
A distributed platform for big data analysis in smart
cities: combining Intelligent Transportation Systems
and socioeconomic data for Montevideo, Uruguay

Sergio Nesmachnow*, Sebastián Baña*, and Renzo Massobrio*

Universidad de la República, Herrera y Reissig 565, Montevideo, Uruguay

Abstract

This article proposes a platform for distributed big data analysis in the context of smart cities. Extracting
useful mobility information from large volumes of data is crucial to improve decision-making processes in
smart cities. This article introduces a framework for mobility analysis in smart cities combining Intelligent
Transportation Systems and socioeconomic data for the city of Montevideo, Uruguay. The efficiency of the
proposed system is analyzed over a distributed computing infrastructure, demonstrating that the system
scales properly for processing large volumes of data for both off-line and on-line scenarios. Applications of
the proposed platform and case studies using real data are presented, as examples of the valuable information
that can be offered to both citizens and authorities. The proposed model for big data processing can also be
extended to allow using other distributed (e.g. grid, cloud, fog, edge) computing infrastructures.
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1. Introduction

The paradigm of smart cities proposes taking advantage
of information and communication technologies to
improve the quality and efficiency of urban services [1].
Modern cities are increasingly becoming sensed and

instrumented. The embedding of smart devices into
traditional city’s physical systems together with the
emergence of citizen sensors, such as mobile phones or
"Internet of Things" (IoT) enabled domestic appliances,
are generating vast volumes of data that present
unprecedented opportunities as well as challenges.
Extracting insights from these datasets is crucial to
improve decision-making processes in cities and to
achieve quality improvements and increase efficiency.
A particular sub-domain of a smart city are

Intelligent Transportation Systems (ITS). ITS integrate
synergistic technologies, computational intelligence,
and engineering concepts to develop and improve
transportation. ITS are aimed at providing innovative

∗Corresponding authors. Email: {sergion,sbana,renzom}@fing.edu.uy

services for transport and traffic management, with
the main goals of improving transportation safety
and mobility, and also enhancing productivity [2].
ITS allow gathering large volumes of data by taking
advantage of different sensors and devices present
in current vehicles and infrastructure (e.g., passenger
counters, GPS devices, video cameras, ticket vending
machines). The development of smart tools that use
data gathered by ITS infrastructure and vehicles
has risen in the past years. These tools rely on
efficient and accurate data processing (even in real-
time), which poses an interesting challenge from
the technological perspective. Furthermore, these data
can be combined with more traditional data sources,
such as sociodemographic data that are regularly and
systematically collected by government agencies. This
combined approach enables characterizing areas of
study and helps answering questions such us how
equitably the services delivered are and whether certain
communities are disproportionally affected by poor
service quality.
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In this context, applying distributed parallel comput-
ing and machine learning techniques arise as a promis-
ing methodology for processing large volumes of data
to be used in services and applications targeting both
citizens and authorities alike.
This article proposes a framework for capturing and

processing large volumes of data in the context of the
resolution of urban problems. The problems involve
processing large volumes of data to offer real-time
information to both citizens and transport authorities.
The proposed framework applies distributed comput-
ing and big data processing methods to provide an
easy-to-use and efficient solution. Furthermore, two
specific applications of the proposed framework are
presented: i) an analysis of public transportation in
the city of Montevideo, Uruguay that uses historical
geo-spatial data from vehicles combined with socioeco-
nomic datasets to withdraw conclusions regarding both
quality and equability of the services provided [3] and
ii) the estimation of OD matrices and mobility patterns
for the same public transportation system [4].
An experimental analysis is also reported, studying

the computational efficiency of the proposed frame-
work over both applications. The main results demon-
strate the efficiency and scalability of the proposed
solution, making it a promising approach to be applied
in modern smart cities.
The article is organized as follows. Section 2 describes

the generic framework proposed for distributed big
data analysis for ITS in the context of the smart city
paradigm and introduces the two practical applications
studied. A review of related works on distributed big
data analysis for smart city applications is presented
in Section 3. Section 4 describes the proposed model
for the distributed processing and the specific details
of the implementations for the two cases of study.
The computational efficiency analysis is reported in
Section 5. Two examples of studies that generate useful
statistics for the population are described in Section 6.
Finally, Section 7 presents the conclusions and main
lines of future work.

2. Big data processing for Intelligent
Transportation Systems in smart cities

This section describes two problems related to pro-
cessing big data from transportation systems applying
distributed computing and computational intelligence.

2.1. Analysis of the quality and equability of the
public transportation system

The first case of study proposes combining multiple
datasets and performing both off-line and on-line
analysis of GPS data and ticket sales information from
buses.

Given a big set of data collected fromGPS devices and
ticket sales machines in buses, the problem consists in
computing a number of important statistical values to
assess the quality of the public transportation system.
The information collected by GPS devices includes

the time and the coordinates for each bus, reported with
a frequency of 10–30 seconds, which allow determining
the location of each bus within its route. On the
other hand, information from ticket sales include
the information of every ticket sold on each bus,
including: GPS coordinates, time, and date the ticket
was sold. Additionally, if the ticket was paid for using
a smartcard, a unique identifier for the smartcard is
included, which allow identifying trips done by the
same passenger.
The main goal of the data processing is to compute

relevant metrics to assess the efficiency of the public
transport system in Montevideo, for example: i) study
the impact of traffic conditions and external events on
the efficiency of the transportation system ii) analyze
the real time that each bus takes to reach some
important locations in the city (known as control points
or remarkable locations), and iii) compute statistical
information about the arriving times and delays for
each remarkable location (maximum, minimum, mean,
mean absolute deviation, and standard deviation).
The information to report must be classified and

properly organized in order to determine accurate
values according to different days of the week and hours
in the day, which imply different passenger demands
and different traffic mobility patterns.
The benefits of the proposed system for processing

GPS data are twofold: i) from the point of view of
the users, the system provides useful information from
both historical data (monthly, yearly) and the current
status of the public transportation in the city, to aid with
mobility decisions (e.g., choose a certain bus, move to a
different bus stop, consider using a different line); this
information can be obtained via intelligent ubiquitous
software applications and websites; ii) from the point
of view of the city administration, the statistical
information gathered is useful for planning long-term
modifications in the bus routes and frequencies, and
also to address specific bottleneck situations in the
public transportation system.
A diagram of the proposed system for processing GPS

data in ITS is presented in Figure 1. The system is
based on buses that upload data reporting their current
location (collected by the on-board GPS unit) and ticket
sales to a server in the cloud and a historical database
which includes transport and socioeconomic data from
the past. The server applies big data and streaming
analysis techniques to the collected data. The results are
then exposed to be consumed by mobile applications
for end-users and also to be used in monitoring
applications for the city government authorities.
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Figure 1. Architecture of the proposed big data analysis for ITS

The proposed system is useful for performing both
on-line and off-line data processing. On the one
hand, on-line processing applying streaming analysis
techniques fulfill requirements in areas such as early
warning and detection, and adaptive routing. The off-
line analysis on the other hand, is focused on the study
of trends that allow identifying mobility patterns and
creating predictive models that can be later used in
conjunction with sensors that stream data in real-time.

On-line ITS metrics and statistics. In order to handle
real-time data the system relies on a streaming process-
ing engine that enables high throughput ingestion from
multiple concurrent data sources. The proposed system
presents a set of expressive abstractions, such as join,
map, and reduce, to apply transformations to the data
before persisting the results into the storage subsystem.

Off-line ITS metrics and statistics. For computing off-
line mobility metrics, the proposed system demands
processing a large volume of data in short execution
time, thus leading to a classic big data problem. The
system applies a parallel/distributed model to perform
the data processing, where the original data is split
and distributed across different nodes to be processed
independently. Finally, all the partial results from each
node are combined to return the final solution. These
data are used to derive metrics of the quality of
the service that are later merged with socioeconomic
indicators that are used to characterize the geographic
area served by each particular bus line.

The number of bus lines, bus stops, and individual
trips completed every day constitute a relatively large

volume of data. Thus, even some of the more traditional
geo-spatial analysis problems, such as deriving the
isochrones for a fixed walking distance from the stops
on a bus line–to determine the bus coverage area–
becomes a candidate problem for parallel processing.
The social dimension of the analysis is crucial to

evaluate whether the services are being fairly delivered,
benefiting all the communities irrespectively from their
location or demographic characteristics. The concept
of “equitable city” is one of the promises of urban
informatics and it is a central premise of our research.

2.2. Estimation of mobility patterns: demand and OD
matrices

The second case of study proposes applying distributed
computing techniques for estimating mobility patterns
and OD matrices in ITS systems.
Origin-Destination (OD) matrices are often not

directly observable, because sensors or GPS gadgets in
buses typically measure traffic characteristics, which
are the result of not just origin-destination trips,
but also of route choices and traffic operations for
certain types of vehicles. Thus, OD matrices have to be
estimated from any available relevant data.
This is a relevant problem for implementing the

smart city paradigm. Determining themobility patterns
to build demand and OD matrices is crucial for
analyzing the transportation system and the resulting
outcomes are key for city administrators to take
decisions that improve the quality of the system.
The main challenge faced when generating demand

and OD matrices using data from GPS and tickets
sales is that in almost every system passengers validate
their smart cards when they board but not when they
alight a bus. Therefore, while the origin of each trip
is known with certainty, it is necessary to estimate the
destination. Furthermore, in many urban systems some
passengers do not use smart cards to pay for their ticket
and pay cash instead. Therefore, there are sale records
which do not provide information that can be used to
track several trips made by the same passenger. Specific
big data processing algorithms must be designed and
implemented for each case.
Data from GPS, sensors, and traffic gadgets are gath-

ered in many formats and with different granularity.
This case of study focuses on a study of the ITS for the
city of Montevideo, Uruguay. Thus, the types of input
data considered in this article for origin-destination
estimation and prediction are the GPS and ticket sales
data from buses in Montevideo.
The city government in Montevideo introduced

in 2010 an urban mobility plan to redesign and
modernize urban transport in the city [5]. Under this
plan, the Metropolitan Transport System (Sistema de
Transporte Metropolitano, STM) was created, with the
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goal of integrating the different components of the
public transportation system together. One of the first
improvements in STM was to include GPS devices on
buses and allow passengers to pay for tickets using
a smart card (STM card). Additionally, the complex
system of fares was simplified to allow only two
different type of tickets: i) "one hour" tickets, allowing
up to 1 transfer within an hour of boarding the
first bus; ii) "two hours" tickets, allowing unlimited
transfers within 2 hours from the moment the ticket
is purchased. However, it is not compulsory to use the
STM card to buy bus tickets, as passengersmay paywith
cash directly to the driver. In this case, the ticket is only
valid for that trip and no transfers are allowed.
Using historical information gathered in the context

of the STM transport system of Montevideo, the goal is
to accurately estimate demand and OD matrices from
GPS bus location and ticket sales data (considering
tickets payed with and without smartcards). The
computed results are of significant value to the
authorities at the city government in Montevideo,
since there is a serious lack of mobility information.
Traditional methods (e.g., passenger surveys, visual
inspections) have proven to be expensive and offer
outdated information while novel methods based on
information already gathered by the ITS have not been
explored by the city authorities yet.

3. Related works

This section reviews the related works on the two main
topics addressed in this article: applying big data and
distributed computing approaches for processing data
from ITS and related systems in the context of smart
cities, and processing data to estimate demand and OD
matrices.

3.1. Distributed computing for processing traffic data

Several articles have proposed applying distributed
computing approaches to process large volumes of
traffic data with diverse goals. A brief review of related
works is presented next.
The advantages of using big data analysis for

social transportation have been studied in a thorough
manner in the general review of the field by Zheng
et al. [6]. The authors analyzed using several sources
of information, including vehicle mobility (e.g., GPS
coordinates, speed data), pedestrian mobility (e.g., GPS
andWiFi signals frommobile devices), incident reports,
social networking (e.g., textual posts, address), and web
logs (e.g., user identification, comments). In the review,
the advantages and limitations of using each source of
data are discussed. Several other novel ideas to improve
public transportation and implement the ITS paradigm
are also reviewed, including applying crowdsourcing
techniques for collecting and analyzing real-time or

near real-time traffic information, and using data-
based agents for driver assistance and analyzing human
behavior. A conclusion on how to integrate all the
previous concepts in a data-driven social transportation
system that improves traffic safety and efficiency is also
presented.
Several other computational intelligence techniques

have been recently applied to process ITS data in order
to help the decision-making processes in smart cities.
Oh et al. [7] proposed a sequential search strategy for
traffic state prediction combining a Vehicle Detection
System and the k nearest neighbors (kNN) non-
parametric method for classification. An experimental
evaluation was performed considering data from the
performance measurement system from State Route
78 highway in California, United States. The results
demonstrated that the proposed system outperformed
a traditional kNN approach, computing significantly
more accurate results while maintaining good efficiency
and stability properties.
Shi and Abdel-Aty [8] applied the random forest

data mining technique and Bayesian inference to
process large volumes of data from a microwave
vehicle detection system, with the main goal of
identifying the contributing factors to crashes in real-
time. Rear-end crashes were studied because they
have a straightforward relation with congestion. The
experimental evaluation of the proposed computational
intelligence approachwas performed considering traffic
data from State Routes 408, 417, and 528 in Central
Florida, United States. A reliability model was also
included in the analysis. The main results allowed the
authors to conclude that peak hour, higher volume and
lower speed at upstream locations, and high congestion
index at downstream detection point significantly
increased the probability of crashes.
Ahn et al. [9] applied Support Vector Regression

(SVR) and a Bayesian classifier for building a real-time
traffic flow prediction system. Data preparation and
noise filtering are applied to raw data, and a traffic
flow model is proposed using a Bayesian framework.
Regression techniques are used to model the time-
space dependencies and relationships between roads.
The performance of the proposed method is studied on
traffic data from Gyeongbu, the Seoul-Busan corridor in
South Korea. The experimental results showed that the
approach using SVR-based estimation outperformed
a traditional linear regression methods in terms of
accuracy.
Chen et al. [10] proposed a model that aims to

efficiently predict traffic speed on a given location using
historical data from various sources including ITS data,
weather conditions, and special events taking place in
the city. To obtain accurate results the prediction model
needs to be re-trained frequently in order to incorporate
the most up-to-date data. The prediction model
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combines the kNN algorithm with a Gaussian Process
Regression. Additionally, the results are computed
using a Map-Reduce model, implemented under the
Hadoop framework. The experimental evaluation was
performed over a real scenario using data from the
Research Data Exchange, a platform for ITS data
sharing. The data used corresponds to the Interstate
5 Higway in San Diego, California, United States.
The processed information included speed, flow, and
occupancy data measured using loop-detectors on the
road, as well as visibility data taken from weather
stations nearby. Experimental results showed that the
proposed method was able to accurately predict traffic
speed with an average forecasting error smaller that
2 miles per hour. Additionally, a 69% improvement
on the execution time was achieved by using the
Hadoop framework in a cluster infrastructure when
compared with a sequential algorithm running in a
single machine.

Xia et al. [11] studied the real-time short-term
traffic flow forecasting problem. To solve the problem,
the authors proposed using the k nearest neighbor
algorithm in a distributed environment, following the
Map-Reduce model implemented over the Hadoop
framework. The proposed solution considered the
spatial-temporal correlation in traffic flow, i.e., current
traffic at a certain road segment depends on past traffic
(time dimension) and on traffic situation at nearby road
segments (spatial dimension). These two factors can be
controlled using weights in the proposed algorithm.
The experimental analysis was performed using data of
trajectories of more than 12000 GPS-equipped taxis in
the city of Beijing, China, during a period of 15 days in
November 2012. The first 14 days of data are used as
the training set and the last day is used for evaluating
the computed results. The proposed algorithm allows
reducing the mean absolute percentage error by 8.5% to
11.5% on average over three existing techniques based
on the kNN algorithm. Additionally, a computational
efficiency of 0.84 is reported for the best case.

3.2. Estimation of demand and OD matrices

The estimation of demand and OD matrices is a well-
known problem in the field of public transportation.
This problem has had a renewed interest with the
increasing availability of large volumes of data from
modern ITS systems.

Many articles in the related literature have pro-
posed applying statistical analysis for estimating OD
matrices and computing several other relevant statis-
tics for ITS. Some approaches applying parallel and
distributed computing techniques have also been pro-
posed recently. A review of the main related works is
presented next.

An analysis of the literature about using smart cards
in ITS was presented by Pelletier et al. [12]. The review
covered all the details about hardware and software
needed for deploying smart card payment solutions
in urban transportation systems. In addition, privacy
and legal issues that arise when dealing with smart
card data were also reviewed. The authors identified
the main uses for smart card data, including: long-
term planning, service adjustments, and performance
indicators of the transportation systems. Finally, the
review described several examples of smart card data
utilization around the world.

Trépanier et al. [13] proposed a model for esti-
mating the destination for passengers boarding buses
with smart cards, following a database programming
approach. Two hypotheses are considered, which are
also commonly used in many related works: i) the origin
of a new trip is the destination of the previous one; ii) at
the end of the day users return to the origin of their first
trip of the day. Based on the previous two assumptions,
the authors proposed a method to follow the chain of
trips of each user in the system. Those trips for which
chaining is not possible (e.g., only one trip in the day
exists for a particular user) are compared with all other
trips of the month for the same user, in order to find
similar trips with known destination. The experimental
evaluation was conducted using real information from
the transit authority in Gatineau, Quebec. Two datasets
were used, with 378,260 trips from July 2003 and
771,239 trips from October 2003. Results showed that
a destination estimation was possible for 66% of the
trips. It is worth noting that most trips for which its
destination could not be estimated with the proposed
approach take place during off-peak hours, where more
atypical and non-regular trips are performed. Consid-
ering only peak hours, the percentage of trips with
their destination estimated improves to 80%. However,
the real estimation accuracy could not be assessed due
to lack of a second source of data (e.g., automatic
passenger count) for comparison.

Wang et al. [14] proposed using a trip-chaining
method to infer bus passenger origin-destination from
smart card transactions and Automatic Vehicle Location
(AVL) data from London, United Kingdom. In the
studied scenario, authors needed to estimate both
origin and destination of trips. Origins are accurately
estimated by searching for the timestamp of each smart
card transaction in the AVL records to determine the
bus stop of each trip. To estimate destinations, the
authors used a similar methodology to that presented
by Trépanier et al. [13], chaining trips when possible
to infer destinations. Results were compared against
passenger survey data from Transport for London,
performed every five to seven years for each bus route
and including the number of people boarding and
alighting at each bus stop. The analysis show that
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origins can be estimated for more than 90% of the
trips while origin and destinations can be estimated
for 57% of all trips. When compared to the survey
data, the difference on the estimated destinations were
below 4% on the worst case. Finally, two practical
applications of the results are presented. The first one
consists of studying the daily load/flow variation in
order to identify locations along each bus route where
passenger load is high, as well as underutilized route
segments. The second application consists of a transfer
time analysis, evaluating the average time that users
need to wait for transferring between buses, based on
the alighting stop and the AVL data.
Later, Munizaga et al. [15] presented a similar

approach to the one applied by Wang et al. [14] for esti-
mating OD matrices in the multimodal transportation
system of Santiago, Chile. The scenario considered in
the article by Munizaga et al. is more general, because
passengers can use their smart cards to pay for tickets at
metros, buses, and bus stations. The proposed approach
is evaluated using smart card datasets corresponding to
two different weeks, with over 35 million transactions
each. The origin of the trip is accurately determined
for nearly every transaction while the destination and
time of alighting was estimated for over 80% of the
transactions. After extrapolating and post-processing,
an estimated OD matrix is presented to visualize the
computed results at any given timespace disaggrega-
tion.
Several proposals have applied distributed comput-

ing approaches to process large volumes of traffic data,
but fewworks have dealt with the estimation of demand
or OD matrices.
Early works on this topic applied distributing

computing to gather traffic data. Sun [16] proposed a
client-server model developed in CORBA for collecting
traffic counts in real time, to be used for dynamic
origin/destination demand estimation. The proposed
solution included a CORBA client to extract data from
the traffic network, and a CORBA server for storing
data in a centralized repository. All the information
is processed to be later used in Dynamic Traffic
Assignment strategies for the traffic network studied,
for the estimation of dynamic OD matrices applying a
bi-level optimization framework.
Toole et al. [17] propose combining data from many

sources (call records from mobile phones, census, and
surveys) to infer OD matrices. The authors combine
several existing algorithms to generate OD matrices,
assign trips to specific routes, and to compute quality
metrics on road usage. Furthermore, a web application
is introduced to give simple visualizations of the
computed information. The authors mention that
computations are performed in parallel, but no parallel
model is described and no performance metrics are
reported.

Also using mobile phone data, Mellegård [18]
proposed a Hadoop implementation to generate OD
matrices while keeping users’ privacy. However, the
experimental analysis is done on synthetic data
due to the difficulties on getting real data from
mobile operators. Furthermore, no performancemetrics
are reported, so the advantages of the Hadoop
implementation are unclear.
Huang et al. [19] proposed a methodology for

offline/online calibration of Dynamic Traffic Assign-
ment systems via distributed gradient calculations. An
adaptive network decomposition framework is intro-
duced for parallel computation of traffic network met-
rics and for parallel simulation, in order to accelerate
the computations. Parallel origin-destination demand
estimation is proposed as a line for future work, in
order to deal with large-scale traffic networks with huge
number of origin-destination pairs and sensors.

3.3. Summary of related works

The analysis of related works allows identifying several
proposals for using big data analysis and computa-
tional intelligence methods to design improved ITS.
Computational intelligence and learning methods, such
as regression, kNN and Bayesian inference are often
used to identify traffic patterns and provide useful
information for planning. However, there are few works
focusing on improving the public transportation sys-
tems, especially considering the point of view of the
users. Furthermore, few works focus in the social jus-
tice, integrating into the analysis elements that provide
insights into the fairness with which the service is
delivered. In this context, the research reported in this
article contributes with specific proposals to monitor
and improve the public bus transportation, considering
the point of view of both users and administrators, and
providing objective metrics on the way communities
receive these services in Montevideo, Uruguay.
Regarding demand and OD matrices estimation,

previous works have addressed the problem of
estimating the destination by chaining trips where
the destination is assumed to be near the origin
of the following trip. This article expands that idea
by also considering transfers between bus lines,
which are specifically recorded in the smart card
dataset used for the evaluation. Additionally, a novel
parallel/distributed computing approach is presented
to allow solving a more complex and computing-
intensive data processing problem. To the best of our
knowledge, this approach has not been previously
proposed in the related literature.

4. The proposed solutions

This section describes the proposed solutions for the
two cases of study presented in this article.
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4.1. Processing GPS data from buses in the public
transport system

Historical GPS data processing applying Map-Reduce over

Hadoop. The first case of study is described next.
Design and architecture. The problem is decom-

posed in two sub-problems: i) pre-processing to properly
prepare the data to be used as input for the process-
ing in the next phase, and ii) statistics computation of
the public transportation system, using a parallel/dis-
tributed approach.
A master-slave parallel model is used to define and

organize the control hierarchy and processing. Figure 2
presents a conceptual diagram of the proposed solution.
In the pre-processing phase, the master process filters

the data, in order to select only that information that
is useful to compute the statistics. The data processing
phase applies a data-parallel domain decomposition
strategy for parallelization. The available data resulting
from the previous phase is split in chunks to be handled
by several processing elements. The master process is
in charge of controlling and monitoring the system,
performing the data partition, and sending the chunks
to slaves for processing. Each slave process receives a
subset of the data from the master. The group of slaves
processes collaborate in the data processing, generating
the expected statistical results. Each slave performs the
same task; therefore, a single program multiple data
(SPMD) parallel model is applied.
Strategy for data processing: algorithmic descrip-

tion. The input data correspond to the GPS coordi-
nates sent by each bus in operation, during each trip.
Every line in the input file represents a new position
recorded by a certain bus during a given route and for
a particular instant of time. The first column of the
input file corresponds to the line number field, which

is a unique identifier for each bus line. In turn, to
distinguish different trips of the same bus line, the file
has a self-generated numeric field, trip number, which
identifies a particular trip of a bus line.

Pre-processing stage. The main goal of pre-processing
is data preparation. This stage filters input data that
do not contain useful information for the statistics to
compute, and classifies/orders useful records.

Three phases are identified in the data preparation:

1. Filtering: This phase filters the data according
to the statistics to compute. Two relevant cases
are considered: i) discarding non-useful data, as
the raw data files include information that is
not useful for computing the statistics (e.g.,
when computing the accuracy of buses to reach
remarkable locations, the GPS information not
related to remarkable locations is not needed);
and ii) filtering ranges, as the system receives a
time range as input and computes the statistic for
that given period of time.

2. Time range characterization: This phase identifies
the time range of the timestamp of each
record containing useful information. Since traffic
patterns vary significantly throughout the day,
the time range must be taken into account when
computing and analyzing the generated statistics.
to compute and analyze statistics generated due to
variations of this factor determines very different
values to be processed. We consider three time
ranges in the study:

• morning, between 04:00 and 12:00,

• afternoon, between 12:01 and 20:00, and

• night, between 20:01 and 4:00.

Figure 2. Conceptual diagram of the proposed application
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3. Sorting: This phase sorts the records according to
the bus line identification (line number) and the
timestamp of the record. These fields define a
processing key, which is needed to compute the
time differences between the departing time for
each bus and the time taken to reach each of the
remarkable locations.

After applying the pre-processing stage, the master
process has the filtered data to be used as input data for
the processing to be performed by each slave process.
The data consist in a set of records containing the
following fields: line number, trip number, timestamp,
timerange, and bus stop.
Statistics generation stage. The statistics generation

stage is organized in four phases:

1. Data partitioning and distribution: The master
process divides the dataset of useful GPS records
and distributes the resulting subsets among
the slave processes. Each of the resulting data
subsets includes a group of records associated
with the same line number, sorted according to
the criteria applied in the pre-processing stage.
Statistics associated with the same line number
are processed in the same slave.

2. Computing temporal distances. In this phase, each
slave processes the subset assigned by the master
process, splitting each record into different fields,
to create new data. For each bus line number,
the distances between different points on the
bus route are calculated iterating through a
date-ordered list containing the distance values.
The start of each trip is defined by the first
new occurrence of a trip number found in the
subset containing the GPS data handled by each
slave process. Each slave uses that initial time
to track each remarkable location or bus stop,
by computing the time between the timestamp
and the initial time (i.e., the relative time).
The computed relative times are then filtered
by timerange and by remarkable location. The
generated results are stored in memory, grouped
by the fields mentioned above, to be available for
the next phase.

3. Statistics generation. In the third phase, data are
reduced into results and finally statistics are
computed. For each occurrence, an iteration over
the calculated distances is performed to compute
several metrics, including:

• the maximum differences between times
(max time difference);

• the minimum differences between times (min
time difference);

• the average time (time average); and
• the standard deviation of time values (time
standard deviation).

These metrics are computed considering the
relative time (accumulated time of the trip from
the starting location) to reach each bus stop
or remarkable location for each bus line, and
filtering by the different time ranges considered.
The output values are grouped and ordered by
line number, remarkable location, and timerange.

4. Return results to the master process. The slaves
return the partial results to the master, who
groups and prompts the final results to the user.

Implementation details. The proposed parallel/dis-
tributed system for traffic data processing is imple-
mented using a Map-Reduce approach in Hadoop. The
application fits in the Map-Reduce model because no
communications are required between slave processes
and the only communications between master and
slaves are performed for the initial phase of data dis-
tribution and the final phase to report the results.
The Map-Reduce engine in Hadoop is applied using

one master node and several slave nodes. The master
node uses the JobTracker process to send jobs to different
TaskTracker processes associated to the slave nodes.
When the slaves finish processing, each TaskTracker
sends the results back to the JobTracker in the master
node. The details for each stage are presented next.
Pre-processing stage. The pre-processing stage

involves the traditional phases usually applied when
using the Hadoop framework: splitting, mapping, and
shuffling and sorting. All these tasks are performed by
the Hadoop master process:

• Splitting. The splitting phase assigns records
to the master process. Two instances of the
FileInputFormat and RecordReader classes in
Hadoop were implemented to filter useful data
and generate the input data to be used by the
mapper process. After that, all selected records
are converted to appropriate datatypes to be used
in the statistics generation stage (e.g., numerical
data are converted to long or int, dates are
converted to timestamp, etc.).

• Mapping. In the mapping phase, each mapper
receives a subset of data (data block) to process.
The number of mappers on execution is defined
by X/b, where X is the size of the data to process
and b the size of the data blocks.

Data filtering is applied by each mapper,
using RecordReader<KeyBusCompound,BusInfo>

objects. KeyBusCompound and BusInfo are used
as <key,value> pairs for records sent to mappers.
KeyBusCompound is a compound key including the
fields needed to identify a bus trip (line number,
trip number, and timestamp). BusInfo includes
values for remarkable locations, timerange, trip
number, and timestamp, needed to apply a
secondary sorting (see Sorting).
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The Hadoop framework creates a number of
filtering instances according to the number of
input splits on the input file. Each instance p
operates on a data subset {L}p , where {L} is the set
of input lines received in the splitting phase.

Several methods were implemented to define the
filtering logic to return the next register to be
processed by mappers. For each record on the
input, an integrity check is performed to discard
records without the expected format and those
not included in the range to process. A two-field
record <KeyBusCompound, BusInfo> is added to
the resulting set for each record not discarded.
The output is a list containing {T}p records,
with the format <(line_number, trip_number,
timestamp), info>.

• Shuffling and sorting. Sorting, shuffling, and
partitioning are applied after the map stage on
a typical Map-Reduce application. The common
practice is sorting keys, but we decided to apply
a secondary sorting [20] to deliver ordered values
to each reducer to compute temporary distances
in the proposed system. The secondary sorting is
needed to sort both keys and values (i.e., the well-
known value-to-key conversion procedure).

Statistics generation stage. This stage is performed by
Hadoop reduce processes, which correspond to slave
processes in the conceptual algorithmic description.
Each process has three phases:

• Data partitioning and distribution. This phase cor-
responds to the data sent from map to reduce
processes. By default, the Hadoop framework dis-
tributes keys to different reducers applying a
hashmap partitioning. This distribution mecha-
nism does not guarantee an appropriate load bal-
ancing, because reducers do not receive equally-
size subsets to process. Furthermore, the results
produced by reducers will not be ordered, as it
is desirable for the reports to be delivered to
the users of the proposed application. For these
reasons, we implemented a specific partitioning
method using a TreeMap [21] hash, so the reducer
sends those records associated to a specific bus
line number. The TreeMap structure is dynami-
cally generated in the main program, taking into
account the number of reducers and a CSV file
containing ordered unique keys (line number).

• Reduce. According to the procedure in the
previous phase, each reducer receives records
with the format: <(line_numberi ), [infoi1, . . . ,
infoiN ]>, related to a given bus line number,
and all values associated to keys are ordered.
A reduce function is executed on each key
(line_number) on set {T}: the initial times are
determined for each bus trip and the relative

times between remarkable locations in the
trip are computed. Data is temporarily stored
in a TreeMap structure, using KeyStatistics

(line_numberi , control_pointi , timerangei ) as
key and LongWritable representing the time
differences, as values.

• Statistics generation. A second function on
the reducer receives each <KeyStatistic,
LongWritable> pair and computes the statistic
values from the previous partial results. In
the cases of study reported in this article,
we compute the maximum, minimum,
arithmetic mean, mean absolute deviation,
and standard deviation of times for each bus
line number, control point, and timerange. The
reducers output is <(line_numberi , timerangei ,
control_pointi ), (min_timei , max_timei , meani ,
mean_deviationi , standard_deviationi )>. These
pairs are represented as text, key, and value, to
prompt results to user.

Fault tolerance. The proposed implementation applies
the automatic fault tolerance mechanism included
in Hadoop. Additionally, some features are activated
to improve fault tolerance for the ITS application
developed: i) the feature that allows discarding corrupt
input lines is enabled, to be used in those cases where
a line cannot be read (the impact of discarding corrupt
lines is not significant, because the system is oriented
to compute statistics and estimated values); and ii) the
native replication mechanism in HDFS was activated, to
keep data replicated in different processing nodes.

Characterizing the bus service zones using socioeconomic

indicators. The main details on the procedures for
defining and characterizing the bus service zones are
presented next.

Data and methods. This part of the solution relies on
a combination of geo-spatial analysis and traditional
statistics. The bus service areas are based on isochrones
which define equal travel times for a walking distance
of ten minutes from each of the stops of a particular
bus line. The bus lines and bus stops geometries
to derive the isochrones were obtained from the
open data available on the Geographic Information
System (GIS) site of Montevideo city government [22].
These shapefiles were fetched using Python scripts
and manipulated using Python packages including
geopandas [23], fiona [24], and shapely [25].
The socioeconomic indicators were obtained from

the National Institute of Statistics (Instituto Nacional
de Estadísticas, INE) in Uruguay. For the purpose of
this study, we used the continuous household survey
(Encuesta Contínua de Hogares, ECH) [26]. This is
a cross sectional survey, conducted uninterruptedly
since 1968, that delivers the official indicators for
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employment and income (for both household and
individuals). INE also makes available shapefiles
for the areas of analysis (the census sections and
census segments) [27]. Merging all these datasets and
shapefiles we developed a combined geo-spatial and
socioeconomic view of each area. Figure 3 illustrates
this approach presenting all the census sections and
segments with an overlapped bus service area.

Figure 3. Choropleth map of the serviced area for bus line 185

in Montevideo. The divisions are census segments and the color

represents household income (in uruguayan pesos per inhabitant)

The bus line shapefiles are used exclusively to
represent the bus trajectory on the maps. All the bus
lines geometries are contained on a single shapefile
that the GIS publishes. From these files, the two
relevant attributes for our analysis were: The bus
stops shapefiles, which are used both on the visual
representations and as input to derive the isochrones
for the bus service zones. The stops are also contained
on a single shapefile with similar attributes. In this case,
the geometry contains the latitude and longitude for the
POINT object that represents the stop. Figure 4 displays
the bus lines and the corresponding isochrones of their
service areas for the city of Montevideo.

Figure 4. Map of Montevideo with isochrones representing the

bus coverage areas (light blue shapes). The map displays large

areas of the city outside of the service coverage.

The ECH datasets and shapefiles are accessible from
the INE websites [26, 27]. We created local copies
of these datasets and used the geopandas package to
perform the mapping and statistical manipulations.
Basic data wrangling was performed to merge the
datasets in order to produce a consolidated geopandas
geo dataframe containing both the relevant geometries
and the indicators selected for the analysis (geometry,
median household income, and number of inhabitants
per household). We used the most granular census unit:
the census segment. Data extraction, manipulation, and
generation of the datasets was scripted using python.
We intend to update the computed results yearly, as new
data from the ICH is published.

4.2. Mobility patterns and demand/OD matrices
estimation

Design and architecture. Initial experiments con-
firmed that processing only a small portion of the ticket
sales dataset requires a large computation time: study-
ing only one month of ticket sales data demands over
18 days when using a sequential algorithm in a regular
desktop computer (Intel Core i5 x2 processor with 6
GB RAM and Linux Ubuntu 14.04 operating system).
Therefore, applying a parallel/distributed approach is
fully justified to reduce the execution times. Our pro-
posal is based on executing the algorithms for demand
and OD matrices estimation in parallel, making use of
several computing units.
The main idea of the proposed parallel algorithm is

to apply a data-parallel approach. The datasets of ticket
sales and GPS records are divided in chunks, following
the bag-of-tasks paradigm [28]. In this case of study, the
bag-of-tasks corresponds to a set of user trips records.
Since each set of trip records is independent, as they
hold information of different citizens, the bag-of-tasks
can be assigned to different slaves for processing.
Using a master-slave model for organizing the

processes is an appropriate choice for implementing the
estimation algorithm, since the slave processes do not
need to share information with each other. A set of slave
nodes are created and organized in a slave pool, to be
used on demand. This decision reduces the overhead of
thread creation and destruction, as every thread is used
many times while there are records left to be processed.
Initially, the master process collects all the data to

be processed and applies a pre-processing stage to
filter inconsistent records. After that, the master builds
the bags-of-tasks and sends the corresponding bags to
each slave in the slave pool, which will perform the
assigned computation task. Afterwards, each slave node
executes the destination estimation procedure. Finally,
the master receives the partial results, persists them,
and join them together to create the final demand and
OD matrices.
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Strategy for data processing: algorithmic descrip-
tion. The main details of the proposed algorithm are
presented next.
Data description. The bus companies that operate in

Montevideo are required to send bus location and ticket
sales data to the city authorities. The bus network in
Montevideo is quite complex, including 1383 bus lines
and 4718 bus stops. The case study described in this
section considers the dataset of ticket sales and bus
locations for January 2015, comprising about 200 GB of
data.
Bus location data contains information about the

position of each bus, sampled every 10 to 30 seconds.
Each location record holds the following information:

• lineID, the unique bus line identifier;

• tripID, the unique trip identifier for each single
trip for a given lineID;

• latitude and longitude;

• vehicle speed;

• timestamp of the location; and

• stopID, the identifier for the nearest bus stop to
the current bus location.

Ticket sales data contain information about sales
made with and without STM cards. Each sale record has
the following fields:

• tripID, the unique trip identifier for each single
trip for a given lineID;

• latitude and longitude,

• stopID, as in location data;

• number of passengers, since it is possible to buy
tickets for multiple passengers at once; and

• timestamp of the sale.

Additionally, tickets payed with STM cards have the
following fields: unique STM card identifier (cardID)
that is hashed for privacy purposes, number of
transactions for that STM card (transactionID), and
the last payed transaction (payedID). These data allow
identifying when a passenger transfers between buses:
transactionID increments while payedID remains
unchanged. The number of transfers is equal to
transactionID−payedID.
Methodology. The proposed methodology for estimat-

ing demand and ODmatrices takes into account the two
kinds of transfer trips existent in Montevideo (detailed
in Section 2.2). The proposed model is based on recon-
structing the trip sequence for passengers that use a
smart card, following a similar approach to that applied
in the related literature [13–15]. We assume that each
smart card corresponds to a single passenger, so we
use the terms card and user in an indistinct manner.
The proposed approach is based on processing each
trip, retrieving the bus stop where the trip started, and
identifying/estimating the stop where the passenger

alighted the bus from the information available. There-
fore, two models for estimation are proposed: one for
direct trips and one for trips including transfers:

• Transfer trips. In a transfer trip, passengers pay
for their ticket when boarding the first bus by
using a smart card identified by its cardID. Later,
they can take one or more buses within the time
limits permitted by the ticket. For each ticket
sold, transactionID and payedID) are recorded.
These values allows detecting whether a smart
card record corresponds to a new trip (payedID
is equal to transactionID) or to a transfer between
buses (transactionID is higher than payedID). We
assume that passengers avoid excessive walking
in transfers; we consider that a passenger finishes
its first leg at the nearest bus stop to the bus stop
where he boards the second leg, and so on. The
boarding bus stop for the second leg is recorded in
the system, thus we estimate the alighting point
from the first bus by looking for the closest bus
stop corresponding to that line.

• Direct trips. Direct trips are those that have no bus
transfers. We also consider the last leg of a trip
with one or more transfers as a direct trip. In both
cases, the difficulty lies in accurately estimating a
destination point for these trips.

To estimate the destination points we consider
two assumptions, which are commonly used in
the related literature: i) passengers start a new
trip at a bus stop which is close to the destination
of their previous trip; ii) at the end of the day,
passengers return to the bus stop where they
boarded the first trip on the same day.

In order to estimate destinations it is necessary
to chain the trips made by each passenger on
a single day. A preliminary study performed on
the sales dataset showed that the best option is
to consider each day starting at 04:00, since the
lowest number of tickets are sold at that time.
This allows considering passengers with different
travel patterns, such as those who commute to
work during the day and those who work at night.

The model for chaining direct trips of a specific
passenger works as follows. We iterate through all
the trips done in a 24 hour period (from 04:00 to
04:00 on the following day). For each new trip, we
try to estimate the alighting point by looking for
a bus stop located in a predefined range from the
boarding bus stop of the previous trip. When no
bus stop is found on that radius, the procedure is
repeated using a larger radius (twice the original
one) to search for bus stops. If no bus stop is
found using the larger radius, the origin of the
trip is recorded, in order to report the number of
unassigned destinations.
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Estimation algorithm. We propose a specificmethodol-
ogy for reconstructing the trip sequence for passengers,
by estimating the destination points from the informa-
tion available.

Three phases are identified in the proposed algo-
rithm, which are relevant for building the estimated
demand and OD matrices:

1. Pre-processing. The pre-processing phase prepares
the data, filtering those records with incoherent
information and classifying records by month
per passenger. The algorithm receives as input
an unstructured dataset containing raw GPS
positions and ticket sales data. Initially, the
algorithm discards those sales records that have
invalid GPS coordinates; which are not processed
for demand and OD matrices estimation. A
sale record has an invalid location when its
coordinates are not within the route of the bus
corresponding to the sale, with a tolerance of 50
meters.

Finally, trip records with consistent location infor-
mation are separated into different files, according
to their cardID and then ordered according to
their date field. This allows processing the trips
of each passenger independently.

2. Core processing. In this phase the sales data
are processed in order to generate demand and
OD matrices. Data are iteratively processed: for
each passenger, trips are analyzed considering
24 hour periods starting and finishing at 04.00.
First, the origin of the trip is recorded. The trip
destination is estimated depending on whether it
is a transfer or a direct trip. Once the origin and
the destination are computed, the corresponding
values are updated in the demand and OD
matrices. The process is repeated until all trip
records are processed. In our study, we consider
a distance of 500m for the search radius used
when estimating destination of direct trips, as
previously described.

3. Output. After all records are computed the
demand and OD matrices are returned.

Two variants of the proposed algorithm were
implemented, one for each of the two different
estimation procedures presented in Section 2.2. Both
variants follow the same general parallel approach
previously described. The main implementation details
are presented next.

Implementation details. The proposed algorithms
were implemented using Python 2.7.5. The cross-
platform open-source geographic information system
QGIS [29] was used to manage geographic information
corresponding to bus location and bus stops data.

The dispy [30] software package was used for
creating and distributing parallel tasks among several
computing nodes. dispy is a Python framework
that allows executing parallel processes, supporting
many different distributed computing infrastructures.
The main features of the framework include tasks
distribution, load balancing, and fault recovery. The
dispy framework provides an API for defining clusters
and schedule jobs to execute on those clusters. Creating
a cluster in dispy consists of packaging computation
fragments (code and data) and specifying parameters
that control how to execute the computations (e.g.,
which nodes can execute each computation).

A number of parameters are needed to set a dispy

cluster, including the program to execute in each node
must, the list of nodes available to execute the jobs, and
a list of dependencies needed for computation must be
specified (in the proposed application there is only one
dependency: the availability of the QGIS software).

Once a cluster is created, jobs can be scheduled to
execute at a certain node. dispy executes the job on an
available processor in the defined cluster. After a job
finishes, the information about the origin-destination
pairs computed is used to build the OD matrix.

Each slave keeps track of the index of the last file or
line processed. Therefore, in case of a system failure
it is possible to resume the execution from the last
processed record, without the need of starting the
process from the beginning.

In our approach, the master creates a set of bag-
of-tasks where each task corresponds to all the trip
records of a single passenger. Then, each bag-of-tasks
is distributed using dispy across the different slaves
to execute the estimation algorithms. It is important to
choose the amount of passengers’ trip records to assign
to each slave in order to optimize the execution time,
avoiding costly communications between the slaves
and the master. This parameter is configured in the
experimental analysis presented in Section 5. Finally,
the master node distributes tasks to slaves on demand,
and obtains the results computed by each slave to
gather them to return the final solution.

5. Computational efficiency evaluation

This section describes the experimental evaluation
of the proposed system for generating statistics of
public transportation based on ITS data. The setup
for the experimental evaluation is described, including
the computational platform used and the problem
instances generated from the historical data. After
that, the computational efficiency results are reported.
Finally, sample studies are presented from the data
processed for a specific bus line.
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5.1. Platform, instances, and metrics

The main setup for the experimental analysis is
described next.

Computational platform. The experimental evalua-
tion was performed over the cloud infrastructure in
Cluster FING, the high performance computing facility
at Universidad de la República, Uruguay [31]. The anal-
ysis was performed using AMD Opteron 6172 Magny
Cours (24 cores) processors at 2.26 GHz, 24 GB RAM,
and CentOS Linux 5.2 operating system.

Problem instances and data. The problem instances
considered in each case of study are described next.
GPS and ticket sales data. Several datasets are used to

define different scenarios conceived to test the behavior
of the system under diverse situations, including
different input file sizes, different time intervals, and
using different number of map and reduce processes.
We work with datasets containing 10 GB, 20 GB, 30 GB,
and 60 GB, and also different time intervals (3 days, and
1, 2, 3, and 6 months), with real GPS data from buses
in Montevideo, provided by the local administration
Intendencia de Montevideo. The input data file to use in
each test of the experimental evaluation was stored in
HDFS. To better exploit the parallel processing, more
mappers thanHDFS blocksmust be used when splitting
the file. Considering an input file of size X MB and
HDFS blocks of size Y MB, the algorithm needs using
at least X/Y mappers. Hadoop uses the input file size
and the number of mappers created to determinate the
number of splits on the input file.
Demand and origin-destination matrix estimation. For

the experimental analysis of demand and OD matrices
estimation, the dataset corresponding to the ITS in
Montevideo for January 2015 was processed, including
ticket sales and bus location information. This dataset
holds the mobility information for over half a million
smart cards (corresponding to more than 13 million
individual trips). The total size of the dataset is 120GB.

Computational efficiency metrics. Several metrics
have been proposed in the related literature to
evaluate the performance of parallel and distributed
algorithms [32]. In the experimental analysis reported
in this article we focus on two traditional metrics for
performance evaluation: the speedup and the efficiency.
The speedup evaluates how much faster a parallel

algorithm is compared to its sequential version. It
is defined as the ratio of the execution times of
the sequential algorithm (T1) and the parallel version
executed on N computing elements (TN ) (Equation 1).
The ideal case for a parallel/distributed algorithm
is to achieve linear speedup (SN = N ). However,
the common situation for parallel algorithms is to

achieve sublinear speedup (SN < N ), due to the
times required to communicate and synchronize the
parallel/distributed processes. The efficiency is the
normalized value of the speedup, regarding the number
of computing elements used for execution (Equation 2).
The linear speedup corresponds to EN = 1, and in usual
situations EN < 1.

SN =
T1
TN

(1) EN =
SN
N

(2)

5.2. Experimental results

The results of the computational efficiency analysis for
the two cases of study is presented next.

GPS data processing. We evaluated the computational
efficiency of the proposed distributed solution and also
the correctness to produce useful information for users
and administrators.
Table 1 reports the computational efficiency results

for the proposed application when varying the size of
the input data (#I), days (#D), number of mapper (#M)
and reducer (#R) processes. Mean values computed
over five independent executions are reported for each
metric. All times are reported in seconds.

Table 1. Results of the experimental analysis: computational

efficiency of the proposed Map-Reduce implementation for

processing GPS data

#I #D #M #R T1(s) TN (s) SN EN

10 3 14 8 1333.9 253.1 5.27 0.22

10 3 22 22 1333.9 143.0 9.33 0.39

10 30 14 8 2108.6 178.0 11.84 0.49

10 30 22 22 2108.6 187.3 11.26 0.47

20 3 14 8 2449.0 351.1 6.98 0.29

20 3 22 22 2449.0 189.8 12.90 0.54

20 30 14 8 3324.5 275.6 12.06 0.50

20 30 22 22 3324.5 238.8 13.92 0.58

20 60 14 8 4762.0 300.8 15.83 0.66

20 60 22 22 4762.0 264.7 17.99 0.75

30 3 14 8 3588.5 546.9 6.56 0.27

30 3 22 22 3588.5 179.6 19.99 0.83

30 30 14 8 5052.9 359.6 14.05 0.59

30 30 22 22 5052.9 281.1 17.98 0.75

30 60 14 8 5927.9 383.4 15.46 0.64

30 60 22 22 5927.9 311.4 19.04 0.79

30 90 14 8 7536.9 416.6 18.09 0.75

30 90 22 22 7536.9 349.2 21.58 0.90

60 3 14 8 7249.6 944.0 7.68 0.32

60 3 22 22 7249.6 362.1 20.02 0.83

60 60 14 8 10037.1 672.6 14.92 0.62

60 60 22 22 10037.1 531.4 18.89 0.79

60 90 14 8 11941.6 709.6 16.83 0.70

60 90 22 22 11941.6 648.9 18.40 0.77

60 180 14 8 19060.8 913.7 20.86 0.87

60 180 22 22 19060.8 860.3 22.16 0.92
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The results in Table 1 indicate that the distributed
algorithm allows significantly improving the efficiency
of the sequential version, especially when processing
large volumes of data. The best speedup value was
obtained when processing the 60GB input file: 22.16,
corresponding to a computational efficiency of 0.92.
The distributed implementation allows reducing the
execution time from about 6 hours to 14 minutes when
processing the 60GB input data file. This efficiency
result is crucial to provide a fast response to specific
situations and to analyze differentmetrics and scenarios
for both users and administrators.

Figure 5 graphically summarizes the computational
efficiency results when using input data files with
different size. and Figure 6 when processing records
from different numbers of days.
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Figure 5. Computational efficiency for different input data files
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Figure 6. Computational efficiency results for different days

Using 22 mappers and 22 reducers allows obtaining
the best efficiency, improving in up to 15% the
execution time (9% in average) over the one demanded
when using 14 mappers and 8 reducers. Working on
small problem instances causes data to be partitioned
in small pieces, generating low loaded processes and
not improving notably over the execution time of the
sequential algorithm.

The efficiency analysis also determines that the Map
and Reduce phases have similar execution times and
reach themax CPU usage (above 97% at everymoment).
These results show that the load balance efforts in the
proposed algorithm prevents a majority of idle or low-
loaded mappers and reducers.

Demand and origin-destination matrix estimation. The
proposed master-slave parallel model requires defining
the size of the bag-of-tasks assigned to each slave to
compute. A proper bag size must be used in order to
have an appropriate load balance and avoid excessive
communication between the master and the slaves.
Experiments were performed varying the size of the
bag-of-tasks as well as the number of cores used.
The experimental results are reported on Table 2. The
number of cores (#cores) and the size of the bag-of-tasks
(#bag-of-tasks) used in each experiment are indicated.
Then, for each combination of these values, the best
(i.e., minimum), average, and standard deviation of
execution time and speedup values are reported for
both direct and transfer trips. Execution times are
reported in minutes and the results correspond to 5
independent executions of the algorithm using each
configuration of #cores and #bag-of-tasks.

The experimental results obtained suggest that
the parallel approach is an appropriate strategy for
significantly improving the efficiency of the data
processing for demand and O-D matrices estimation.
Promising speedup values were obtained, up to 16.41
for the direct trips processing and using a bag-of-
tasks of 5000 trips and executing in 24 nodes. These
results confirm that the proposed master/slave parallel
model allows improving the execution time of the
computational tasks by taking advantage of multiple
computing nodes.

Furthermore, the computational efficiency results
indicate that the size of the bag-of-tasks (i.e., the
amount of passengers’ trip data given to each slave to
process at once) has a significant impact on the overall
execution time of the algorithm. Execution times were
reduced when using the smallest size for the bag-of-
tasks (5000). Further experiments should be performed
to assess if using a smaller size for the bag-of-tasks is
still more efficient, and to determine the trade-off value
before the communications between the slaves and the
master become more expensive and have a negative
impact on the execution time.
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#cores #bag-of-tasks
direct trips transfer trips

avg. time±std. dev. best speedup avg. time±std. dev. best speedup

1 1 25920.0 25920.0 - 30240.2 30240.2 -

16 5000 2092.1±3.4 2089.6 12.40 2648.9±3.2 2645.5 11.43

16 10000 2372.4±1.8 2371.1 10.92 3068.8±3.5 3063.2 9.87

24 5000 1582.7±2.4 1579.4 16.41 2371.1±2.5 2368.1 12.76

24 10000 1858.2±2.1 1855.9 13.96 2617.9±3.3 2614.3 11.56

Table 2. Execution time results and performance analysis.

Using 24 cores and tasks with the trip data
corresponding to 5000 passengers, the proposed
strategy allows improving in up to 54.4% the efficiency
when compared to using 12 cores and a bag-of-tasks
size of 5000, and up to 57.9% against a sequential
algorithm running on a single computing node. This
efficiency allows processing the full information of GPS
and trip data for one year (more than 130 GB) in
33 days, a significant improvement over the 468 days
demanded by a sequential algorithm.

6. Two sample studies

This section presents two sample studies performed
using the proposed distributed system for ITS in Mon-
tevideo: average speed/troublesome locations detection
and performance of the public transportation across
socioeconomic stratas.

6.1. Average speed and troublesome locations

The calculation of the average speed of buses and the
analysis of troublesome locations is a relevant study for
the public transport in Montevideo.
Figure 7 presents the study of the average speed of

the seven bus lines (100, 102, 103, 105, 106, D11, D8,
D10 and CA1) traveling through 18 de Julio Avenue
(the main avenue in Montevideo) in four relevant time

ranges (including peak hours). The speed analysis is a
valuable input for decision making in order to improve
quality of service and travel experience for users.
Figure 8 presents a report extracted from the analysis

of delays of buses to identify troublesome locations in
the city. Results correspond to bus line 195 at night.
Delay values are computed according to six months of
historical GPS records, comparing the times to reach
each bus stop against the scheduled times, as reported
in the website of STM, Montevideo [5].
These results can be obtained in real time using

the distributed algorithm, allowing a fast response to
specific problems. In addition, the information can be
reported to users via mobile ubiquitous applications.

6.2. Fairness of the public transportation service
delivery

The preliminary work in this area allow characterizing
each of the bus routes using the median household
income for the census segments covered by all the bus
lines. Using these indicators the bus line coverage area
is defined as unit of analysis, deriving its socioeconomic
characteristics from the census segments that are
included on it.
Figure 9 shows an example of two different instances

of the unit of analysis: the bus service areas for bus

Figure 7. Average speed of buses in 18 de Julio Avenue.
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Figure 8. Average delay for bus line 195 in the night, using six months of historical data

lines 121 and 195. The map shows that the service
area for bus line 195 covers a significantly larger
number of census segments, and its median household
income is visibly lower than the average income of the
service area for bus line 121. This example illustrates
the type of contrasts that exists between different
bus service areas across the city, which is worth
further studying. The proposed methodology to assess
the service fairness involves deriving quality metrics–
such as the standard deviations of the total routes
duration and the deviation from the original schedules–
and measuring the correlation coefficient with the
socioeconomic indicators that we use to characterize the
service zones, such as the household median income.

Once this phase of the study is completed, we aim
at delivering a novel data product that will provide
researchers and policy makers with a new perspective
on the matter of the fairness of public services delivery.
In particular, we will be contributing to answer the
question of whether or not certain neighborhoods or

areas in the city are dis-proportionally affected by poor
public transportation services.

7. Conclusions and future work

This article described our experiences on designing
and building a platform for big data analysis for
smart cities. This platform combines distributed
computational intelligence and geo-spatial analysis to
process historical GPS data to compute quality-of-
service metrics for the public transportation system
in Montevideo, Uruguay. Furthermore, we presented
two case studies that rely on the platform capabilities
to answer relevant research questions related to
two different urban problem domains: operational
efficiency and equability.

An intelligent system for data processing was con-
ceived, applying the Map-Reduce paradigm imple-
mented over the Hadoop framework. Specific features
were included to deal with the processed data: the

Figure 9. Maps of service areas for buses 121 and 195: The red areas correspond to census segments that display the highest

household income (in Uruguayan pesos per inhabitant)
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proposed implementation allows filtering and select-
ing useful information to compute a set of relevant
statistics to assess the quality of the public transporta-
tion system. An application-oriented load balancing
schema was also implemented. Additionally, a method
for accurately estimating trips’ destination based on
smart card data is proposed, based on ideas presented
in the related literature. This estimation allows com-
puting demand and OD matrices, which are crucial
for transport planning and are difficult to obtain using
traditional methods.
The experimental analysis focused on evaluating the

computational efficiency and the correctness of the
implemented system, working over several scenarios
built by using real GPS and ticket sales data collected
in 2015 in Montevideo. The datasets comprise over 200
GB of data corresponding to over 1300 line services
operating in the city. The main results indicated that
the proposed solution scales properly when processing
large volumes of input data, achieving a speedup
of 22.16 when using 24 computing resources, when
processing the largest input files. Regarding demand
and OD matrices estimation, the experimental results
suggest that the proposed platform is appropriate to
increase efficiency, achieving speed up values of up to
16.41 when using 24 computing resources.
As examples, we computed two types of metrics

that provide insights relevant to both citizens and
decision makers. One is a collection of average speeds
for different segments of bus lines in Montevideo
using the available historical data. These averages allow
to identify troublesome locations in the public bus
network, based on the delay and deviation of the times
to reach each bus stop. The second type of metrics are
related to the bus routes service quality in relation to
the socioeconomic characteristics of their service areas.
Both studies aim at providing authorities and policy
makers with a better understand of the transportation
system infrastructure. Some of these insights can also
be incorporated in mobile applications that might
help improving the travel experience of the general
population.
The research reported in this article is based on

processing the bus GPS and ticket sales data gathered in
2015. However, the proposed distributed architecture
would scale up efficiently when processing larger
volumes of data, as shown in the experimental analysis.
The city government collects the bus GPS and ticket
sales data periodically, so it is possible to incorporate
additional data in order to get even more accurate
statistics. Furthermore, the Uruguayan government
handles several other ITS and non-ITS data sources
(including GPS data for taxis, mobile phone data, ticket
sale data, special events in the city) which could be
easily incorporated to the proposed model to get a
holistic understanding of mobility in the city.

The main lines for future work are oriented to further
extend the proposed system, including the calculation
of several other important indicators and statistics to
assess the quality of the public transportation. Relevant
issues to include are the construction of ODmatrices for
public transport, the evaluation of bus frequencies (and
dynamic adjustment), etc. The proposed approach can
also be extended to provide efficient solutions to other
smart city problems (e.g., pedestrian and vehicle fleets
mobility, energy consumption, and others). Using other
distributed computation frameworks (such as Apache
Storm) is also a promising idea to better exploit the real-
time features of the proposed system.
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