (1)

Analogous, objectives of the control system need to be
defined. Objectives of simulations are often multiple and
contradictory. Instead of defining a single general goal state
of the simulation, several independent objectives are here
considered, each one related to a parameter p ∈ PAR.

Requirements on autonomous systems are hard to ex-
press in an numerical way as humans often only have a
general idea of their system expectations. Diverse solutions
based on fuzzy logic have been proposed to solve this map-
ping from human-made requirements to measurable numer-
ics [29]. This paper proposes the use of such fuzzy predicates
to allow the smart definition of objectives as they involve a
specific measure on the simulation which should not be nec-
essarily complete satisfied or unsatisfied.

Satisfaction functions are introduced in order to deter-
mine the objective satisfaction for a given parameter. A
satisfaction function takes as input a parameter and re-
turns a satisfaction value in fuzzy predicate. This predi-
cate is constituted within the [0;100] interval and yields ev-
ery objective satisfaction value between unsatisfied (0) and
completely satisfied (100). Depending on the relationship
between the parameter and objective, a satisfaction func-
tion can be strictly or loosely following a parameter in (in-
verted) linear, quadratic or exponential manner. We intro-
duce, in addition to the satisfaction function, an optional
linear weighting term ∗w + b which can scale the satisfac-
tion value in order to increase the impact of the parameter
within the solving process. The set of all objectives OBJ is
defined as follows:

OBJ = {o1...on} → {0, 100}

oi = satisfaction(pi)[∗w + b] (2)

In addition to the objectives to be satisfied, a control sys-
tem should consider the possible utility when changing the
vehicle parameters with respect to the current simulation
state. Consequently, we introduce a utility function. It is
used to calculate the benefit for the current simulation state,
if a parameter p ∈ P would be adapted accordingly to the
corresponding objective value o. The utility value is then
later used by the negotiation agent to select the most ap-
propriate action.

The set of all utility values is defined as follows:

UTL = {u1...un} → {0, 100}

ui = 100− oi[∗w + b] (3)

The aim of the parameter adjustment control system is to
find the values of PAR that maximize all objectives OBJ
and minimizes all utilities UTL. In other words, it is to tune
all the parameters so all the constraints and objectives are
satisfied.

4.2 Solving Process Principle
When designing a multi-agent system, the focus is set on

agents behaviors and communications in order to cover iso-
lated parts of the global problem. Each agent tackles an iso-
lated sub-problem and emergence is used to solve the over-
all problem. Therefore, the solving process is distributed
among all agents. Every agent introduces a part-wise mod-
elling of the problem and its behavior and communication
to other agents is used to solve the global problem. Con-
sequently, the definition of agent behaviors is also one of
the key aspects of our multi-agent system and is described
hereafter.
• Objective-agents compute a satisfaction value for a

target parameter. An objective-agent has a rather sim-
ple behavior: it observes its target parameter and uses
a satisfaction function to compute a objective satisfac-
tion value. The goal of every objective-agent is to iter-
atively find a simulation state which yields a satisfac-
tion value above a given minimum threshold. In order
to do so, it writes a KVPair to its negotiation-agent,
requesting a modification of its observed parameter in
a proper way; this KVPair contains only the current
objective satisfaction, utility and requested parame-
ter variation sign (either positive or negative). Addi-
tionally, objective-agents compute the utility value of
their proposed request. The utility value is basically a
weighted inverse of the corresponding objective value
of a parameter. Therefore, a utility value represents
the degree to which a certain non-satisfied objective
should be tackled, resulting in its utility value.
• Negotiation-agents monitor the objectives and utilities

of all corresponding objective-agents of their agent or-
ganization. When several requests are received, it will
choose the most appropriate parameter modification
based on the highest utility value, implementing the
English auction principle.

5. DOMAIN SPECIFIC
MODELLING LANGUAGE

For defining our graph-based modelling language, the in-
dustry notation MetaCase+ GOPRR (Graphs, Objects, Prop-
erties, Relationships and Roles) [9] was used. All objects
used within GOPRR are drawn into graphs that contain
the object’s role and the relationships thereof. GOPRR ob-
jects can be, for example a process, a thread, a class or an
instance of class. A property describes features of graphs,
objects, roles and relationships. A relationship connects ob-
jects by assigning them roles in the activity of the object.

This section will give a short overview of our GOPRR-
notation based modelling approach. The aim of our mod-
elling approach is to graphically describe simulation compo-
nents as well as agents of our MAS.

Therefore, graphs in our notation can either be the en-
vironment, the simulated vehicle or a agent organization.
Every graph contains objects: agent organizations are con-
stituted of agents whereas vehicle and environment are rep-
resented by Entities and VirtualObjects. VirtualObjects are
three-dimensional objects which are used to represent cer-
tain simulation aspects in the virtual testbed, e.g. a CAD
vehicle model. Every object involves three main concepts: a
role, relationships and properties. Every Entity has one of
four roles: environment, interface, vehicle or agent.



These define the Entity’s role with respect to the afore-
mentioned simulation loop. Relationships between objects
are expressed by key-value pair exchanges. Furthermore,
object properties can be arbitrary data, such as numbers or
strings. Formally, let

G = ({Environment|V ehicle|Agents}, {G}, {O}) (4)

be a graph definition with child graphs {G} and objects {O}
defined as

O = ({Entity|Agent|V irtualObject}, Ro, {Re}, {P}) (5)

with

P = {(Datatype, name)} (6)

a set of variables,

Ro = {Environment|Interface|V ehicle|Agent} (7)

a role definition and

Re = {KV Pair} (8)

set of key-value pairs.
All modelling aspects are depicted in Figure 5.

Figure 5: Simplified hierarchical depiction of our

lightweight DSL approach, based on the GOPRR-

notation.

5.1 Code Generation
Template-Based Code Generation (TBCG) [4] is used to

generate source code from our PIM. TBCG is a generative
technology that transforms a given model into source code,
through the use of templates. These templates provide a
high level of flexibility for the generated output required by
custom generation scenarios. Furthermore, it is extensively
used throughout the industry [4]. A template thereby con-
sists of imperative control and structural source code pat-
terns such as loops or conditional statements.

As everything in our virtual testbed is an Entity with
an homogeneous interface to the overall shared simulation
state by accessing a set of key-value pairs, our TBCG aims
at generating the read and write processes of all Entities.
Additionally, the CUDA code for the MAS is directly gen-
erated for the specified agent into the corresponding Entity
specification.

Pseudo-code 1 gives a brief overview of the Entity class
generation. The following parameters are derived from the
DSL:

• ω : all specified Entities
• α : name of the Entity
• β : role of the Entity (respectively base class)
• γ : list of properties, structured as tuples with data

type and name
• δ : list of key-value pairs which are read by the Entity
• ε : list of key-value pairs which are written by the

Entity
• ζ : Entity type (agent or simulation component)
• η : Agent data list (non-zero if Entity type is agent),

structured as tuples with data type and name

Algorithm 1 GenerateEntityImplementations

for ωi ∈ ω do
Generate header file with derived class α from class β
for γi ∈ γ do

Generate private variable γi − name with γi − type in
header file declaration

end for
Generate cpp file with include to class α
Generate empty read, write and work function of α
for δi ∈ δ do

Generate key-value pool read of key δi for variable γi−
name in read function

end for
for εi ∈ ε do

Generate key-value pool write of key εi for variable
γi − name in write function

end for
if ζ = Agent then

Generate work function:
Generate CUDA device memory for *device-ηi−name
with ηi − type and ηsize with cudaMalloc
Generate host to CUDA device memory transfer for
device-ηi-name, ηi-name and ηsize with cudaMemcpy
Generate CUDA kernel call with ηgrid ηblock and list of
device memory device-η-names
Generate CUDA device to host memory transfer for
objective, parameter and utility values

end if
end for

5.2 Model Validation
Model validation is, besides code generation, one of the

main aspects and benefits of domain specific modelling [27].
It aims at checking whether a model conforms to its specified
requirements. As mentioned earlier, the huge complexity of
virtual testbeds with the ever increasing amount of software
interfaces between simulation, optimization, user interaction
and rendering makes interface development tedious and of-
ten error- prone. We therefore validate the simulation data
flow as it exactly constitutes the internal interfaces of the
simulation. This validation check is modelled as finite state
machines which are generated by the overall key-value pair
access of all Entities. We validate three simulation data
flow constraints: If a key-value pair is defined and written
by one Entity, at least one other Entity must read it, other-
wise the modelling and generation of this key-value pair is
unnecessary. Analogous, if a key-value pair is being read by
at least one Entity, one other Entity must create this key-
value pair. In order to prevent invalid user modelling of the
virtual testbed, we also validate whether the simulation re-
quirements are not violated: Our MAS must only change its
designated parameters and the simulated vehicle must only
perceive its environment by simulated sensor measurements.
Furthermore, the simulated environment must only retrieve
actuator information from the vehicle. Figure 6 illustrates
these three model validation checks.



Figure 6: Model validation for simulation data flow: a)

If a key-value pair X is written by Entity A, at least one

other Entity B must read it from the same graph b) If a

key-value pair X is read by Entity B, it must be written

by another Entity A from the same graph c) If data from

Entity A should be perceived by Entity C which is not

situated in the same graph as Entity A, it has to be

transmitted by an interface Entity B.

6. APPLICATION
A spacecraft landing procedure is a very complex sequence

of autonomous vehicle decisions, actuator commands and
sensor data acquisition summarized as guidance, navigation
and control. Such a landing procedure is an interesting
testbed for our proposed approach as it consists of several
environmental influences and vehicle internal control loops.

We modelled a simplified landing procedure the follow-
ing way. A spacecraft tries to land on a asteroid surface.
The spacecraft is under the influence of solar radiation pres-
sure as well as asteroid gravity. The spacecraft itself has an
internal control loop which acquires sensor data: accelera-
tion (accelerometer), orientation (star tracker) and distance
to surface (range finder). The overall algorithmic internal
spacecraft position estimation is simplified in such a way
that ground truth data is used under application of Gaussian
noise. The spacecraft has three configurable parameters:
main engine thrust level in newton, fuel capacity in kg and
timings of thrust ignitions. In order to regulate the landing
velocity, the spacecraft autonomously fires its main engine if
the acceleration exceeds a given threshold. Additionally, the
spacecraft continuously determines its orientation and fires
its attitude thrusters, if the spacecraft orientation to the as-
teroid surface also exceeds a given threshold. Every time
the main thrust or control thrust is fired, fuel is consumed
and consequently the mass of the spacecraft is lowered.

The aim of our optimization is to dynamically tune this
spacecraft configuration in order to avoid a crash on the
asteroid’s surface as well as to ensure that enough fuel is left
when the landing procedure is finished, to leave the asteroid
again.

Additionally, the orientation of the spacecraft has to be
aligned to the asteroid surface as the main thruster and land-
ing gear should be perpendicular to the asteroid’s surface.
Figure 7 shows an example rendering of our virtual testbed.

Figure 7: Example rendering of our approach within

KaNaRiA [22]: On-board particle filter localization

(color-coded spheres) before landing of our simulated

spacecraft.

7. EVALUATION
We have implemented our vehicle simulation and opti-

mization approach in C++ and CUDA 7. We performed our
experiments on a machine with Intel Core i7 4-core proces-
sor with Hyperthreading enabled, Nvidia Quadro K1000M
as well as Nvidia GTX 480 and 8GB of RAM.

We implemented two test scenarios. First, we modelled
and generated, based on the previously introduced space-
craft application, our vehicle optimization and simulation.
The first test scenario was used to evaluate whether the
MAS based optimization solves for correct adaptations of
the vehicle configuration. Second, we implemented synthetic
benchmarks for our approach to evaluate overall system per-
formance with respect to vehicle parameter optimization ap-
plications. The synthetic test scenario involved two competi-
tors: a traditional non-parallel CPU implementation with-
out the domain framework concept and our domain frame-
work implementation without GPU support.

For our synthetic benchmarks, Figure 8 shows the mean
average computation time for one complete simulation and
optimization run. Our domain framework approach easily
outperforms the traditional CPU based approach. Obvi-
ously, the speed-up of our approach increases with an in-
creasing number of agents working in the system. Addition-
ally, Figure 9 depicts the overall speed-up of our domain
framework approach showing a speed-up of more than a fac-
tor of 60. Surprisingly, the difference between CPU based
domain framework and GPU integrated version is very small
for a few hundred agents. We believe that our wait-free do-
main framework pays-off well as the concurrent access to the
KVPool is highly optimized with respect to the traditional
CPU implementation.

For our spacecraft landing test scenario, Figure 10 shows
the simulation objective satisfaction progress over time. Our
approach is able to increase the satisfaction of all objectives
until the simulation successfully ends.

Figures 11, 12 and 13 show how the main thrust level, fuel
capacity and control thrust ignition configuration change
over time. Our simulation successfully optimizes these pa-
rameters until the spacecraft safely lands after seven com-
pleted simulation loops with overall 1500 simulation steps.



Figure 8: Computation time for one simulation and op-

timization run.

Figure 9: Performance speed-up for one simulation and

optimization run with respect to the traditional CPU

based approach.

Figure 10: Our approach successfully changes the vehi-

cle configuration in order to increase the simulation goal

satisfaction.

Figure 11: Our approach gradually increases the thrust

level until the velocity can be adequately regulated for

landing.

Figure 12: Our approach gradually increases the fuel

capacity in order to maintain thrust while the landing

procedure is conducted.

Figure 13: Our approach can gradually decreases the ig-

nitions as the overall thrust level is increased by another

agent.

Finally, we are able to generate almost 77 % source code
of the aforementioned spacecraft test scenario. Currently,
there are still some manual code changes for the internal
vehicle control loops needed as well as for the satisfaction
functions for the multi-agent system.

8. CONCLUSION
We have presented a novel comprehensive approach to

modelling, simulation, and optimization of vehicles.
In our approach, engineers are no longer forced to manu-

ally change vehicle configurations. They can describe their
vehicle expectations as simulation goals in our DSM frame-
work. These simulation goals are then autonomously tracked
and satisfied by our GPU based MAS which allows for opti-
mization of vehicle configurations. Our MAS computes for
each simulation step objective and utility values in order to
compute an updated vehicle configuration until the specified
simulation goals are satisfied. Synthetic benchmarks addi-
tionally show that our domain framework approach outper-
forms traditional approaches and that a majority of the vir-
tual testbed source code can be generated from our models.
This domain framework is based on our wait-free concur-
rency control management approach which additionally fa-
cilitates easy code generation due to homogeneous and sim-
ple access to the shared world state. Furthermore, due to the
wait-free behavior of our key-value pool approach, even the
CPU based implementation can be used for sophisticated
real-time simulations.

However, the question remains unresolved if our MAS ap-
proach can solve any set of simulation goals as MAS do not
necessarily compute



the global maximum of a parameter space. The emergence
of MAS could also lead to wrong optimizations if, for exam-
ple, the satisfaction functions are insufficiently implemented.
Therefore, a generic modelling concept for objective satisfac-
tion functions would greatly improve the overall usability as
well as code generation of our approach.

In addition, the development of algorithms for autonomous
retrieval of parameter - simulation goal relationships would
further decrease the development time and increase the over-
all flexibility of our concept. To conclude, we also think that
our framework, including domain specific modelling, GPU-
assisted MAS and code generation, can be applied to other
domains as long as parameter-based objective and utility
values for simulation goals can be computed.
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