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ABSTRACT 
Accidental falls and reduced mobility are major risk factors in 
later life. Changes in a person’s mobility patterns can be related 
with personal well-being and with the frequency of memory 
lapses and can be used as risk detectors of incipient neuro-
degenerative diseases. Thus, developing technologies for fall 
detection and indoor localization and novel methods for mobility 
pattern analysis is of utmost importance in e-health. Choosing the 
right technology is not only a matter of cost and performance, but 
also a matter of user acceptability and the perceived ease-of-use 
by the end user. In this paper, we employ an Analytic Hierarchy 
Process (AHP) to assess the best fit-to-purpose technology for fall 
detection and user mobility estimation. Our multi-criteria decision 
making process is based on the survey results collected from 153 
elderly volunteers from 5 EU countries and on 10 emerging e-
health technologies for fall detection and indoor mobility pattern 
estimation. Our analysis points out towards a Bluetooth Low 
Energy wearable solution as the most suitable solution.  

Categories and Subject Descriptors 
H.4 [Information interfaces and presentation]: Miscellaneous. 

General Terms 
Design, Human Factors. 

Keywords 
Analytic Hierarchy Process (AHP), elderly e-health care, fall 
detection, indoor mobility, user surveys. 

1. INTRODUCTION 
Falls are one of the principal sources of injuries and 

hospitalization for elderly [5]. Also, mobility is a good indicator 
of health status and changes in movement patterns may signal an 
increased risk of the onset of a Neurodegenerative Disease (ND) 
[13]. For example, moving back and forth in a repetitive way 

between the same places inside the house may be associated with 
mild memory losses, remaining in a sitting position for long 
periods of time may signal mild depression. There is 
accumulating support in the literature that one of the key factors 
in increasing the efficacy of an e-health tele-monitoring system is 
to incorporate in the e-health system the right technology for 
detecting abrupt falls and estimating the indoor location and 
mobility [3][11]. There are several emerging technologies to 
support the fall detection and mobility pattern analysis, as it will 
be discussed in detail in Section III. Each of these technologies 
has their advantages and drawbacks, and there are very few 
studies yet which analyze these technologies from the elderly 
users’ point of view based on survey data.  It is the goal of our 
paper to provide a new framework, based on user survey results, 
expert opinions and AHP for helping the e-health tele-monitoring 
system designer to choose the most suitable technology for fall 
detection and indoor positioning, as bases for mobility pattern 
analysis. 

2. ANALYZED POPULATION  
2.1 Survey Methodology 
A survey on elderly preferences toward various technologies was 
conducted in five European countries: France (FR), Switzerland 
(CH), Romania (RO), Poland (PL) and Slovenia (SL). It was 
based on structured interviews conducted by human operators 
using a questionnaire, specifically developed, in the local 
language. Most of the questions used during the survey were 
categorical, with fixed answers, selected from a number of 
example-situations. Few questions, such as when the respondents 
were asked to justify their preference toward a certain technology, 
were open type requiring a narrative response. The participants 
were selected based on the following two criteria: 1) above 
retirement age or with permanent disability; 2) living alone or 
households of maximum two inhabitants. 

2.2 Statistics on survey participants 
Table 1. Respondents characteristics based on surveys  

Country RO CH FR PL SL Total 
Number of respondents 61 6 10 44 32 153 
Av. number of flat  rooms 3.2 6.7 3.8 3.1 5.2 4.4 
Average age [years] 73.

1 
74.
3 

81.
7 

74.
0 

70.
3 

74.7 

Most recurrent age  65 72 86 65 66 65 
% of living alone 27.

9 
50 60 27.

3 
25 38.0 

% female respondents 60. 50 60 45. 75 58.2 
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6 4 
% of respondents with  
chronic condition(s) 

78.
7 

66.
7 

80 59.
1 

53.
1 

67.5 

The main characteristics of the analyzed population are given in 
Table 1: the number of respondents per country, the average 
number of rooms in the respondent primary dwelling, the average 
and most recurrent respondent age (all being above 60 years old), 
and the percentages of people living alone, of female respondents 
and of respondents with at least one chronic health condition. 

3. USED TECHNOLOGIES  
Mobile health assistive technologies for remote monitoring of fall 
detection and mobility pattern analysis fall into two main 
categories: i) the wearable technologies, which requires that the 
users carries a tag, a sensor or a transmitter with her/him (e.g., 
embedded in clothes, as a bracelet or as a portable device such as 
the mobile phone), and ii) the device-free technologies, where 
certain wireless transceivers, tags and sensors are installed in the 
user home, but the user is not required to carry on any device. 

3.1 Wearable technologies 
Wearable technologies are the most widespread ones in the e-
health community. The user comfort is not the highest with these 
technologies, but they are typically more precise than the device-
free solutions. 

RFID tags: Radio Frequency Identification (RFID) tags are 
becoming an attractive option for e-health applications, due to 
their low-cost, tracking and positioning capabilities [12]. Passive 
RFID tags can be embroidered in human clothes and they 
‘communicate’ through backscattered power measurements with 
an in-room reader. RFID ranges are typically small (few m), 
allowing thus for proximity positioning. Recent RFID-based fall 
detectors have been studied in [5]. BLE tags: Bluetooth Low 
Energy is a Bluetooth version meant for low power applications.  
BLE-based solutions have been slightly investigated in the 
context of fall detection and indoor positioning [8]. Wearable 
BLE tags are already available. WiFi tags: WiFi technology is 
one of the most popular wireless technologies nowadays and is 
already heavily present around us: in houses, hospitals, 
universities, commuting halls, etc. Most portable wireless devices 
have nowadays a incorporated WiFi chipset and clothing 
embedded WiFi transceivers are becoming a reality. WiFi-based 
fall detectors were reported in [17] and WiFi-based positioning 
solutions are widespread [11]. Accelerometer-based wearable 
devices: they measure the human body acceleration along certain 
axes. 3D digital accelerometers are widely used in e-health 
monitoring [5]. Positioning estimation via an accelerometer 
typically requires few additional sensors, such as gyroscopes 
(measuring the direction change) and barometers (measuring the 
height change). UWB tags: Ultra Wide Band (UWB) technology 
is based on sending short time pulses over a very wide bandwidth, 
and achieving thus centimeter-level accuracy in positioning 
accuracy [11]. UWB is still a rather expensive technology and 
wearable solutions are still rather scarce [18]. 

3.2 Device-free technologies 
The device-free or contact-less technologies do not require that 
users carry any device and thus they cannot be forgotten to be 
worn. Typically, such technologies offer a lower accuracy than 
their wearable counterpart, since most of them (with the exception 
of vision systems) are based on the human body influences on the 
signal strength fluctuations between the in-house tags and in-

house receivers, when the person crosses the wave path. Some of 
them (e.g. vision systems) are quite privacy invasive, and thus 
have a low user acceptability, as our surveys showed [8]. 

RFID in-house systems: The same principles as for the RFID 
tags apply, but this time the tags are scattered all through the 
house, not carried on by the person. The human body changes the 
signal propagation characteristics and the readers can thus detect 
the human presence and movements [12]. BLE in-house systems: 
The technology is the same as with the case of the BLE tags 
apply, with the main difference that the tags are on fixed places 
inside the house (not carried on). The fall detection and 
positioning principles [19] are similar with the one from the RFID 
in-house system. WiFi in-house systems: Similarly with RFID 
and BLE in-house systems, the WiFi in-house systems are 
contact-less systems, where the Access point and the WiFi tags or 
transmitters are installed externally to the human wearable fabrics 
or pockets. The fall detection and positioning principles [12] are 
similar with the one from the RFID and BLE in-house system. 
UWB in-house systems: UWB in-house systems differ from 
UWB tags in the fact that they do not employ any wearable 
devices [4]. The fall detection and user position are based on the 
time of arrival of multipath reflections due to human body 
presence. Device-free UWB solutions are still scarce in the 
literature. Vision/camera-based systems: The vision systems are 
those systems requiring at least one surveillance camera in users’ 
homes. The surveillance cameras capture continuously the images 
of the users and analyze their movement patterns and behavioral 
changes based on vision navigation and pattern matching 
techniques [6]. Other technologies: Tactile or smart floors can 
also offer a device-free solution for user status monitoring 
indoors. The estimation accuracy depends on the density of the 
pressure sensing nodes, and the information can be sent to the 
central server through the WiFi network [2]. Tactile floors are 
however too expensive and disruptive technologies for the use in 
elderly homes, and thus they are not included in our analysis. 
Acoustic and ultrasound solutions have also been investigated in 
the context of elderly automatic monitoring of activities and 
indoor positioning [2][12].  

4. ANALYTIC HIERARCHY PROCESS  
Analytic Hierarchy Process (AHP) belongs to the category of 
Multi Criteria Decision Making (MCDM) processes, which derive 
ratio scales from paired comparisons between criteria and factor 
[1][2]. AHP can help the decision makers to choose between 
various options by taking into account both quantitative and 
qualitative factors. The priority weights can be gathered based on 
user surveys and expert opinions, as done here. 

4.1 Problem decomposition 
A block diagram of the AHP decision tree is shown in Figure 1: a 
decision regarding the suitability of a certain technology can be 
reached by taking into account several criteria and by dividing the 
problem into an hierarchical process: the first-level hierarchy 
shows the criteria according to which a decision is reached, and 
the second-level hierarchy shows the options (or technologies) to 
be analyzed. Each level has a certain priority factor or weight 
associated to it, here denoted by iw (first level) and ijv (second 

level), 1, 2,....; 1, 2,...i j= = According to previous [8] and the 
current user surveys [3][22], the most important factors to 
evaluate the quality of a e-health technological solution for fall 
detection and indoor positioning/mobility analysis are:  



1. The system cost: this includes the component costs, and the 
installation and maintenance costs. 

2. The technology acceptability by the end user refers to the 
subjective appreciation of users whether a certain technology 
would be acceptable or not to be installed in their homes 
(e.g., camera based solutions tends to be less acceptable than 
non-visual sensor-based solutions due to privacy concerns).  

3. The ease of use of the technology: this refers to how much 
input, effort and technological knowledge is required from 
the user’s side in order to use a certain technology. 

4. The accuracy of the solution provided by the technology: 
here, it refers to positioning accuracy, which is also directly 
related to the accuracy of deriving viable mobility patterns. 

5. The false alarm rates: in here, it refers to the rate of 
detecting and reporting false falls to the caregivers. 

4.2 AHP equations  
Once the main decision criteria are chosen (Figure 1), pair-wise 
comparison matrices at each hierarchy level can be built.  

 
Figure 1. Problem decomposition via AHP.  
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The so-called priority vector 1 N
hV R ×∈  is obtained via: 

( ) , 1, 2,
T

h
h

h

sum AV h
N

= =                                         (3)                                                   

 where T
hA  stands for the transpose of matrix hA .The elements 

of the priority vector are the weights at each hierarchical level:   
for the first hierarchical level: { }1 1,i i N

V w
=

= and { }2 1,i ij j N
V v

=
= , 

i=1,N for the second hierarchical level of Figure 1. 

A decision about the best technology according to the multi-
criteria of levels 1 and 2 in of  Figure 1 is taken by computing the 
final priority levels it  of each technology and sorting the 
technology according to its priority level: 
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4.3 AHP pair-wise comparison matrices 
Based on our survey results with the survey data in Table 1, on 
literature searches and on expert opinions based on discussion 
between authors, the following level 1 pair-wise comparison 
matrix has been obtained (Table 2). For example, this tells us that 
the Cost is 4 times more important than the accuracy from the 
user’s point of view and the ease of use is twice more important 
than the false alarm rate.   

Table 2. Level-1 pairwise comparison matrix 
 Cost Acceptability Ease of 

use 
Accuracy False 

alarm 
Cost 1 1/2 2 4 4 
Acceptability 2 1 4 10 5 
Ease of use 1/2 1/4 1 2 2 
Accuracy 1/4 1/10 1/2 1 1/2 
False alarms 1/4 1/5 1/2 2 1 
The consistency ratio of Table 2 matrix is 2%, which is much 
below the 10% consistency, showing thus a very good 
consistency of the data. The five level 2 pairwise comparison 
matrices are shown in our supplementary material of [8] due to 
lack of space. In order to build those, we used an average 
dwelling size of 4.4 rooms (as based on surveys, Table 1) and we 
assumed that the wearable solutions need one tag/user and the 
device-free solutions need 4 tags/room. These assumptions are 
based on literature studies and authors’ knowledge on the 
technological needs in indoor positioning. The in-house RFID and 
UWB systems also require one reader per room (due to line of 
sight requirements), while in-house BLE and WiFi solutions work 
with one receiver per house. The vision-based system was also 
assumed to require one surveillance camera per room. The level 2 
priority weights according to each criterion and to each 
technology are summarized in Table 3 which also shows which 
technology is the best among others with respect to a certain 
criterion. The letters stand for: A) Wearable BLE tag + in-house 
receiver  (rx) ; B) Wearable RFID tag + in-house readers; C) 
Wearable WiFi tag + in-house receiver; D) Wearable UWB tag + 
in-house rx; E) Wearable accelerometer tag + in house rx;  F) In-
house BLE system (user is device free); G) In-house RFID 
system; H) In-house WiFi system; I) In-house UWB system; J) 
Vision-based system/ video cameras. Higher priority means better 
technology. It also shows which are the drawbacks and 
advantages of a certain technology with respect to a certain 
criterion. For example, technology A (wearable BLE tag) is the 
most cost effective technology, while technology J (vision-based 
system) is the easiest to be used among the 10 considered ones. 

Table 3. Level-2 priority weights ijv [%] 
Techn A B C D E F G H I J 
Cost 28.2 4.6 23.5 1.9 22.3 4.3 2.9 5.9 1.4 4.8 
Accep 13.0 13.0 13.0 13.0 13.0 9.8 6.2 9.8 6.2 3.1 
Ease  
of use 

6.2 8.3 2.0 4.2 2.1 14.6 14.6 14.6 12.5 20.8 

Accur 1.5 1.5 0.75 30.1 0.6 1.5 3.0 0.8 30.1 30.1 
False 
alarm
s 

1.0 1.5 1.0 29.4 5.9 0.7 1.0 0.7 29.4 29.4 

 



5.  SUITABILITY RANKING 
The 2-level AHP analysis based on the pairwise comparison 
tables and eq. (4) gives the suitability ranking. The technologies 
are ranked from the most suitable (rank 1) to the least suitable, by 
taking into account the user preferences and the 5 optimization 
criteria of Table 2. The gaining technology is a solution based on 
wearable BLE tags and an in-house BLE receiver, followed 
closely by wearable accelerometer and wearable WiFi solutions, 
while the least suitable technology is an in-house (contact-less) 
RFID system, no doubt due to high cost, low accuracy and low 
comfort when installed in the house. The suitability according to 
AHP, given as percentages, is as follows: rank 1: Wearable BLE 
tag + in-house rx (14.41%); rank 2: Wearable accelerometer tag 
+ in house rx (12.71%); rank 3: Wearable WiFi tag + in-house rx 
(12.64%); rank 4: Wearable UWB tag + in-house receiver 
(11.27%); rank 5: Vision System (9.40%); rank 6: In-house 
UWB (8.93%); Wearable RFID tag + in-house readers (8.70%); 
rank 7: In-house WiFi system (8.22%); rank 8: In-house BLE 
system (7.84%); rank 9: In-house RFID system (5.84%). 

6. CONCLUSIONS 
Choosing the right technology to support e-health solutions via 
fall detection and user mobility patterns analysis is a challenging 
problem. The aim of our paper has been to identify which of the 
existing technologies for indoor positioning, fall detection and 
mobility pattern analysis can satisfy most of the requirements of 
elderly with respect to acceptability, ease of use and cost, by 
taking into account also the performance indicators (i.e., accuracy 
and false rates).  An AHP analysis was used based on user survey 
data collected in 5 EU countries.  The result of our analysis show 
that the most suitable technology among the 10 most promising 
ones in the field of fall detection and indoor mobility is a 
technology based on a wearable BLE tag and additional fixed in-
house receiver. Our analysis also shows that wearable 
technologies are preferable to the device-free technologies, 
mostly because their better performance and lower associated 
costs. Another observation is that none of these technologies has a 
significantly higher priority than the others (the highest priority 
level is 14.4%, only slightly higher than the 10% likelihood, 
which is the likelihood of randomly selecting one of these 10 
technologies), which points out towards the fact that stand-alone 
solutions may be unable to address all optimality criteria and 
more advanced hybrid architectures are needed to be created. 
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