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Abstract 

  Electric, plug-in electric and plug-in hybrid electric vehicles (xEVs) are receiving a global attention from automotive 

industries, vehicle vendors, R&D organizations, power sectors and policymakers in the intelligent transportation era. 

Penetration of xEV fleet into the contemporary charging infrastructure(s) in the absence of robust integration network 

imbalances the power grid and potentially jeopardize the execution of emerging distributed generation systems. However, 

smart grid technologies in collaboration with smart charging management strategies can circumvent such operational 

disparities, thus enabling a reliable, efficient, consistent and optimal electric energy management in the power system. This 

work employs the notion of Cloud of Things (CoT) to propose a comprehensive cloud aware Transport Oriented Smart City 

(TOSC) framework intended to provide intelligent solutions to the contemporary transportation infrastructures in the 

emerging sustainable smart cities. The proposed work also demonstrates a commercially viable vehicle to cloud (V2C) fleet 

charging framework for charging management of xEVs through micro grids/ smart grid.  The unprecedented data breeding 

across V2C, cloud to grid (C2G) and grid to vehicle (G2V) bidirectional communication interfaces elucidates the need for 

computationally efficient analytics. A state-of-the-art Big-Data to Knowledge (B2K) workflow structure is thus proposed for 

translating the generated data into efficient knowledge for noble decisions and inferences. Finally, the substantial Mobility as 

a service (MaaS) adoption challenges and data science prospects are outlined along with the emerging technologies that can 

co-work with the proposed framework to ensure commercial viability and optimal implementation in emerging TOSCs.     

Keywords:   Big-Data, Cloud of Things (CoT), Electric Vehicle range Anxiety (EVRA), smart grid (SG), Mobility as a service (MaaS) 

Received on 07 December 2017, accepted on 08 January 2018, published on 12 February 2018

Copyright © 2018 Md. Muzakkir Hussain et al., licensed to EAI. This is an open access article distributed under the terms of the

Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and 

reproduction in any medium so long as the original work is properly cited. 

doi: 10.4108/eai.12-2-2018.154103

1. Introduction

With the advent of rigorous industrial research and

development efforts and stringent protocols related to vehicle 

emissions [1], fuel economy, constraints in conventional 

energy reserves and the innate global warming,  the electric, 

plug-in electric and plug in hybrid electric vehicles (xEVs) 

have been receiving an utmost attention from automobile 

industries, government agencies, R&Ds, vehicle vendors as 

well as consumers. The xEV programs became a business 

motto for the automotive industries as they seem to serve as 

the sustainable and efficient powertrains for the emerging 

electrified transportation system. According to survey in [2], 

and [3], during the short span of six years from 2008 to mid- 

2014, a quarter million plug-in hybrid electric vehicles have 

been launched into US roads. As of 2013, more than 129,500 

Americans were driving xEVs manufactured by all major 

automotive original equipment manufacturers (OEMs) [4], 

while the xEV adoption process is still on fast pace in 

countries like China, France, Germany, India etc. In 2015, the 

global xEV population exceeded the 1 million threshold, 

closing at 1.26 million, a reflection and symbolic of 

achievements due to the joint efforts from governments, 

policymakers, R&Ds, and automotive industry over the last 

decades [5]. The tremendous increase in the xEVs count has 

created an alluring interest in the contemporary automotive 
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industry to invest their assets in profitable deployment of this 

emerging class of vehicles. To achieve this stringent goal, an 

immediate issue being addressed by the automotive industry in 

conjunction with the power sector enterprises is the “Electric 

Vehicle range Anxiety (EVRA)” syndrome prevalent in the 

xEV customer(s) that usually becomes acute during long drive 

scenario when the driver is deprived from accurate 

information of charging station statistics. While executing a 

fully electrified fleet, the uncoordinated charging of candidate 

xEVs may pose serious impact on reliable and efficient 

operation of the associated electric utility [2], [6]. Thorough 

study of literatures reveal that perforation of large scale xEVs 

fleet can pose a huge challenge  and will disrupt the operation 

of underlying power grid distribution network unless their 

operations are monitored and coordinated properly  [7], [8]. 

The prominent side effects may be in the form of potential 

violations of statutory voltage limits, degradation in power 

quality, blackouts, incremental investment on the pre-existing 

network, etc. Lack of coordinated charging strategies can also 

create demand peaks during rush hours which in turn put 

stress on the SGs [2]. However, use of data driven charging 

strategies will potentially circumvent significant proportion of 

burdens from the supporting smart grid architecture [2]. It has 

been empirically estimated that the current power system can 

withstand the power surge caused due to full xEV rollout. 

provided that they are intelligently managed [9].    

  The current advancement in intelligent transportation 

technologies has favored progresses over existing data 

collection, storage and processing devices. Vehicle on-board 

units (OBUs), roadside units (RSUs), intelligent sensors and 

advanced metering infrastructure (AMI) and Vehicle to 

Infrastructure (V2I) elements had revolutionized the 

transportation telematics. To ensure real-time processing, 

analytics and decision making, the utilities demand efficient 

synchronization infrastructure. As estimation discovers, the 

transactions of merely two million smart metering populations 

generate more than 20GB of data every day [10]. Trends 

reflect that the vast scale roll out of smart transport system 

leveraged with Advance Metering Infrastructures (AMI), 

smart grid, smart charging stations and the innate smart xEVs 

is still in its infancy.  Installation of such architecture requires 

robust and efficient analytics framework for collecting, 

storing, processing and managing the data originated from the 

candidate intelligent utilities.     

   Collaboration of distributed paradigms such as cloud 

computing technologies with transportation & data analytics 

modules will ensure robustness and resiliency in penetration 

of xEV fleet of any size. Hiring cloud services is envisioned to 

stimulate the development of storage, execution and analytics 

framework for the aforesaid components. The clouds can be 

virtualized to act as cache for the generated data. Furthermore, 

the notion of internet of things (IoT) ensures connectivity to 

all such entities, forming a connected transportation web 

(CTW) [11]. However, connecting such varying data sources 

directly to cloud data centers is inefficient and commercially 

impractical. The major issues with traditional centralized 

cloud models are associated with latency, network bandwidth, 

communication overheads, security and reliability [10].     

   Under such circumstances an alternative approach is to 

inherit the notion of CoT and employ multiple micro 

datacenters corresponding to dedicated stakeholders, 

interconnected via communication linkages of varying 

bandwidths. Involvement of CoT utilities with the prevalent 

transportation infrastructures triggers an unprecedented 

breeding of data, that further magnifies the exertion on the 

storage and processing elements. By 2020, the predicted size 

of IoT enabled devices estimated to surpass by 200 billion 

entries across the globe [12], trend suggests that more than 

two and half quintillion databytes are produced per day from 

such entities [13]. However, voluminous datasets produced 

from these objects if properly mined have latent peculiarities 

to bestow pools of knowledge and decisions. There has been a 

consensus acquiescence in the automotive industries as well as 

research arena on the fact that an intelligent and duplex 

trading of data and control between the xEVs and charging 

infrastructure through the optimal deployment of CoT enabled 

V2C, C2G, G2V and V2I [14] communication interfaces 

would empower in prototyping strong decision making 

paradigms, as outlined in Figure 1. 

Fig.1:  Outline of the proposed model 

        Recent investigations for commercial deployment trends 

reflect that the contemporary cloud prototypes are not 

designed for the V’s of Big Data generated by CoT utilities 

[15]. The need for fundamental restructuring is strongly 

perceived in existing cloud settings, to overcome the 

scalability, latency and security concerns [16],[17]. In 

response, analytics frameworks have been developed for 

validating massive datasets generated in cloud aware transport 

system execution and translating them to build meta-data 

models [18]. Heavy investments from utility companies on big 

data analytics of smart grid data are in continuum from nations 

across the globe.  Figure 2 depicts the investment trend as 

forecasted from GTM research obtained from an exhaustive 

survey of electric utilities across specific regimes on  SG 

analytics [19].  

A  As evident from the forecast, till 2020, the cumulative global 

investment on electrified transportation and SG analytics is 

expected to reach $16 billion, 40% of which is shared alone by 

US. In fact the annual global investment is estimated to reach 

$4.6 billion by 2022 which is more than a half of the 

cumulative amount from nine year span 2012-2020.  
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        Fig.2: Trends in investments on transportation and 

smart grid analytics 

  Motivated by the above-mentioned facts, challenges and 

opportunities, this work proposes a state of the art Transport 

Oriented City (TOSC) framework based on the notion of 

Cloud of Things (CoT). As one utility of TOSC framework, 

the proposed work provides a commercially viable ready to be 

prototyped V2C model, incorporates cloud data analytics into 

the infrastructure claimed by proposing a smart V2C remote 

charging infrastructure for the electric/plug-in electric/plug-in 

hybrid electric vehicles (xEVs). In addition this work also 

discusses data science prospects and challenges that will 

evolve in/during the implementation of V2C framework over 

TOSCs by proposing a Big-Data to Knowledge (B2K) 

framework that defines control flow model for transforming 

information in transportation telematics into valued 

knowledge and rightful decisions.  The major contributions of 

this work can be encapsulated as 

1) Proposed a state of the art cloud aware TOSC framework

using the notion of CoT, where the “things” in CoT comprises 

of intelligent entities like Smart grid, Smart charging station, 

Smart car and Smart meters, described in detail in section II. 

2) Presented a commercially viable realization of V2C

framework in TOSCs destined to smart charging management 

of incoming flux of smart xEVs fleet satisfying three criteria 

namely (i) Minimum charging tariff, (ii) Shortest travelling 

distance and (iii) Minimum queuing delay, in section III. 

3) Formulated a prototype for B2K control flow for translating

the produced big data into knowledge for rightful decisions, in 

section IV. 

4) Outlined the significant Mobility as a service (MaaS)

adoption challenges and data science prospects to realize 

commercial viability and optimal implementation of the 

proposed frameworks, in section V. Section VI concludes the 

work.  

2. Transport Oriented Smart City (TOSC)
Architecture 

Intelligent transportation systems (ITS) play the strategic role 

for emerging smart cities. Deployment of smart cities is 

envisioned to constitute an ITS based urban development for 

optimally managing the city’s assets while sustaining a green 

and clean environment for the citizens [20]. Thus, 

policymakers as well as R&Ds across the globe have joined 

the smart city development consortium engaged in employing 

relevant expertise and funds towards the deployment of 

transport oriented cities (TOSC). These cities are uniquely 

distinguished by provisions for intelligent data connectivity. 

Plenty of claims and proposals are found in the open domain 

which are being implemented independently in diverse  ITS 

domains such as security in information management of smart 

grids [4], smart grid dynamic energy management (DEM) 

[21], agent based simulation of electric vehicles fleet charging 

strategies and several other areas [1]. 

However, the said methodologies are localized in silos and yet 

to realize the synchronization aspects, management tractability 

and commercial viability of the complete transportation 

system.  Establishing a data driven analytics framework is the 

need of hour in current transportation architectures in the 

emerging smart cities through the notion of TOSC. To realize 

the anticipated TOSC objectives, a cloud aware Transport 

Oriented City frame work is proposed in Figure 3.    

Fig. 3:   Architecture of the Cloud aware Transport 

Oriented Smart City 

The prime ideology on which the proposed framework is 

established is remote accessibility and remote management. 

The framework manages the control and data trafficking 

through federated clouds namely Grid cloud, xEVC cloud, 

xEV cloud and AEC cloud. The grid cloud interfaces SG with 

the xEV charging stations, AMI and demand side management 

(DSM) utilities. The grid cloud is designed to support 

bidirectional data and power transport among these entities to 

ensure optimization of power system utilities in terms of 

efficiency, availability, reliability and sustainability. The 

objective of analytics involved in grid cloud is to establish a 

platform for supporting stakeholder’s services like dynamic 

energy management (DEM), demand response (DR), 

integrating micro grids and any other renewable energy based 
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distributed generation system. The cloud applications serve as 

virtual communication platform for TOSC components, thus 

ceasing the need for inter-entity communications. The data 

centers in SG install efficient virtualization mechanisms to 

ensure cost reduction, resource optimization, and server 

management. Since the SG is interfaced to intelligent 

transportation devices such as smart meters, smart sensors, 

and privately managed charging station or aggregator cloud, 

scalable Software as a Service (SaaS) applications  can be 

developed that facilitate rapid analysis and integration of data 

streams in order to shape the real-time xEV flux and power 

supply curves. It also engage intelligent agents for successful  

integration of virtual energy sources such as micro-grid, nano-

grid, smart homes etc, into existing energy storage and 

executes robust power exchange mechanisms to successfully 

meet the requirements of xEV users.    

    The xEV charging hub in this framework acts on behalf of 

aggregators to participate in the real time power market 

operations. The charging stations hire hybrid cloud services 

from xEVC cloud substructure where in public mode the 

resources and computation are shared with SG, xEVs and 

other stakeholders. The xEVC cloud is interfaced to smart grid 

and vehicular applications through dedicated datacenters. The 

public deployment mode also allows the charging station 

vendors to hire IaaS   infrastructure equipment like virtual 

machines, servers, storage and network hardware etc. Through 

virtualization techniques, IaaS reinforces computational and 

storage capabilities and enforces load balancing protocols to 

provide intelligent charging solutions to the xEV users. The 

xEVC clouds employ IoT enabled intelligent recommender 

systems that collect multivariate attributes from varying road 

and vehicle telematics, metering information, state 

information of SG, forecasting & day-ahead status data etc, 

and provides charging recommendation to the vehicle users. It 

also employs application specific infrastructure and power 

management softwares modules for task scheduling and 

effective renewable integration respectively.  

    The dynamic xEV cloudlets formed from clusters of parked 

and semi-parked vehicles provide platform where corporate 

computing, sensing, communication and physical resources 

are shared, allocated and coordinated dynamically. The IoT 

paradigm enables the design of mobile vehicular clouds that 

possess powerful storage and processing capabilities [22], 

where the “things” in IoT includes vehicular components such 

as external sensors (GPS, camera), internal automotive and 

cockpit sensors/actuators (brakes, steering wheels, xEV 

battery state of health (SOH) and state of charge (SOC) 

monitor, accelerators etc, intelligent and autonomous vehicles, 

smart drivers etc. Such xEV cloudlets are formed 

autonomously from the road traffic (parked vehicles, vehicles 

in traffic congestion, platoons etc.) and employ “computing on 

wheels” approaches to offer smart transport services in 

TOSCs. Besides the resources and services provisioned on 

demand from the generic public vendors such as Amazon EC2 

[23], the consumers can hire underutilized vehicular resources 

such as computing power, network connectivity, sensing 

capability, and storage through diverse business models such 

as Storage as a Service (SaaS), Network as a Service (NaaS), 

Cooperation as a Service (CaaS) etc. Such self-organizing 

cloudlet infrastructures can work independently and can be 

complemented with conventional cloud vendors to offer 

intelligent utilities not only to xEV users, smart passengers, 

pedestrians, traffic managers, TOSC planners but also provide 

reciprocate advantages to xEV cloudlets in terms of 

scalability,  dynamic computation capacity and Quality of 

Service (QoS).  

    For maintaining the legislative and regulatory protocols 

across administrative regimes, the infrastructure employs 

hybrid AEC cloud that provides services associated to 

authorities, emergency response corporations, service centers 

and customer care services etc.  AEC clouds have 

communication interfaces to the xEVs, drivers, traffic 

management entities and other cloud-cloudlets to ensure real-

time monitoring set up for the TOSCs.  

    Fig.4: Service Oriented Architecture (SOA) for TOSCs 

   The objective of the execution strategy outlined for the 

proposed TOSC framework is to granulize the traditional 

cloud paradigms into a hierarchical structure to multimodal 

execution setup. The decisions for offloading and analysis 

tasks are decided by the degree of service criticality and 

reliability. The operational modes of the miniaturized cloud 

versions also termed as cloudlets are defined to be dependent 

or independent based on the type of service it is intended to 

support for. In the former mode, the operation of such peer 

clouds are managed under hierarchical control of large master 

data center. In independent mode of service, the architecture 

relinquishes the centralized control and the federated 

datacenters were managed as one larger data center. 

Distributing the cloud abstraction to deeper levels of control in 

TOSCs offers an extended range of advantages over the 

traditional cloud deployments architectures. The key 

advantages are but not limited to: 

1. Distributing the clouds to finer grained control in TOSCs

will overcome the overhead and latency issues by offering 

proximate storage and computation service.  

2. Distributed data locality paradigms will improve the

authenticity and privacy concerns that often occur with 

traditional single mega datacenters.   

3. This paradigm shift in cloud computing fundamentals

provide optimal feasibility to the transportation and power 

system architectures in the emerging smart cities that 
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 Fig. 5:  Federated V2C framework for smart charging of xEVs. 

encompass incongruent political regimes, multiplicity of 

cultures, psychology and stakeholders.   

4. This also ensures greater business agility by invoking

developers to adopt mobility as a service (MaaS) utilities for 

the TOSCs and deploy them according to stakeholder’s need.  

5. The multimodal cloud infrastructure shall provide lower

operating expenses and deeper insights through local storage 

and analytics instead of offloading the whole universe of 

datasets for cloud analytics.  

The TOSC infrastructure once efficiently deployed will 

extend the smart city services to a new horizon by providing a 

reference for domain specific applications such as smart 

parking, smart traffic management, smart charging etc. Fig.4 

describes the modular service oriented architecture of typical 

cloud aware next generation TOSCs. In order to demonstrate 

the expediency of developed TOSC infrastructure, in the next 

section an analytical vehicle to cloud (V2C) framework is 

proposed for coordinating smart charging management of 

contemporary xEV fleet.  

3. Vehicle to Cloud (V2C) Framework

for Smart Charging of xEVs 
  In this section a vehicle to cloud (V2C) remote charging 

management infrastructure is devised as one of the TOSC 

package, to coordinate charging of xEV fleet. The cloud-

cloudlet hierarchy and inter-cloud interaction for the V2C 

framework is shown in Fig. 5. In the proposed V2C scheme, 

the entities involved in the vehicular infrastructures will have 

seamless interaction through the dedicated TOSC data clouds. 

The federated clouds described in section II will regulate the 

trade of control and data in V2C through robust network 

interfaces as shown in Fig.6. The clouds will represent in 

varying interfaces each with the TOSC entities such as xEVs, 

the charging station, and the smart grid etc.  The APIs at the 

xEVs end needs only to interact with the xEV cloud, without 

any needed to communicate directly with the charging station 

or smart grid vendors. This requires implementation of 

efficient and secure communication as well as interfacing 

procedures [11].    

 The API at xEVs end would be interfaced to the cloud mesh 

through authentication mechanisms. The peer data centers 

would be under the administration of master cloud and 

communicate with other stakeholders through appropriate and 

legal mechanisms. Keeping a major portion of control under 

government administration ensures proper pricing 

schemes/power rates. At the same time, it also hides the 

implementation details from casual users by enforcing 

stringent protocols thereby assuring a secure infrastructure. 

The centralized control also removes redundancy in the 

computation.   

  The application running at xEV driver’s end has bidirectional 

information exchange with the cloud computing utilities to 

obtain real-time power system updates. Such updates can be in 

the form of energy pricing status, state of charge of xEV 

battery as well as smart grid, trip description etc. In turn, the 

real-time scenario information related to energy pricing status, 

state of charge of xEV battery, optimal location of charging 

station, best route/ shortest route etc are fed by coordination 

and monitoring modules in the data centers to intelligently 

regulate the driving behavior of the xEV fleet. The data center 

implements efficient algorithms on such scenario attributes to 

compute the degree of range anxiety in the xEV user and 

correspondingly recommends charging option to the latter 

under the criterion triad’s namely minimum charging tariff, 

shortest travelling distance and minimum queuing delay in 

decreasing degree of criticality.   

1. Minimum Charging tariff
   The prime motive of an xEV user is to have charging 

services at the least possible rate. Many a times the consumers 

have constrained alternatives with unaffordable charging 

options that further add to the range anxiety. The V2C 

application will communicate with various charging stations 

located in the vicinity of the xEV   to track the dynamic power 

pricing tariffs and recommend the one with optimum rate. It is 

discovered from the predominant charging strategies that in 

regulated power market, the consumers often have to endure 

the unrealistic power tariff caused due to vendor’s monopoly 

in the market. The distribution of dominion over several 
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dealers as in a deregulated power market will enhance 

competitiveness among them and the consumers could grab 

the edge. The application will also be equipped to surveil the 

forthcoming pricing agenda and correspondingly prepares the 

user to be managed for the trade. Moreover, the system will 

offer varying incentivization schemes based on intra-brand or 

inter-brand charge transfers, mode of charging viz. fast, 

regular or slow charging rate and time of charge viz. off peak/ 

rush hour etc to extend the range of services sufficing a range 

of customers.  

   The real-time cost optimization operations enforced by SG 

and charging hub clouds respect the power pricing interests of 

each power system stakeholders thus realizing a win-win 

climate for whole TOSC infrastructure. Equation (1) dictates a 

integer linear programming (ILP) based cost minimization 

strategy motivated to realize multi-location remote charging of 

xEVs, with concentration on minimizing the xEV battery 

degradation.   
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The terms in objective function (1) shows the charging cost 

and xEV battery degradation cost respectively under time of 

use (TOU) price. Equation (2) and (3) captures the stored 

energy dynamics of xEV battery when the xEV is in transit 

among three states defined by decision variables 
h

i
d  and 

h

i
c

showing charging and discharging events respectively, at a 

time slot h  as described by (6). Constraint (4) defines the 

inherent regulatory limits imposed on the xEV state of charge 

(SOC) while (5) enforces the integrity and synchronization 

mechanism by drawing the fact that charging and discharging 

of xEVs are mutually exclusive events. 
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2. Shortest Travelling Distance
 When the xEV battery SOC starts reaching below a threshold 

level and the xEV user is driven by the fear of being stuck in 

the midway, the xEV user opts for the shortest route. The V2C 

application recommends in accordance to the adopted shortest 

path first (SPF) algorithms such as Dijkstra's algorithm. 

Further, every shortest route is not guaranteed to be the least 

time consuming one, thus the application dynamically adapts 

according to the forecasted traffic uncertainties. The 

application can also implement geometric planning strategies 

to obtain a optimal route under such adversaries [24].    

Fig.6.    Communication interfaces among Federated 

Clouds 

3. Minimum queuing delay
Here the driver has time constraints and it generally occurs 

during miscellaneous contingency hours viz. office hours, 

school hours etc. For such case, the road which is shortest as 

well as having least traffic is the ultimate option. Many a 

times, the driver has to confront to useless delays due to 

infrastructure uncertainties such as at traffic jams, queuing at 

charging stations. The V2C recommendation system software 

can implement robust routing protocols to manage the 

charging schedules of xEVs. It can further use the 

fundamentals of queuing theory to configure the stationary 

and non-stationary distributions of xEVs incoming flux in a 

way that guarantee minimal queuing delay, maximum 

charging hub utility and curtail the burden from backend SG.   

   However, the proposed V2C algorithm would undertakes all 

these criteria into consideration to achieve an optimal output 

termed as the state of “triangle equivalence”. There exist a 

range of xEV consumers that often wish to get rid of the 

delays while the vehicle battery is plugged. To address such 

disputes the V2C recommender system (RS) will mine the 

fuelling, driving, social and psychological profile data of the 

xEV user to predict the mode of charging that he shall adopt 

such as fast charging, normal or slow charging etc.    

   For immediate actions, the cloud aware TOSC proposed in 

this work augments the V2C services to another dimension 

where the xEV user is alarmed of such uncertainties and 

advocated to undertake the pico-grid service offered by 

photoactive coatings on the vehicle panes. The RS can also 

implement risk averse solutions by efficiently quantifying the 

physical, social and financial uncertainties of the overall 

environment for optimal commercial viability.    
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Fig. 7: Workflow model for Big-Data processing in TOSC Architectures 

4. Big-Data TO Knowledge (B2K)

Framework 

The proposed TOSC framework congregates the diverse 

transportation entities into a clique like structure through CoT 

paradigm and enables a bidirectional flow of energy and data 

among the stakeholders in order to facilitate the assets 

optimization. The major data sources for a data driven TOSC 

include: 

1. SG data aggregation nodes such as Supervisory control

and data acquisition (SCADA) system and associated 

components viz. master terminal unit (MTU), remote terminal 

unit (RTU), programmable logic controller (PLC) etc.  

2. AMI metering and sensing devices.

3. ITS objects such as xEV OBU, RSU, traffic sensors and

actuators, GPS devices etc. 

4. Web data for recommender systems, crowdsourcing,

feedback modules. 

Fig.7 depicts the big data to knowledge (B2K) work flow 

for translating the data generated from TOSC infrastructures. 

The objective of the proposed B2K framework is to realize a 

range of data aware TOSC services such as vehicle to cloud 

(V2C), vehicle to grid (V2G), vehicle to home (V2H), demand 

response (DR), demand side management (DSM), DEM, xEV 

charging management etc. In order to effectively meet these 

but not the least TOSC objectives, the B2K framework defines 

a multi-tier TOSC analytics framework that encompasses 

multidisciplinary efforts from data mining, machine learning, 

data fusion, predictive analytics, state diagnosis etc.  It 

establishes a data driven big-data analytics platform for the 

cloud to infrastructure (C2I) interfaces and  enable the xEVs, 

SGs, micro-grids etc to act both as producers and consumers, 

are thus entitled as prosumers. For instance, the xEVs are 

allowed to participate in power trading services such as V2G, 

V2H etc. Robust data science and computational analytics 

synchronizes the active participation of SG entities in power 

market operations such as bidding, arbitration, unit 

commitment, forecasting, scheduling, ancillary market etc, 

and operates diverse energy management services such as  

dynamic energy management (DEM), real-time wide-area 

situational awareness (WASA), home energy management 

systems (HEMS), demand response (DR), frequency 

regulation etc.   

  Use of machine learning techniques for TOSCs provides the 

utilities the ability to adapt to act, grow and change without 

explicit stakeholder involvement when exposed to time series 

datasets. Efficient execution of such algorithms on the data 

generated in proposed TOSC framework setup consistent 

decision making platform and makes the system reliable and 

adept to adversaries. The dynamic and time series data from 

such utilities create high dimensional datasets that create 

storage, scalability and flexibility concerns for the analytics at 

the data centers. The B2K framework defines the use of 

efficient machine learning techniques specifically 

dimensionality reduction algorithms such as random 

projection [25], principal component analysis [26] and kernel 

based algorithms such as support vector machines [27] etc. to 

develop an efficient storage and analysis platform for such 

voluminous datasets. The framework advocates the use of 

advanced dimensionality reduction algorithms based on graph 

kernels to intelligently summarize the data produced due to the 

nodal structure of IoT enabled TOSC components such as 

charging station network, the xEV distribution and human 

social interaction etc. In addition, the TOSC data centers are 

equipped with fast and massive storage and computational 

elements supporting High Performance Computing (HPC).  

  The framework enables the use of summarization techniques 

for aggregation analytics and transforms the original TOSC 

data streams into noble representations to remove the concerns 

related to scalability, complexity, event detection and process 

execution. Besides, it also employs data mining tools and 

techniques such as anomaly detection, rule mining, regression 

analysis etc.  

   The B2K framework implements data fusion (DF) 

paradigms that primarily inherit algorithms from three broad 

domains namely statistics, probability and AI, essentially 

employ sequence of tools and techniques for aggregating 
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heterogeneous configurations of data from varying sources to 

acquire intelligence and inferences for the system. The TOSC 

utilities and data centers are leveraged with efficient data 

fusion techniques that collate the multivariate and 

heterogeneous data from the contemporary transportation and 

road telematics such as OBUs, RSUs, localization mechanisms 

viz. GPS, information storage and processing technologies etc 

to conclude with a comprehensive inference.   

 For TOSC data, the proposed B2K prototype advocates the 

installation of comprehensive data fusion pipeline defined and 

implemented by US Department of Defence (DoD), that 

involves five execution steps with human in the loop [41]. 

Level 1 involves data pre-processing i.e. compression, 

normalization and formatting methods etc, the outputs of 

which are fed to level 2.  In level 3, the real-time data obtained 

from appropriate sources in level 2 are mingled with standard 

databases to trace & analyze the possible causes for the events 

occurring in the data. In the next processing level the patterns, 

correlations and semantics of information are assessed and 

aggregated. Level 5 extracts the feedbacks from previous steps 

and applies successive refinement strategies to predict, assess 

and evaluate the need for further improvement in the DF 

methodologies. The overall performance is tuned up by 

involving human factor in the loop to interpret and utilize the 

output from the DF pipeline.  

   The significant correlations, patterns and trends in the 

transportation dynamics are mined efficiently to devise 

intelligent schemes for demand response and load balancing. 

Such datasets can also serve as potential candidates for 

predictive analytics needed for load forecasting, dynamic 

pricing, optimal scheduling of resources and bad data 

correction. Graph pattern mining for distribution statistics of 

the TOSC elements such as xEVs, charging stations etc and 

utility mining for the xEV usage profiles allows the V2C to 

predict the future service adoption scenario, for use in short-

term and very short-term demand forecasting. 

  For load classification (LC) purposes, efficient offline 

clustering algorithms such as Artificial Neural Networks 

(ANNs), K-means, Fuzzy c-means etc are executed to 

discover the latent distributions and groups in the TOSC data. 

The analytics modules in the data centers also implement 

online clustering strategies such as XCSc [28], online k-means 

[29] etc, for effective harvesting and utilization of  time-series 

TOSC and V2C data.  To ensure real-time responsiveness, the 

TOSC implements efficient task scheduling algorithms to have 

an exact dissemination of resources across the data centers. 

The application programmers create or port IoT application 

that assigns the xEV cloudlets to analyse the time-critical 

datasets and offloads the less sensitive or historical data to 

data centers at higher levels of hierarchy.  

Though V2C infrastructures in transport oriented cities offer 

great potentiality for data and energy management, switching 

from conventional power architectures cloud aware smart grid 

and xEV charging utilities will introduce risk factors that 

needs to be carefully mitigated. The intensive use of SG’s 

physical components viz. supervisory control and data 

acquisition (SCADA), master terminal unit (MTU), remote 

terminal unit (RTU), programmable logic controller (PLC) etc, 

roadside infrastructures viz.  OBU, RSU, V2I elements and 

AMI coupled with underpinning information and 

communication technology (ICT) utilities makes the whole 

TOSC framework a cyber-physical system (CPS). Such cyber 

configurations can pose serious complications with respect to 

privacy, security and integrity of both physical as well as ICT 

subsystems. Moreover, the multiplicities of Big Data 

applications in contemporary CPSs motivates to solicit the 

concept of Big Data networking, its formation, features, 

mathematical and statistical intricalities [30].    

The B2K also defining the need for embedding risk analysis 

modules into design phase of security subsystem in a way that 

ensures transparency and understandability among the 

involved stakeholders and curbs the confidentiality, integrity 

and availability concerns in the transportation and metering 

utilities. The TOSC software developers also execute robust 

intrusion and anomaly detection algorithms and install 

committed firewalls in order to tolerate the vulnerable security 

threats related to disclosures, power thefts, denial of service 

(DoS), integrity and cloning.   

The millions of IoT based network devices employed in 

TOSCs are managed through emerging software defined 

networking (SDN) technologies to reliable operation of the 

whole infrastructure. SDN upgrades the hierarchical 

networking configuration of power system that includes home 

area networks (HANs), neighbourhood area networks (NANs), 

and wide-area networks (WANs) through the notion of 

network operating system (NOS). The use of SDN cloud 

aware transportation and power system architectures provide 

alluring solutions to the TOSC network management problem 

by enabling a software-defined centralized control that is 

flexible with respect to regular software updates, flow control, 

security patching, and quality of service (QoS) [31].   The 

NOS programming interfaces are intelligently programmed to 

remove the labour, cost and complexities prevalent in 

traditional network management schemes by updating the 

network elements from the central control plane [32].   

    As defined in B2K framework, the federated cloud data 

centers use predictive analytics that involves use of statistical, 

machine learning and data mining techniques to analyze 

historic and real-time datasets generate rules and predictive 

models to predict future events [43], [44]. In order to install 

TOSC infrastructures from the scratch and to meet the 

regulatory constraints for renewables and xEV penetration, the 

TOSC utilities implement robust predictive planning and 

analytics that can optimize asset replacement expenses and 

enhance the execution efficiencies under stringent budgetary 

ordinances. Through predictive forecasting and asset analytics, 

softwares and services are developed to make the utilities in 

TOSC infrastructures aware of the potential events for outages 

and correspondingly execute workforce planning that can 

undertake proactive measures for event mitigation and routine 

maintenance. Predictive asset analytics are intelligently used 

to improve the technological, productivity and business 

process engagements in a way that assures customer 

satisfaction, proper route planning, better safety and 

compliance, and optimized field crews.   

5. Adoption Challenges and Future

Prospects 
    The proposed work identifies some of the computing 

needs for building a data aware management framework for 
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next generation TOSCs. The proposed TOSC infrastructure is 

potentially viable to bring a paradigm shift in the application 

specific cloud computing deployments and can co-work 

symbiotically with numerous intelligent transportation systems 

(ITS) domains.  The work concludes as a wakeup call for 

multitudes of energy management ideas to develop 

transportation and SG utilities that not only demand scalability 

services bestowed by cloud computing but also have 

additional requirements such as real-time analytics, 

consistency, privacy, security, etc. that the current cloud 

computing paradigms doesn’t support. However, being the 

first of this genre, it will elicit proponents as well as skeptics 

to ponder on future enhancements. This section highlights 

some adoption challenges and requisites for research thrust in 

course of TOSCs realization.   

1. Scalability
  The federated clouds presented for TOSCs will seldom be 

developed from scratch, but the economics is to grow out of 

existing architectures. Issues regarding how to best allocate 

resources and programs to a distributed cloud that can serve 

the analytics demand of emerging TOSCs remains open book 

problem. The effectiveness of V2C infrastructures in TOSCs 

depends on its scalability to handle the dynamically changing 

xEV flux. The cloud architectures in TOSCs should be potent 

to tackle the traffic spikes and surges in the xEV demand 

occurred under emergencies and adversaries. Efficient mobile 

cloud computing strategies leveraged with data driven demand 

prediction algorithms can circumvent the scalability concerns 

caused due to continuous evolution in the xEV network [33].  

    High performance computation paradigms can be developed 

to optimize the storage space utilization, coordinate the virtual 

machines and network bandwidth to shape the server 

workload. Integrating the proposed TOSC paradigm with  next 

generation technologies such as internet of vehicles (IoV), 

internet of energy (IoE) etc, for development of middleware 

for MaaS architectures is still a nascent research thrust [34].  

  Analytics of dynamically generated voluminous datasets 

TOSC architecture becomes very expensive under the pay per 

use computation paradigm. Indeed, the computation expenses 

vary linearly with the task size and execution time, thus 

forcing the data scientists to incur heavy investments on 

storage and analysis. Thus, it opens a doorstep for the industry 

research and development communities to perform 

progressive analytics using domain specific sampling 

strategies to ensure effective user control, determinism and 

provenance for optimal and commercial viable deployment 

2. Performance, reliability and QoS

The incentives of V2C framework is primarily dedicated to

promote development of intelligent vehicular services and 

offer a range anxiety free drive to the naïve xEV users. The 

TOSC infrastructure assembles the distributed cloud platforms 

to co-work with each other for smooth and reliable operation 

of its entities. However, maintaining an optimal balance in the 

distribution of data, control and computation among the 

dedicated cloud-cloudlets decides the performance of the 

system. Commercial realization of the notion of CoT from 

billions of sensors and low power devices in a sensor network 

and connectivity with the data centers demand reliable and 

permanent sources of energy. Efficient fabrication techniques 

can enable the sensors to generate onsite power from 

renewables and environment [35].    

    The V2C paradigm employs dynamic and adhoc data 

clouds, so intermittent vehicular networking will hamper the 

service quality. The mesh created by seamless communication 

among cloud-cloudlet utilities will create galactic volumes of 

information to flow across the interfaces and data centers, thus 

uncertain network & communication failure will adversely 

affect the execution of V2C infrastructure. Intelligent 

controllers and gateways coupled with mobile networking 

paradigms can manage the connectivity control of distributed 

and networked cloud resources in TOSCs cyber infrastructures 

[36], [37]. For successful installation of the proposed TOSC 

infrastructure, regular checkpoints can be established to assess 

the following objectives:-  

1. Effect on business strategies adopted by TOSC utility

companies in case of fluctuation in performance and QoS 

parameters. 

2. Quantifying the tolerance, response and adaptation of the

V2C customers towards risk factors such as latency, 

variability, power outages, queuing delay etc.  

3. Development of real-time evaluation strategies to measure

the performance, synchronization, reliability and service 

quality TOSC data clouds. 

3. Cost Uncertainty
 Being numerous cloud utility offerings available on the 

market with varying pricing schemes, decisions on selecting 

the one commercially optimal to TOSC entities needs to be 

standardized. A budding informatics thrust is to evaluate the 

complexity and financial viability of cloud service 

deployments in price diverse environments. The infrastructure 

assembles multiple cloud genres into a common platform, thus 

uncertainties in pricing models is obvious. The stakeholders if 

are aware of the future service tariffs and incentives, will 

allow them to ponder for the optimum.  

4. Security

Security is among the prime issues in a typical data driven

TOSC, as the transportation utility vendors may agonize for 

the repercussions if the privacy of entrusted cloud data is 

compromised. Due to the dynamic nature of a transportation 

and SG infrastructures, it becomes nearly infeasible to create 

coherent cross-cloud trust relationships. Further, existence of 

complex relationships and dependencies among varying range 

of stakeholders in contemporary smart cities hinder the 

compatibility and cost effectiveness of data clouds employed 

in TOSCs. Global security standards are essential to cope up 

with such privacy and flexibility concerns. Decisions 

regarding selective migration of information hosted in private 

clouds and vehicular cloudlets to the public storage space 

require rigor research.  Robust and fine grained authorization 

protocols and access grants should be defined to ensure 

multiple accesses to federated cloud repositories.  

  The centrally managed access control policies adopted by 

SDNs in can cause vulnerabilities and cyber threats for TOSC 

network topologies. The infrastructures involved in controlling 
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flow dynamics can be susceptible to both active and 

surreptitious threats caused by method specific, target specific, 

identity specific and software specific attacks. The attack list 

can be control plane saturation attack, spoofing, tampering, 

repudiation, information disclosure, DoS, and elevation of 

method etc [32]. Thus the integration of SDNs to TOSCs 

presents ample unique research prospects and challenges to 

security and networking scientists.    

5. High performance analytics

   Integration of Human Machine Interaction (HMI) utilities 

into current intelligent transportation having an elegant 

communication and computational support opens a doorway 

for commercial and automotive communities to transform 

notions of emerging technologies viz. social internet of 

vehicles (SIoV) [38], social transportation [14], vehicular 

crowdsourcing [39], platoon research [40] etc, from  concept 

phase to implementation phase.  Analytics in such domains 

will enrich the reliability of decisions obtained in TOSCs and 

extend the service range to infotainment, safety, traffic 

scheduling etc. The underutilized vehicular resources if pooled 

properly, will create realm of supercomputers which can act as 

beds for real-time as well as offline analytics [16]. Predicting 

future trend from example data streams forms the basis for an 

online algorithm and is an efficient method for load prediction 

and monitoring. The federated cloud computing utilities when 

coupled to physical systems and cyber systems form cyber 

physical clouds (CPC). CPCs constitute “CYBER” of cyber 

physical systems (CPS) and their services can be adopted by 

SGs, aggregators, independent system operators (ISO) as well 

as xEV users in social environments as defined by [38],[41], 

to enhance the controllability, efficiency and reliability of the 

transport oriented cities.  

7. Conclusions
    In this work the notion of Transport Oriented Cities (TOSC) 

is established that comprises of intelligent entities like smart 

grid, smart charging station, smart car and smart meter and the 

interaction among these entities is coordinated through the 

deployment of a federated cloud-cloudlet infrastructure. The 

hierarchical cloud framework optimally control and monitor 

the components and entities involved in operation of a 

transport oriented smart city. A comprehensive and 

commercially viable realization of vehicle to cloud (V2C) 

model for smart and coordinated charging of the xEV fleet is 

proposed. The cloud data centers are endowed with high 

performance computational elements and robust data analytics 

algorithms for delivering a real time solution to achieve smart 

charging management of smart xEVs fleet supporting the 

criterion triad namely minimum charging tariff, shortest 

travelling distance and minimum queuing delay at the 

charging station. The research also developed a Big Data to 

Knowledge (B2K) framework and highlights the 

multidisciplinary research trends and thrusts for transforming 

raw data into rules and decisions. Further, the data science 

prospects and challenges, research thrust and scope for 

commercialization in the next generation TOSCs are outlined.  
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