
C-ABAC: An ABAC based Model for Collaboration in
Multi-tenant Environment
Mohamed Amine Madani1,*, Mohammed Erradi1, Yahya Benkaouz2

1Networking and Distributed Systems Research Group, ITM Team, ENSIAS, Mohammed V University in Rabat,
Morocco
2Conception and Systems Laboratory, FSR, Mohammed V University in Rabat, Morocco

Abstract

Collaborative systems allow a group of users to collaborate through distributed platforms in order to perform
a common task. Collaborators usually use cloud-based solutions to outsource their data and to benefit from
the cloud capabilities. Ensuring access control in a cloud-based collaborative session is an important problem
that should be addressed, especially in a multi-tenant configuration. In this paper, we present C-ABAC,
a Collaboration Attributes Based Access Control model that ensures access control in multi-tenant cloud
environments. C-ABAC supports the workflow concept, preserves the tenants autonomy in defining their
local policies and preserves the confidentiality of the object attributes. The implementation of C-ABAC in
the SwiftStack environment demonstrates the feasibility of the suggested model.

Received on 15 December 2017; accepted on 18 April 2018; published on 26 June 2018
Keywords: ABAC model; Tasks; Collaborative session; Access control.

Copyright © 2018 Mohamed Amine Madani et al., licensed to EAI. This is an open access article distributed under the
terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/), which permits
unlimited use, distribution and reproduction in any medium so long as the original work is properly cited.

doi:10.4108/eai.26-6-2018.154831

1. Introduction

Nowadays, multiple organizations collaborate by per-
forming common tasks in order to reach a common
goal. Such collaborations optimize the usage of the
distributed resources of the collaborators, hence, the
productivity and the benefit improvements. In this
context, collaborative applications bring new solutions
and technologies to enable a group of users to commu-
nicate, cooperate and collaborate through distributed
platforms to perform common tasks.

Most organizations rely on cloud-based solutions
to outsource their IT infrastructure such as compute,
network and data storage in a cloud service provider
(CSP). This provides remote access to software and
hardware services via Internet. In order to ensure
the confidentiality and the privacy of these services,
the cloud service provider segregates the data and
customers services into multiple tenants. Each tenant

HPlease ensure that you use the most up to date class file, available
from EAI at http://doc.eai.eu/publications/transactions/

latex/
∗Corresponding author. Email: amine.madani@um5s.net.ma

is assigned to an organization or to a person that uses a
given cloud service.

During collaborations, the cloud tenants need to
access and use the information shared by other
collaborating tenants. This information often contains
sensitive data. It is meant to be shared only during
specific collaborative sessions [5]. This arises the
access control issue [4]: The tenants need strong
access control model supporting cross tenants access
and collaboration. Moreover, users may intervene
dynamically without a prior knowledge of which user
will request an access to a given object. In this
direction, designing a fine-grained access control model
is mandatory [5].

Note that a collaboration might be seen as a set of
tasks and workflows. Each task is performed by a given
tenant and a tenant may achieve one or more tasks.
A task might be active (i.e. a part of a workflow) or
passive (i.e. does not belong to a workflow). On the
other hand, access control models for collaborations
in multi-tenant environments might be classified into
two categories: Centralized and decentralized (peer to
peer) access control models. In centralized approaches,
the access enforcement and decisions are taken in a

1

EAI Endorsed Transactions
on Smart Cities Research Article

EAI Endorsed Transactions
on Smart Cities

02 2018 - 06 2018 | Volume 2 | Issue 8 | e3

http://creativecommons.org/licenses/by/3.0/
http://doc.eai.eu/publications/transactions/latex/
http://doc.eai.eu/publications/transactions/latex/
mailto:<publications@eai.eu>

M. Madani, M. Erradi, Y. Benkaouz

specific central point. These models enable granting
and revoking permissions while a task is running. In
decentralized approaches, each tenant is responsible of
its own access control policy. In this respect, tenants
are loosely coupled. Such approaches could support the
following requirements:

• Autonomy and independence: Each tenant main-
tains control over its resources. Each tenant
defines its local access control policy and respects
the global access control policy.

• Confidentiality: Each tenant is be able to maintain
the confidentiality and the privacy of its local
policy and its own data.

In this paper, and based on the fine-grained access
control model "ABAC: Attribute based access control",
we propose "C-ABAC: Collaboration ABAC". C-ABAC
is especially designed for collaborations in multi-
tenants environments. C-ABAC model overcomes the
limitations of the classical access control models that
are based on RBAC model. It supports an access cross-
tenant in which a tenant could use shared ressources
on the cloud while preserving access control policies.
The C-ABAC model is a centralized model that allows
the collaborating tenants to specify a global policy
(authorizations) in a specific central point. C-ABAC
supports the task and the workflow concepts. It is
scalable and preserves the autonomy of each tenant
in defining their policies. In addition, it preserves the
confidentiality of the object, resource and environment
attributes that are used in the access decision process.

This paper is organized as follows: Section 2 presents
the background of this work, in which, the concepts of
Cloud-based collaborative applications and the ABAC
model are explained. The related work are presented
in Section 3. Section 4 describes the suggested C-
ABAC model. Section 5 presents the implemented
architecture, the enforcement model and discusses the
evaluation results. Finally, we conclude in Section 6.

2. Background
This section aims to present the necessary background
of this work. It mainly focus on the presentation of the
concept of Cloud based collaborative application. Then,
it presents the attribute based access control model.
Cloud based collaborative applications.
Collaborative applications are among the services

that can be provided by the cloud computing. They
enable collaboration among users from the same or
different tenants of a given cloud provider [2, 3].
During collaborations, the participants need to access
and use resources held by other collaborating users.
These resources often contain sensitive data. They are
meant to be shared only during specific collaborative
session [5]. The collaborative session is an abstract

entity, comprising a set of users, called members of the
session. These members play either the same role or
different roles. They might have concurrent access to
shared objects in the collaborative session depending on
the access control policy.
Case study: a collaborative application for

telemedicine
In this study, we consider the telemedicine scenario

shown in Figure 1. In this real use case, the School
Hospital (SH), the Emergency Medical Services (EMS),
and the Home Hospital (HH) are three collaborating
issuers sharing a common private cloud service. The
cloud service provides storage services for the Home
Hospital issuer, and for the three SH’s departments:
neurology, radiology and cardiology, as segregated
tenants.

This private cloud provides a service of collaborative
sessions for the Emergency medical services (EMS).
This service allows a group of users, from different
tenants, to collaborate in order to observe and treat
a patient admitted in the Home Hospital (HH)
emergency. In this scenario, we have a collaborative
session CS1 of a telemedicine type. The members of this
session are:

• User1: neurologist in the tenant neuro of the issuer
SH;

• User2: cardiologist in the tenant cardio of the issuer
SH;

• User3: radiologist in the tenant radio of the issuer
SH;

• User4: doctor_EMS (Emergency doctor) in the
tenant emr of the issuer EMS;

• User5: doctor_HH in the tenant storage of the
tenant HH.

ABACModel.
ABAC is an adaptive and a flexible fine-grained access

control model. The core components of ABAC model [9]
are:

• U , O and E represent finite sets of existing users,
objects and environments respectively.

• A = {create, read, update, delete} is a finite set of
actions.

• UAT T , OAT T and EAT T represent finite sets of
user, object and environment attribute functions
respectively.

• For each att ∈ {UAT T ∪OAT T ∪ EAT T },
range(att) represents the attribute’s range,
which is a finite set of atomic values.

2
EAI Endorsed Transactions

on Smart Cities
02 2018 - 06 2018 | Volume 2 | Issue 8 | e3

C-ABAC: An ABAC based Model for Collaboration in Multi-tenant Environment

Figure 1. A collaborative session in cloud environment

• attT ype : UAT T ∪OAT T ∪ EAT T →
{set, atomic}, specifies attributes as set or atomic
values.

• Each attribute function maps elements in U to an
atomic value or a set

– ∀ua ⊆ UAT T . ua : U →
Range(ua) if attT ype(ua) = atomic

– ∀ua ⊆ UAT T . ua : U →
2Range(ua) if attT ype(ua) = set

• Each attribute function maps elements in O to an
atomic value or a set

– ∀oa ⊆ OAT T .oa : O→
Range(oa) if attT ype(oa) = atomic

– ∀oa ⊆ OAT T .oa : O→
2Range(oa) if attT ype(oa) = set

• Each attribute function maps elements in E to an
atomic value or a set

– ∀ea ⊆ EAT T .ea : E →
Range(ea) if attT ype(ea) = atomic

– ∀ea ⊆ EAT T .ea : E →
2Range(ea) if attT ype(ea) = set

• An authorization that decides on whether a user u
can access an object o in a particular environment
e for the action a, is a boolean function of u,
o, and e attributes: Rule: authorizationa(u, o, e)→
f (AT TR(u), AT T R(o) , AT T R(e)).

3. Related work

Several works have been in the literature to ensure
access control in multiple environments. In the Task
based access control [4] (TBAC), the permissions are
granted according to the progress of several tasks.
The TRBAC [18] model is constructed by adding
the "Task" concept to the RBAC model. In TRBAC,
the user has a relationship with permission through
role and task. On the other hand, in the Team
Access Control Model (TMAC) [6], the permissions are
granted to each user through its role and the current
activities of the team. These models enable fine-grained
access control but they do not incorporate contextual
parameters into security considerations and do not
support collaboration in multi-tenants environments.
Moreover, the notion of "Team" used in TMAC model is
static. Therefore, this model does not support dynamic
collaboration.

Other access control approaches have been suggested
to secure resources in cloud environments [2, 3, 19–
21]. Calero [2] suggests a multi-tenancy authorization
system. This work is based on hierarchical role-base
access control with a coarse-grained trust relation and
path-based object hierarchies . Calero et al [2] assumes
that each issuer may use several cloud services and
could collaborate with other issuers. Tang [20] proposes
a multi-tenancy authorization system (MTAS) model.
This model is based on the RBAC model and the trust
relations established between the cloud issuers in order
to support collaboration between these issuers. The
issuer that establishes the trust is called the truster and
the one being trusted is called the trustee. The trustee

3
EAI Endorsed Transactions

on Smart Cities
02 2018 - 06 2018 | Volume 2 | Issue 8 | e3

M. Madani, M. Erradi, Y. Benkaouz

can authorize one of the trusters roles to access to a
trustee resource.

The Multi-Tenant Role-Based Access Control (MT-
RBAC) proposed by Tang et al in [3] is a model that
provides fine-grained access control in collaborative
cloud environments by using trust relations among
tenants. In this work, trust relations among issuers were
not considered (i.e. they distinguish between issuers
and tenants). In MT-RBAC model, the truster exposes
some trusters roles to the trustee. This trustee assigns
their users to the trusters roles. Thus, the users can
access to the trusters resources by activating the trusters
roles.

In Collaborative Task Role-Based Access Control
CTRBAC model [21], authors propose an approach
to ensure access control to the shared resources in
a collaborative session in multi-tenants environments.
The suggested CTRBAC model is an extended version
of RBAC in which new entities were added in
order to support together the cross tenants access
and the task concept. Nonetheless, in this model, a
given tenant may use some roles owned by other
tenants which will compromise the confidentiality
requirement. Furthermore, this model is based on
RBAC model which is not flexible enough to support a
complex policy rules.

These models are based on a decentralized approach.
It supports the following requirements: (1) Autonomy
and independence: each local administrator maintains
control over his system. Each organization defines
its local access control policy, and respects the
global access control policy. (2) Cross tenant access:
Tenant uses some resources shared by other tenants.
However, these models do not support task and
scalability requirements, especially if we assume that
the collaboration is a workflow composed of a set
of tasks. Moreover, these approaches are based on
Role based access control (RBAC) Model. Nevertheless,
various limitations of RBAC have been recognized such
as: flexibility and scalability.

In this direction, Attribute Based Access Control
model (ABAC) is of a great interest. ABAC model [9, 10]
overcomes the limitations of the classical access control
models (i.e, ACL, MAC and RBAC). This model is
adaptive and flexible. ABAC is more suitable to describe
complex, fine-grained access control semantics, which
is especially needed for collaborative environments.

There have been few works that used ABAC in multi-
tenant environment. The multi-tenant attribute-based
access control model (MT-ABAC)[11] presents model
to enable collaboration between tenants in the cloud.
This model is based on a decentralized approach and
supports cross-tenant attribute assignment. However,
this model does not support the task concept. In
MT-ABAC Model, authors defined a trust relationship
established between the truster tenant and the trustee

tenant in order to support cross tenants access. In this
relationship, the trustee is authorized to assign values
for trustee’s user attributes to truster’s users. However,
before assigning the users to the attributes, the trustee
should know some informations about truster’s users
such as their jobs in the organization which will
compromise the confidentiality requirement. Moreover,
the trustee has the full control to assign the truster’s
users to the trustee’s authorizations which will
compromise the autonomy requirement.

Therefore, in this paper, we propose C-ABAC, a novel
ABAC based model following a centralized approach.
C-ABAC allows the collaborating tenants to specify
the global policy in a specific central point. C-ABAC
supports the concepts of task and workflow. It ensures
the tenants autonomy and preserves the attributes
confidentiality of the tenants objects.

4. C-ABAC: The Collaboration ABAC model
In this section, we present the suggested collaboration
attributes based access control model: C-ABAC. In this
section, we first define the notion of collaborative
tenant. Then, we describe the business process for the
collaboration. After that, we present the C-ABAC model
definition. Finally, we show a use how C-ABAC might be
used in the previously described Telemedicine use case.

4.1. A collaborative tenant
The collaborative tenant is the tenant responsible
for ensuring the collaboration between multi tenants.
It provides the collaboration as a service for the
collaborating tenants. This collaborative tenant allows
a group of users from different tenants to collaborate
through distributed platforms in order to perform a
common process. Note that each set of tenants that want
to collaborate with each other should first create this
collaborative tenant. Then, they should define in this
collaborative tenant the collaboration process which is
a workflow composed of a set of tasks, each task will be
performed by a given tenant and a tenant may achieve
one or more tasks. For instance as shown in figure 2,
the tenants SH , EMS and HH are three collaborating
tenants using the collaborative tenant that provides the
collaboration as a service.

Figure 2. Collaboration As A Service (CAAS)

4
EAI Endorsed Transactions

on Smart Cities
02 2018 - 06 2018 | Volume 2 | Issue 8 | e3

C-ABAC: An ABAC based Model for Collaboration in Multi-tenant Environment

Figure 3. A collaboration workflow

4.2. A business process

In our approach, each collaboration is specified as a
business process that is defined as a set of tasks that
are connected to achieve a common goal. For example,
figure 3 shows the diagnosis process related to the
our use case. In this collaboration, each task will be
performed by a given tenant using some resources
shared by others tenants. As shown in the tasks
assignment (figure 4), the tenant SH is responsible to
achieve the task T 7. Moreover, in order to perform this
task, the tenant SH needs to access to the resources MR,
Scan and video that are owned by the tenant HH .

In this section, we present our core C-ABAC model
which is designed to be suitable for ensuring access
control in collaborative multi-tenants environments.
ABAC model has been defined in various ways in
the literature, usually for some specific goals. In our
approach, we add the tasks (T) entity in addition to
the users and objects of core ABAC0. The task is a
fundamental unit of business work or business activity.
Tasks are assigned to tenants according to their roles in
the collaboration.

The task is defined using the triple (task name, tenant
that is responsible to achieve the task, Set of resources
(owned by others) tenants used for achieving the task).
For example as shown in figure 4, the tenant SH
achieves the task T 7 by using some resources owned by
the tenant HH . In order to specify ABAC authorization
while supporting collaboration and tasks requirements
related to multi-tenants environments, we should use
the notation illustrated in figure 5.

C-ABAC model introduces the task entity to the user
and object entities of the ABAC model. In this model,
each task is defined by a set of task attributes like: the
task name, the workflow of the task, previous tasks
and the collaborative session of the task. Moreover,
in each task, the responsible of this task may have
many authorizations. For example in the task T 7 :
T ake_a_decision, a user from the tenant SH needs have
four authorizations: (1) read the patient medical record
mr1; (2) read the patient scan image scan1; (3) read the
patient video file; (4) write the final decision.

In C-ABAC model, each authorization related to a
given task is defined as shown in figure 2 by: (1) Set
of task attributes related to this task; (2) Set of user

attributes that represent the user who is responsible to
achieve this task; (3) Set of object attributes related to
the resource used in this task; (4) An action which is a
specific operation on object. For each task, the user that
is responsible of the task should have many permissions
to accomplish this task. So each task is assigned to many
permissions (ABAC Authorization).

A C-ABAC Authorizations are defined using task,
user, and object attributes that are independent of one
another. Moreover, each task attributes have the same
value for all C-ABAC authorizations related to this task.
Likewise, each user attributes have the same value for
all authorizations related to one task the fact that we
consider that the user who is responsible to achieve one
task is authorized to perform all actions related to this
task.

A C-ABAC model is composed of the three basic
components: users (U), objects (O), and Tasks (T).
In this model, each user has an attribute UOwner
which is a many-to-one function from users U to
tenants T E. Moreover, the model requires each object
to have an attribute OOwner which is a many-to-
one function from objects O to tenants T E. Further,
each user attribute, each object attribute and each
task attribute is also uniquely owned by a single
tenant, depicted respectively by the many atomic-
valued functions UAOwner, OAOwner and TAOwner.

The crucial concept is that each tenant is responsible
for assigning values to attributes that it owns. With
isolated tenants, a user can have assigned values
only for those attributes owned by the user’s owning
tenant. Actions are allowed operations in the system.
These operations typically include create, read, update
and delete. We use the terms actions and operations
interchangeably. An action is applied to an object by a
user.

In our approach, a global C-ABAC authorizations
for a given task of the collaboration includes global
attributes which will be defined at the collaborative
tenant level. Such attributes are the task attributes, user
and object attributes related to the collaboration (for
instance, MemberCS(u): member of the collaborative
session; SharedCS(o): shared in the collaborative
session). On the other hand, in this authorization,
the administrateur of the collaborative tenant uses
the attributes related to the user who is responsible

5
EAI Endorsed Transactions

on Smart Cities
02 2018 - 06 2018 | Volume 2 | Issue 8 | e3

M. Madani, M. Erradi, Y. Benkaouz

Figure 4. Tasks Assignment

Figure 5. C-ABAC Authorizations

for executing this task. These user attributes will be
defined by the task executor (the tenant assigned for
executing this task) in a confidential, autonomous and
independent way from other collaborating tenants and
the collaborative tenant. For this purpose, we propose
a new attribute function AssignUser() which will be
defined at the level of the local tenant. This attribute
function is responsible on executing the task and will
be used by the collaborative tenant at the level of the
global autorization.

Moreover, in this authorization the administrator
uses the attributes related to the object shared within
the task. Similarly, these object attributes will be
defined by the object owner in a confidential and
independent way from the other collaborating tenants.
For this purpose, we propose a new attribute function
UsedObject() which will be defined by the object owner
and will be used by the collaborative tenant to define
the global autorization.

4.3. AssignUser function
AssignedUser(ta:TA;te:T E)(u : U)→ {T rue;False}, a
boolean attribute function, mapping user to true
or false, which means that the user attributes that
represent the user who is responsible to achieve this
task t will be defined by the tenant te in a confidential
way. This compound attribute is used by the tenant
responsible of the task to define the user attributes of
the user who will perform this task in the local policy
with a confidential and an autonomy way. For instance,
the compound attribute AssignedUser(T 7;SH)(u) will be
defined by the tenant SH to specify the user attributes

of the user responsible of the task T 7. The indices used
in this function are:

• (ta : TA): the current task (the active task) of the
workflow collaboration.

• (te : T E): The tenant that will perform the this
task ta (the task executor).

• The couple (ta : TA, te : T E), means that the
tenant te is responsible to accomplish the task ta.

4.4. UsedObject function
UsedObject(ObjT ype;a:A;te:T E)(o : O)→ {T rue;False}, a
boolean attribute function, mapping object to boolean
true or f alse, which means that the object attributes
related to the object of the type ObjType will be defined
by the tenant te in a confidential way. This compound
attribute is used by the tenant provider of the resource
to define the object attributes of this resource and the
allowed action in the local policy with a confidential
and an autonomy way. For instance, the compound
attribute UsedObject(MR;read;HH)(u) will be defined by
the tenant HH to specify the object attributes of the
object (of the type MR) used in the collaboration. The
indices used in this function are:

• ObjT ype: Set of objects that satisfy a common
property are classified into an object type.

• (a : A): the action related to the authorization.

• (te : T E): the tenant that will share the object o in
the collaboration.

6
EAI Endorsed Transactions

on Smart Cities
02 2018 - 06 2018 | Volume 2 | Issue 8 | e3

C-ABAC: An ABAC based Model for Collaboration in Multi-tenant Environment

Figure 6. Example: Tasks definitions

4.5. A collaboration attributes based access control:
C-ABAC model
Core C-ABAC is defined by the basic component
sets, functions and authorization policy language given
below:

• U , O, T and T E represent finite sets of existing
users, objects, tasks and tenants respectively.

• A represents a finite set of actions
available on objects. Typically A =
{create; read;update; delete}.

• CTE represents finete set of collaborative tenants
(CTE ⊆ T E).

• UA, OA and TA represent finite sets of user,
object and task attribute functions respectively.

• For each att ∈ UA ∪OA ∪ TA, range(att) repre-
sents the attribute’s range, which is a finite set of
atomic values.

• attT ype : UA ∪OA ∪ TA→ {set; atomic},
specifies attributes as set or atomic values.

• Collabors : (cte : CTE)→ T E, specifies the ten-
ants that will use this collaborative tenant cte.

• Each attribute function maps elements in U to an
atomic value or a set

– ∀ua ∈ UA. ua : U → Range(ua) if
attT ype(ua) = atomic

– ∀ua ∈ UA. ua : U → 2Range(ua) if
attT ype(ua) = set

• Each attribute function maps elements in O to an
atomic value or a set

– ∀oa ∈ OA. oa : O→ Range(oa) if
attT ype(oa) = atomic

– ∀oa ∈ OA. oa : O→ 2Range(oa) if
attT ype(oa) = set

• Each attribute function maps elements in T to an
atomic value or a set

– ∀ta ∈ TA. ta : T → Range(ta) if
attT ype(ta) = atomic

– ∀ta ∈ TA. ta : T → 2Range(ta) if attT ype(ta) =
set

• UOwner : (u : U)→ T E, required attribute func-
tion mapping user u to owner tenant te.

• OOwner : (o : O)→ T E, required attribute func-
tion mapping object o to owner tenant te.

• TOwner : (t : T)→ T E, required attribute func-
tion mapping task t to owner tenant te.

• UAOwner : (uatt : UA)→ T E, meta attribute
function, mapping user attribute ua to attribute
owner tenant te.

• OAOwner : (oa : OA)→ T E, meta attribute func-
tion, mapping object attribute oa to attribute
owner tenant te.

• TAOwner : (ta : TA)→ T E, meta attribute func-
tion, mapping task attribute ta to attribute owner
tenant te.

7
EAI Endorsed Transactions

on Smart Cities
02 2018 - 06 2018 | Volume 2 | Issue 8 | e3

M. Madani, M. Erradi, Y. Benkaouz

• ua(u : U) is defined only if
(UAOwner(ua) = UOwner(u)) ∪ (UOwner(u) ∈
Collaborators(UAOwner(ua))).

• oa(o : O) is defined only if
(OAOwner(oa) = OOwner(o)) ∪ (OOwner(u) ∈
Collaborators(OAOwner(oa))).

• ta(t : T) is defined only if (TAOwner(ta) =
TOwner(o)).

• AssignedUser(ta:TA;te:T E)(u : U)→ {T rue;False}, a
boolean attribute function, mapping user u to
true or f alse, which means that the user attributes
that represent the user who is responsible to
achieve this task ta will be defined by the tenant
te in a confidential way.

• UsedObject(ObjT ype;a:A;te:T E)(o : O)→
{T rue;False}, a boolean attribute function,
mapping object o to true or f alse, which means
that the object attributes related to the object of
the type ObjT ype will be defined by the tenant te
in a confidential way.

• An authorization that decides on whether a user
u can access an object o in a particular task t
for the action a, is a boolean function of u, o,
and t attributes: Rule: authorizationa(u; o; t)→
f (UA(u);OA(o); TA(t)), with the additional
required condition that (UOwner(u) =
OOwner(o) = TOwner(t)) ∪ (UOwner(u) ∈
Collaborators(TOwner(t)) ∩OOwner(o) ∈
Collaborators(TOwner(t))).

4.6. Example: C-ABAC Authorizations
Let us consider a telemedicine scenario where the
School Hospital (SH), the Emergency Medical Ser-
vices (EMS), and the Home Hospital (HH) are
three collaborating organizations. In this example, we
apply the C-ABAC model on the telemedicine use
case a telemedicine previously depicted by specify-
ing authorizations for the tasks interpret_scan and
take_a_decision as shown in figure 7. First, for each
task we define a set of task attributes, Set of user
attributes that represent the user who is supposed to
achieve this task and set of access permissions related to
this task. a permission is an action on object. an object
is defined by a set of object attributes. For instance
(write,MR), (read, scan) and (read, video) are three per-
missions related to the task take_a_decision.

Access control authorizations in C-ABAC model are
defined by the following the formalism shown in the
figure 7:

The authorization Authorizationwrite(ti;u; o) that is
shown in the figure 7 matches to ’the rule the radiologist
interprets the scan images’ as specified at the first

line in figure 6. This authorization is defined in the
collaborative tenant CT 1 and is composed of a set of
task attributes, user attributes and objects attributes.
This authorization is valid for the action write if only
if : (1) The instance ti is instantiated of the task
interpret_scan; (2) the task instance ti belongs to the
workflow tenemo; (3) the previous task instances of the
ti are accomplished; (4) There is a collaborative session
in which the task runs; (5) The user u is member of
the collaborative session cs; (6) The object o is shared
in the session cs; (7) The tenant SH authorizes his
user u to perform the task T 5; (8) The tenant HH
shares the object o of the type ObjectT ype with others
collaborating tenants for the action write.

The attributes AssignedUser and UsedObject are
defined and evaluated in the tenant SH and HH
respectively. This attribue AssignedUser(T 5;SH)(u) =
T rue if only if: (1) the user u plays the role radiologist;
(2) u is at least level 1 of the neurology expertise; (3) u
is at least level 2 of the radiology expertise; (4) u is at
least level 0 of the cardiology expertise. The attribute
UsedObject(SCAN ;Write;HH)(o) = T rue if only if: (1) the
object o of the type Scan; the sensitivity class of object o
is less than or equal to class2.

5. Implementation
5.1. System architecture
OpenStack is a robust open-source IaaS software for
building public, private, community or hybrid clouds.
OpenSteck is adopted by many cloud providers such
as Rackspace, IBM and RedHat. OpenStack contains
the following components: Nova, Swift, Glance, Cinder,
Keystone, and Horizon. Each component acts as a
service which communicates with other services via
message queues. Keystone provides authentication and
authorization for all OpenStack services. In our work,
we focus on the Swift object storage. Swift is a multi-
tenant, highly scalable and durable software defined
storage system designed to store files, videos, virtual
machine snapshots and other unstructured data [7]. It
allows building, operating, monitoring, and managing
distributed object storage systems that can scale up to
millions of users.

The Account Server is responsible for listings of
containers, while Container Server is responsible for
listings of objects. A container is a mechanism that
stores data objects. An account might have many
containers, whereas a container name is unique. A user
represents the entity that can perform actions on the
object in the account. Each user has its own account
and is associated to a single tenant. Swift uses the access
control lists (ACL) to manage the access permissions. In
fact, the ACL model defines static access rules. It is not
suitable for collaborative environment. In this paper, we
implemented the C-ABAC model on the swift storage

8
EAI Endorsed Transactions

on Smart Cities
02 2018 - 06 2018 | Volume 2 | Issue 8 | e3

C-ABAC: An ABAC based Model for Collaboration in Multi-tenant Environment

Figure 7. Example: C-ABAC Authorizations

component. This component acts as a service that
communicates with other components (Nova volume,
nova compute, nova network, glance and keystone) via
message queues. These components are loosely coupled.
Keystone is the identity service used by OpenStack for
authentication and authorization. It provides a token
signed by each user’s private key.

Let us consider the telemedicine scenario where
the School Hospital (SH), the Emergency Medical
Services (EMS), and the Home Hospital (HH) are three
collaborating organizations. These organizations share
a common private cloud openstack. We consider that
these organizations use the swift component for the
storage service. In this use case, each organization is
assigned to a swift account. (e.g. the accounts ACC_SH ,
ACC_EMS and ACC_HH represent the organizations
SH , EMS and HH respectively).

This cloud provides a service of collaborative sessions
for these organisations. This service allows a group of
users, from different tenants, to collaborate in order
to observe and treat a patient admitted in the Home
Hospital (HH) emergency. In this example, we have
a collaborative session CS1 of a telemedicine type.
During a collaborative session, users may intervene
dynamically without a prior knowledge of which user
will access which object.

In order to support C-ABAC Model in the OpenStack
Swift environment and overcome the limitations of
Swift ACL, we propose to extend the Swift component
by implementing a new C-ABAC Module (Figure 8).
The C-ABAC module is composed of five components:

Figure 8. The system architecture

User attributes, object attributes, task attributes,
authorizations and the policy decision component. In
the following, we describe each of these components:

9
EAI Endorsed Transactions

on Smart Cities
02 2018 - 06 2018 | Volume 2 | Issue 8 | e3

M. Madani, M. Erradi, Y. Benkaouz

• User attributes: The security administrator
defines the user attributes as a function that
takes user as input and returns a value from
the attribute’s range. (user1 : attr1 : val1) means
that for the user user1 the value of the attribute
attr1 is val1. For example, a user attribute
function such as Role ∈ UAT T maps user1 ∈ U
to a value neurologist. Furthermore, the cloud
administrator defines the attribute function
UOwner to specify the user owner. For instance
(user1 : UOwner : ACC_SH) means that the user
user1 is owned by the account ACC_SH . Finally,
the administrator defines the attribute function
JoinCS to specify which users could join the
collaborative sessions. The value of this attribute
is either true or f alse. (user1 : JoinCS : true)
means that the user user1 could participate in the
collaboration.

• Object attributes: The tenant administrator
assigns the object attributes as a function that
takes object as input and returns a value from
the attribute’s range. (obj1 : attr1 : val1) means
that for the object obj1 the value of the attribute
attr1 is val1. Furthermore, the cloud adminis-
trator defines the attribute function OOwner to
specify the object owner. For instance (MR1 :
UOwner : ACC_HH) means that the object MR1
is owned by the account ACC_HH . Finally,
the administrator defines the attribute function
SharedCS to specify which objects could be
shared in the collaborative session. For exam-
ple, (P er_inf o1 : SharedCS : f alse) means that
the object P er_inf o1 (personal information) could
not be shared in the collaborative session.

• Task attributes : The administrator assigns
the task attributes as a function that takes
task instance as input and returns a value
from the attribute’s range. (ti1 : attr1 : val1)
means that for the task instance ti1 the value
of the attribute attr1 is val1. Furthermore,
the cloud administrator defines the attribute
function TOwner to specify the task owner. For
instance (ti1 : TOwner : ACC_EMS) means that
the task instance ti is performed by the account
ACC_EMS.

• Compound attributes: The administrator of
the local tenant defines the new attributes
AssignedUser and UsedObject with a confidential
and an autonomy way. These compound
attributes are specified here as follows:
UsedObject|SCAN |Write|HH : −o : ObjectT ype :
SCAN ∧ o : sensitivity : class0|class1|class2,
which means that this attribute is true if only if:

(1) the object o of the type Scan; the sensitivity
class of object o is less than or equal to class2.

• Authorizations: The administrator specifies
the authorizations policy. In our scenario, we
consider that each tenant defines its policy rules.
Note that at this level, we suppose that the
security policy rules are valid and conflict-free.
The policy rules are specified here as follows:
write − ti : task : interpret_scan ∧ ti : workf low :
tenemo ∧ ti : previoustask : true ∧ ti : CSession :
cs1 ∧ u : memberCS : cs1 ∧ o : sharedCS :
cs1 ∧ u : AssignedUser |T 5|SH : T rue ∧ o :
UsedObject|SCAN |Write|HH : T rue, which
means that for the action write’, this authorization
is valid if only if : (1) The instance ti is instancied
of the task interpret_scan; (2) the task instance ti
belongs to the workflow tenemo; (3) the previous
task instances of the ti are accomplished; (4)
There is a collaborative session in which the
task runs; (5) The user u is member of the
collaborative session cs; (6) The object o is shared
in the session cs; (7) The tenant SH authorizes his
user u to perform the task T 5; (8) The tenant HH
shares the object o of the type SCAN with others
collaborative tenants for the action Write.

• Policy decision: This component is responsible
for evaluating the access request to the resources
in the collaborative session based on the collected
attributes values and authorizations. When a user
sends a request to access a resource stored in
the cloud swift, the policy decision component
evaluates this request according to the policy rules
in order to decide whether the user is authorized
to access this resource or not.

5.2. Enforcement model
A general authorization process for Swift component
with C-ABAC module is illustrated in figure 9. When
the user user1 attempts to access the resource MR1
stored in the swift. First, (1) The user requests keystone
to get his/her token. (2) Keystone generates a token
and sends it to the user. (3) The user sends a request
to ABAC module by using his/her token to access the
resource MR1. The Policy decision component receives
this request to evaluate it.
(4) During the evaluation process, the policy decision
component requests the components: user attributes,
object attributes and task attributes (5) to receive
user1’s attributes, MR1’s attributes and the attributes
related to the collaborative session wherein this user is
member.
(6) The policy decision component requests the
authorizations component and (7) receives all the policy
rules stored in this component. These attributes and

10
EAI Endorsed Transactions

on Smart Cities
02 2018 - 06 2018 | Volume 2 | Issue 8 | e3

C-ABAC: An ABAC based Model for Collaboration in Multi-tenant Environment

Figure 9. The enforcement model

policy rules will be used by the policy decision to
evaluate access request in order to decide whether the
user is authorized to access this resource or not. (8)
the policy decision will execute an ACL command to
assign the authorization decision (permit or deny) to the
user in the swift environment. (9) The policy decision
component executes a swift API command in the swift
component using user1’s token in order to send the
user1’s access request to swift. (10) user1 access to the
resource MR1 if the authorization decision is permitted.

5.3. Evaluation
In this paper, we implement the ABAC and C-ABAC
on the swift storage component of openstack. Our
experiments were run on a virtual machine with the
following characteristics (Memory 1024MB, 2 cores
CPU, Hard Disk 30GB). We consider the download
time of a Swift object using ABAC model and C-
ABAC Model. We observe that the performance of
enforcing our approach depends on many factors, such
as numbers of rules, number of attributes and number
of concurrent collaborative sessions. In our analysis, we
have used a synthetic dataset that contains up to 2000
rules, 2500 attributes and 25 concurrent collaborative
sessions.

Figure 10(a) shows that the average time to authorize
the access to a Swift object with ABAC model increases
with 13.4% and 22.7% for policies of 400 and 2500 rules
respectively using the C-ABAC model. The waiting
time for getting a policy decision becomes larger when
there are too many authorizations to be collected. We
acknowledge that our implementation works well for a
large number of authorizations.

Furthermore, we compute the running time for
access/deny decisions to a Swift object using ABAC
and C-ABAC model for 400 rules and for 500 to 2500

attributes. Figure 10(b) shows that the average time
for download of a Swift resource with ABAC model
increases with 7.6% and 19.6% for 500 and 2500
user attributes assignments using C-ABAC Module. We
acknowledge that our implementation works well for a
large number of authorizations.

Finally, we compute the running time for access/deny
decisions to a Swift object using ABAC and C-ABAC
model for 400 rules, 500 Attributes and number of
concurrent collaborative sessions with 10 to 50 active
ones.

Figure 10(c) shows that the average time for
access/deny decisions to Swift resources using ABAC
model increases with 20.1% and 34.7% for 10 and 50
concurrent collaborative sessions respectively using the
ABAC Module. We observe that our implementation
works well for a medium number of active concurrent
collaborative sessions. The overhead reaches 34.7% in
an unusual situations where there are 50 concurrent
parallel collaborative sessions.

6. CONCLUSION
In this paper, we present a novel ABAC based access
control model called (C-ABAC). C-ABAC enables to
ensure access control in collaboration between tenants
in the cloud. C-ABAC allows the collaborating tenants
to specify a global policy in a specific central point. It
supports multiple concepts such as: task and workflow.
The suggested model ensures the autonomy of tenant
and preserves the confidentiality of each tenant object.
Finally, an architecture that integrates C-ABAC in the
storage level of the cloud platform OpenStack has been
described. The implementation results have shown that
the suggested approach has a very limited overhead.

11
EAI Endorsed Transactions

on Smart Cities
02 2018 - 06 2018 | Volume 2 | Issue 8 | e3

M. Madani, M. Erradi, Y. Benkaouz

Figure 10. Running time overhead for access/deny decisions

References
[1] P. Mell and T. Grance. The NIST Definition of

Cloud Computing. NIST Special Publication 800-
145 (Draft). Retrieved September 10, 2011, from
http://csrc.nist.gov/publications/drafts/800-145/Draft-
SP-800-145-cloud-definition.pdf.

[2] J. M. A. Calero, N. Edwards, J. Kirschnick, L. Wilcock, and
M. Wray. Toward a multi-tenancy authorization system
for cloud services. IEEE Security and Privacy, vol. 8, no. 6,
pp. 48-55. 2010.

[3] B. Tang, and R. Sandhu. A Multi-Tenant RBAC Model for
Collaborative Cloud Services. in PST, pp. 229-238, 2013.

[4] H. Takabi, J. B. D. Joshi, and G. J. Ahn, .SecureCloud:
Towards a Comprehensive Security Framework for Cloud
Computing Environments. In Proc. of the 1st IEEE
International Workshop Emerging Applications for Cloud
Computing, pp. 393-398, Seoul, South Korea, 2010.

[5] A. Tanvir, A. R. Tripathi. Specification and verification
of security requirements in a programming model for
decentralized CSCW systems. ACM Trans. Inf. Syst. Secur.
10(2) (2007).

[6] OpenStack cloud platform. http://www.openstack.org/.
Accessed: 2016- 10- 05.

[7] OpenStack Swift Architecture.
https://swiftstack.com/openstack-swift/architecture/.
Accessed: 2016- 10- 05.

[8] Y. Zhang, R. Krishnan, R. Sandhu. Secure information and
resource Sharing in cloud. CODASPY, pp. 131-133, 2015.

[9] Jin, X., Krishnan, R., Sandhu. A unified attribute-based
access control model covering DAC, MAC and RBAC.
DBSec 12, pp. 41-55 (2012).

[10] E. Yuan, and J. Tong. Attributed Based Access Control
(ABAC) for Web Services. ICWS IEEE Computer Society,
pp. 561-569. 2005.

[11] N. Pustchi, R. Sandhu. MT-ABAC: A Multi-Tenant
Attribute-Based Access Control Model with Tenant Trust.
NSS. pp. 206-220. 2015.

[12] R. Thomas. TMAC: A primitive for Applying RBAC
in collaborative environment. 2nd ACM, Workshop on
RBAC, pp. 13-19, Fairfax, Virginia, USA, November 1997.

[13] R. Thomas and R. Sandhu. Task-based Authorization
Controls (TBAC): A Family of Models for Active and
Enterprise-oriented Authorization Management. 11th
IFIP WorkingConference on Database Security, Lake
Tahoe, California, USA, 1997.

[14] O.H. Sejong, S.Park. Task-role-based Access Control
Model. In: Information Systems, 28(6): pp. 533-562, 2003.

[15] X. Jin, R. Krishnan, R. Sandhu. Role and attribute based
collaborative administration of intra-tenant cloud IaaS.
CollaborateCom. pp. 261-274. 2014.

[16] P. Biswas, F. Patwa, R. Sandhu. Content Level Access
Control for OpenStack Swift Storage. CODASPY. 123-126.
2015.

[17] P. Biswas, R. Sandhu, R. Krishnan. An Attribute Based
Protection Model for JSON Documents. In NSS. 303-317,
2016.

[18] D. Lin, P. Rao, E. Bertino, N. Li, J. Lobo, Policy
decomposition for collaborative access control, SACMAT
2008: 103-112.

[19] A. Madani, M. Erradi, Y. Benkaouz. Access Control in a
Collaborative Session in Multi Tenant Environment. 11th
International Conference on Information Assurance and

12
EAI Endorsed Transactions

on Smart Cities
02 2018 - 06 2018 | Volume 2 | Issue 8 | e3

C-ABAC: An ABAC based Model for Collaboration in Multi-tenant Environment

Security, Marrakech, December 2015.
[20] B. Tang, R. Sandhu, Q. Li. Multi-tenancy authorization

models for collaborative cloud services. in IEEE Inter-
national Conference on Collaboration Technologies and
Systems, 2013.

[21] M. A. Madani, M. Erradi, Y. Benkaouz. A Collaborative
Task Role Based Access Control Model. Journal of
Information Assurance and Security, vol. 11, no. 6, pp.
348-358, 2016.

13
EAI Endorsed Transactions

on Smart Cities
02 2018 - 06 2018 | Volume 2 | Issue 8 | e3

	1 Introduction
	2 Background
	3 Related work
	4 C-ABAC: The Collaboration ABAC model
	4.1 A collaborative tenant
	4.2 A business process
	4.3 AssignUser function
	4.4 UsedObject function
	4.5 A collaboration attributes based access control: C-ABAC model
	4.6 Example: C-ABAC Authorizations

	5 Implementation
	5.1 System architecture
	5.2 Enforcement model
	5.3 Evaluation

	6 CONCLUSION

