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Abstract

The harmful impact of air pollution has drawn raising concerns from ordinary citizens, researchers,
policymakers, and smart city users. It is of great importance to identify air pollution levels at the spatial
resolution on time so that its negative impact on human health and environment can be minimized. This
paper proposed the CNN-BILSTM-IDW model, which aims to predict and spatially analyze the pollutant level
in the study area in advance using past observations. The neural network-based Convolutional Bidirectional
Long short-term memory (CNN-BILSTM) network is employed to perform time series prediction over the next
four weeks. Inverse Distance Weighting (IDW) is utilized to perform spatial prediction. The proposed CNN-
BILSTM-IDW model provides almost 16% better prediction performance than the ordinary IDW method,
which fails to predict spatial prediction at a high temporal period. The results of the presented comparative
analysis signify the efficiency of the proposed model.
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1. Introduction
Air pollution has become a severe problem for many
developing countries in the world. India is one of
them (Brauer et al. 2019; Pant, Guttikunda, and Peltier
2016). With the rapid growth of urbanization, global
consumption of fossil fuels, and oil, air pollution can
cause significant health issues and affect human body
parts severely. High exposure to air pollutants and other
gases can cause a severe asthma attack and many more
diseases. Due to the poor quality of atmospheric air,
people are more vulnerable to suffering from asthma,
lung cancer, and respiratory infections. Commonly
seen air pollutants such as PM10, PM2.5, SO2, NO2
and O3 are more responsible for heart attack, lung
diseases, and respiratory problems. Million of people
are dying worldwide every year due to this type of
disease. Air quality in many Indian cities failed to
obey many international and national standards and
CPCB (Beig et al. 2020) effective pollution control
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strategies. According to the NCAP report, 43 smart
cities of India are falling under 102 nonattainment
cities of the country. More than half of the country’s
population is exposed to particle matter, which exceeds
the permissible limits. Recent global air pollution
research studies say that almost 600000 premature
death per year occurs in India due to ambient air
pollution level (Hama et al. 2020). Air pollution control
in India has become challenging due to the high impact
of meteorological factors and traffic emission (Sharma,
Kharol, and Badarinath 2010), which is very difficult to
analyze.

Among all the polluted cities in India, Odisha has
six nonattainment cities. It has been observed seriously
that many people of Odisha are suffering from chronic
diseases due to reduced air quality levels as it has
become one of the polluted states in India. From a
descriptive statistical analysis of health care data of this
state, it is found that 11951 the number of females and
8454 males per 10000 population of Khordha district
affected by acute illness during 2012-2013 caused by
air pollution. Moreover, Puri, Jagatsinghapur, Khorda,
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Nayagarh, Cuttack district people are mostly affected by
asthma disease, whose primary source is environmental
air pollution (Samal, Babu, Santosh Kumar Das, et al.
2019). Therefore, it became necessary to predict the
air pollution boundaries and its spatial distribution to
regulate it.

Concerning the severe negative impact of air pollu-
tion, the government has taken several smart initiatives,
also working with different research institutions to take
essential steps against ambient air pollution levels.
The government has also developed many air pollution
monitoring stations to collect air quality data, which
can be utilized to forecast air pollution levels for the
next hour, day, or week. The forecasting result pro-
vides timely information to take necessary prevention
in advance. Thus air quality modeling and monitoring
can help to mitigate the impact of air pollution. Several
techniques have implemented to predict air pollution,
i.e., deterministic, statistical, machine learning, and
deep learning models.

These are the widely used techniques for air quality
prediction. Commonly used deterministic methods are
Weather Research and Forecasting models (WRF) (Saide
et al. 2011), Nested Air Quality Prediction Modeling
System (NAQPMS) (Z. Wang et al. 2001). Getting
prediction results of these methods are expensive.
These methods utilize the default parameters, so
prediction results are also inappropriate in real-
time scenarios. Statistical models are another kind of
prediction model which overcomes the limitation of
deterministic methods by utilizing a large amount of
observed dataset. Statistical models such as ARIMA
(Yenidoğan et al. 2018), SARIMA (Samal, Babu, Santosh
Kumar Das, et al. 2019; Voynikova et al. 2015; M. H. Lee
et al. 2012; N.-U. Lee et al. 2018), General Additive
Models (GAMS), Geographically Weighted Regression
and Multi-layer Regression (MLR) (McKendry 2002)
have been utilized in air quality prediction. These
statistical models are based on data stationarity
and data linearity. These models assume the linear
relationship between the observed and predicted value
and incapable of handling data nonstationarity. So these
statistical models have limited predicted performance.

To address these problems, researchers and pol-
icymakers adopted machine learning models such
as Support Vector Machine, Random Forest (Zamani
Joharestani et al. 2019), Artificial Neural Network
(ANN) (Elangasinghe et al. 2014), Fuzzy Neural Net-
work (Zhou, W. Li, and Qiao 2017; Zahedi et al. 2014),
Linear Regression, and xgboost (Pan 2018; Zamani
Joharestani et al. 2019). Feed forward neural network-
based ANN has shown better air quality prediction
performance. Though these methods have shown better
accuracy in air quality prediction, these shallow neural
network models fail to analyze the correlation among
features of a multivariate air pollution dataset.

The time series pollution dataset has long term
dependency among all features. With the rapid devel-
opment of artificial intelligence techniques, machine
learning models no longer remain as the state of the
art models. Several researchers have conducted air
quality modeling using deep learning techniques and
have proven better prediction models than machine
learning in terms of temporal analysis of the air pol-
lution dataset. Deep learning models have shown better
performance in sequential modeling, human detection,
medical image classification, and many more appli-
cations. Deep learning models, i.e., Recurrent Neural
Network (RNN), LSTM, Gated Recurrent Unit (GRU)
(Du et al. 2019) models, have also played an essential
role in air quality prediction. Few researchers added a
Convolutional Neural Network (CNN) layer with the
shallow, deep learning models to capture the spatial
features in the available time-series dataset, which give
better prediction performance by analyzing both the
spatial and temporal characteristics.

Most of the existing prediction models predict air
pollution levels for the next hours for a particular
site. Predicting air pollution levels for the entire study
area for a long term period can add an advantage to
get better air pollution prediction results. Usually, air
pollution prediction performance for a long term period
gives lower accuracy than for the short term period.
This might be due to the small number of samples to
perform long term air quality prediction. Therefore, it is
essential to develop air pollution prediction models that
can effectively perform air pollution prediction for the
entire study area at a more significant time resolution.

To address this limitation, the current research study
developed a methodology framework that follows a
deep learning-based CNN-BILSTM layer for feature
analysis and time series prediction. On the top of
the CNN-BILSTM layer, the distance-based Inverse
Distance Weighting interpolation layer is developed to
perform spatial prediction for the entire study area at
a higher temporal resolution. So, predicting the spatial
variability for the next few days will surely help to
ensure public safety.

Following the introduction, the rest is organized as
follows. Section 2 represented related work. Section 3
and Section 4 include problem statements and study
areas, respectively. Section 5 and Section 6 describes
the proposed methodologies framework and results of
the implemented experiments. Section 7 consists of the
conclusion part of this research paper.

2. Related works
It is unreasonable and cost-effective to establish air
quality monitoring stations to analyze air pollution
levels at each corner of the study area. So, it has become
a crucial problem to identify the spatial distribution of
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air quality level and predicts its value for the entire
study area. To overcome this issue, the government has
launched satellites to monitor the air pollution level for
the entire area, which can also provide a full mapping
of atmospheric air pollution levels (Boys et al. 2014;
S. Chowdhury et al. 2019). Much research has been
conducted to predict air pollution levels using satellite-
derived remote sensing images. Though satellite can
capture the overall air pollution level for the entire
study area, it can not capture a particular location
air pollution level all the time. The captured remote
sensing images are also blurred in nature due to cloud
influence and movable satellites. Therefore, identify
the spatial distribution of air pollution levels could be
limited due to satellite-derived air pollution data.

Considering this limitation of air quality monitoring
using satellite data, few researchers experimented
with statistical spatial prediction models to analyze
air pollution levels spatially (Gulliver et al. 2011).
The spatial prediction model handles missing values
of air pollution data obtained due to unavailable
monitoring stations in a particular location. The
spatial prediction model includes several deterministic
models like Inverse Distance Weighting (IDW) and
geostatistics models like Ordinary Kriging (OK) (Feng
et al. 2015; Contreras-Ochando and Ferri 2016), Simple
Kriging (Cressie 1990), Universal Kriging (Vorapracha
et al. 2015), and Empirical Bayesian Kriging (EBK)
models (Gunarathna, Kumari, and Nirmanee 2016).
These models are efficient enough to predict air
pollution levels for each monitoring station and also for
unmeasured locations (Cressie 1990) but these models
have limited prediction performance due to default
predefined parameter settings.

To overcome these types of limitations of spatial
prediction models, recently, many research studies
have adopted machine learning techniques for spatial
prediction of air quality data, such as Radial Basis
Function (RBF) (Zou et al. 2015) and Artificial Neural
Network (ANN) (Nevtipilova et al. 2014). But their
prediction accuracy could be limited due to lack of
temporal analysis. Due to the absence of temporal
parameter analysis, these models can not predict the
spatial distribution of air pollution for different period
i.e., for short term and long term periods. Though the
discussed models are efficient enough to predict the
spatial distribution of pollutants for the current time,
not for the future, these are not so useful to make proper
decisions and safety measures in advance. So, it has of
great importance of temporal modeling for air quality
prediction.

To analyze the temporal component of air pollution
data set, several machine learning based uni-variate air
quality prediction models adopted. Linear regression,
Support Vector Machine (SVM) (Suykens and Vande-
walle 1999; J. Wang, Niu, and R. Wang 2017; Shaban,

Kadri, and Rezk 2016), Random Forest (RF) (Zhu et al.
2018), Decision Tree (DT) (Safavian and Landgrebe
1991), xgboost, Multi-layer Perceptron (MLP) are the
mostly used univariate time series prediction mod-
els. Uni-variate prediction models failed to analyze
the temporal and spatial components simultaneously.
These univariate models also do not support correlation
analysis among meteorological factors e.g., atmospheric
temperature, rainfall, wind speed (WS), wind direction
(WD), relative humidity (RH) and air pollution.

To get rid of this issue, deep learning techniques
evolved with the increasing demand of artificial
intelligence techniques. Initially, deep learning-based
Artificial Neural Network (ANN) experimented for air
quality prediction. ANN was originated in the 1970s.
Usually, it has one input, one output, and multiple
hidden states. In ANN, the weight calculation of input
data is treated as neurons for the next layer. However,
when it comes to handling time series data set, the
ANN network is unable to handle longer sequence
data, and can not relate the current and future data
with historical data. To resolve these issues, research
scholars developed a Recurrent Neural Network (RNN)
(Fan et al. 2017), which is based on the ANN network.
It takes the output of the first layer as input to the
next layer, so it is able to transfer weight as a neuron.
However, when it comes to dealing with more extended
sequential data, it can not deal with them. As sequential
time series air pollution data has a longer dependency
on past observation due to effect meteorological factors.
It is better to use a model that can deal with this
type of issue. But RNN can not capture the long term
dependency of long sequential air pollution data. It is
also very challenging to train the RNN model due to
gradient vanishing and exploding issues. To address
these problems, Hochreiter proposed LSTM model
(Fu, Z. Zhang, and L. Li 2016; B. Wang, Kong, and
Guan 2019) in 1997, and Kyunghyun developed Gated
Recurrent Unit (GRU) (Fu, Z. Zhang, and L. Li 2016; Tao
et al. 2019) network to handle long term dependency
in sequential time series data in 2014. Though the
GRU model requires less parameter and less time to
train, LSTM is proved as a more accurate prediction
model for longer sequential data. It is also seen that a
combination of multiple models has better prediction
performance than shallow prediction models. Chiou-
Jye et al. (Huang and Kuo 2018) presented a Spatio-
temporal CNN-LSTM model to estimate air quality
prediction level, which can capture both spatial and
temporal features available in time series pollution
dataset. It can also capture long term dependency on
the air pollution dataset. It combined the wind speed,
rainfall, and PM2.5 concentration information to train
the model for air pollution prediction. Haofei Xie et al.
(H. Xie et al. 2019) developed the CNN-GRU model
, which can automatically extract the spatiotemporal
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components of multidimensional and multi-station
data. It also analyzes the impact of meteorological
factors on air quality concentration levels for short term
air pollution prediction.

Despite the memory capacity, the self-learning ability
of neural networks, these models failed to capture
the dependency of historical pollution level and
the supporting information from nearby monitoring
stations. Therefore, unable to analyze the temporal
trend and spatial correlation simultaneously. Based on
the above survey, the present work tried to predict
air pollution levels at a high spatial and temporal
resolution without using real-time sensors everywhere
of the study area to mitigate the limitation of existing
work and take necessary preventive action against the
dangerous condition of the air pollution.

The main contribution of this research paper can be
summarized as follows,

• Traditional interpolation techniques support spa-
tial prediction for the present time. In contrast,
the CNN-BILSTM-IDW model utilized past infor-
mation to predict the spatial distribution of air
quality for the future at better accuracy.

• The CNN-BILSTM-IDW model can effectively
perform spatial prediction of PM10 level over a
long period, i.e., for the next four weeks.

• The proposed spatial-temporal prediction method
can effectively solve data imputation problems
for air quality modeling by recovering missing
attributes values.

• ArcGIS online is utilized to develop mobile and
web applications to access timely information.

3. Problem Statement
Much of the pollution data available for different
locations are sparse. Hence, there is a requirement for
predicting continuous data from the available sparse
dataset. In order to predict the interpolated surface
with continuous pollution levels from variable data of
different geolocations, the proper data analysis should
be done with the efficient prediction model.

The mathematical formulation of spatial interpola-
tion can be expressed as follows: Estimate the value of
regionalized variable zi , {zi ∈ Rn|i = 1, 2, 3.....N }, at dis-
crete points mi = {(x1

i , y
1
i ), (x2

i , y
2
i ), ..(xdi , y

d
i )}, {mi ∈ R|i =

1, 2, 3...N } by considering N number of different exist-
ing neighborhood point values inside searching neigh-
borhood area (r) with d-dimensional space. Weight (w)
assignment will be done based on their distance from
neighborhood points or autocorrelation among those
points which signifies the influence of neighborhood
points in estimation of a particular point value. Weight

assignment is treated as function (f ) such that,

f : Rn → R
f (mi) = zi

4. Study area
Odisha, one of the polluted state of India (Tripathy
and Dash 2018; Nayak and I. R. Chowdhury 2018), is
selected as the study area for the research activity. It
is reported that most of the industrial estate and smart
cities of this state do not fulfill the air quality standard
decided by the Central Pollution Control Board. The
state is having very few numbers of continuous air
pollution monitoring stations controlled by CPCB. Most
of the sites are manual air quality monitoring stations
that collect air quality data on the daily granularity
level. The past observation data includes air quality
dataset from 2005 to 2015. The data set contains PM10,
PM2.5, SO2, NO2 air pollutant details with sampling
date, and sampling location geographical attributes.
It has seen from the analysis that PM10 pollutants
have maximum air pollution contribution among all
the contaminants in Odisha. So PM10 pollutant value is
considered for experimental purposes in the study area.
The figures are in one-millionth of a gram unit. The
dataset includes 31 monitoring sites, but due to a large
number of missing values, the research work considered
only 16 monitoring sites for evaluation purposes.

5. Experimental Method
To validate the usefulness of the proposed methodology
framework, ten years (01.01.2005-28.12.2015) dataset
are collected from Odisha State Pollution Control
Board (Odisha 2017, Oct 16; Samal, Babu, and Santos
Kumar Das 2020; Samal, Babu, Santosh Kumar Das,
et al. 2019). After data collection, data normalization
and linear interpolation techniques are applied in
the prepossessing step to get useful information
for training the model. 90% of data are used for
training purposes, whereas other remaining 10% are
utilized for testing purposes. Adam and Mean Squared
Error are implemented as optimizer and loss function
respectively to train the proposed model. Each step
of the proposed framework is presented in Figure 1.
Each layer of the proposed methodology framework is
discussed in the below subsections.

5.1. 1D ConvNet for feature learning
The 1D ConvNet (O’Shea and Nash 2015) is usually
used for feature learning. It allows us to extract features
from inputs and improve data efficiency by reducing
data dimensionality. The weight sharing feature of
1D ConvNet minimizes the number of parameters of
the multivariate time series dataset by increasing the
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Figure 1. The proposed CNN-BILSTM-IDW architecture.

learning of the model. A learned pattern at a particular
point of a sequence can be captured at other locations
due to the same input transformation at each point. So,
the change in the local trend of multivariate features
can be determined. After completion of 1D ConvNet,
the max-pooling operation is conducted to extract
the maximum value of sub sequences of the dataset
further to reduce the dimensionality of the input data
source. The CNN layer performs three operations i.e.,
convolution, activation, and pooling respectively, which
can be computed as below (Du et al. 2019),

cln =
∑
m

xl−1
m ∗W l

mn + bln (1)

xln = ReLU (cln) (2)

xln = Flatten(xln) (3)

xl+1
o = FCL(W l+1

on x
l
n + bl+1

o ) (4)

The convolution layer can be modeled using Equation
1-2 where * , W l

mn, bln represent convolution oper-
ator, filter and biases respectively. ReLU function is
implemented as an activation function. xl−1

m and cln are
the input, output vector to a convolution layer. The
proposed architecture used two convolution layer for
feature learning; l is used as the involved layer. The
output of the preprocessing step is utilized as input
to the CNN layer, where the learned representation of
each segment is used as input to the next layer to model
a hierarchical representation of features. After convo-
lution operation, a flatten layer is added to transfer
the hierarchical features representation into a feature
vector. Then a fully connected layer is added to reduce
the dimensionality of the final output feature vector.

5.2. Long Term Temporal Modeling
The temporal modeling layer’s goal in the proposed
architecture is to predict PM10 concentration for the
next 28 days in December 2015. The dataset for this
particular duration is used as a test set and validates
the model by comparing the prediction results of 28
days of December with the test dataset. In the temporal

modeling layer, the input is the feature vector extracted
from the CNN layer. The output of the CNN layer
is treated as an input for Long Short Term Memory
(LSTM) network to conduct temporal modeling of air
pollution data. LSTM network is a long short term
memory network that is suitable for dealing with the
longer sequences time series dataset. LSTM differs from
RNN due to the addition of a processor, which is
utilized to judge the usefulness of the information. The
structure of this processor is known as a cell. Usually,
LSTM contains three gates in a cell, i.e., input gate,
forget gate, and output gate.

The forget controls selectively how much information
need to forget from the current cell. The output gate
computes the output information, i.e., predicted PM10
concentration level. Input, output and forget can be
implemented by using the following formulas,

it = σ (uih(t−1) + wixt + bi) (5)

ct = ft � c(t−1) + it � tanh(uch(t−1)) + wcxt + bc) (6)

ft = σ (uf h(t−1) + wf xt + bf ) (7)

ot = σ (uoh(t−1) + woxt + bo) (8)

ht = ot � tanh(ct) (9)

where σ is the element-wise activation function. it ,
ft , ot are the input gate, forget gate and output gate
respectively. ct , ht represents cell state and hidden state
vectors. ui , uc and uo represents weight metrics for
hidden state ht , whereas wi and wc, wo and wf are
the weight matrices of other gates. bi , bf , bo are the
bias vector for input gate, forget gate and output gate
respectively. The basic structure of LSTM is presented
in Figure 2.

Figure 2. LSTM Structure

This paper utilized the Bidirectional LSTM (BILSTM)
model (Verma et al. 2018; Graves and Schmidhuber
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2005; Sun et al. 2019), which exhibits bidirectional
properties of the LSTM network, where both past
and future data play an important role in time
series analysis. Two LSTM units stacked over each
other in the BILSTM model (forward and backward).
This model is capable enough to handle long-term
dependencies without knowing prior information about
past and future data. The stacked LSTM layer helps to
capture hierarchical features in the temporal domain
very efficiently. The output of each BILSTM layer fed
into a fully connected layer. This is usually a dense
presentation. This process continued for each time step.
The output of the final timestamp will give the time
series prediction results for each monitoring site. So
implementing this model could provide better time
series prediction accuracy. The basic structure of the
BILSTM unit is shown in Figure 3.

Figure 3. BILSTM Structure

It propagates the data through both directions i.e.,
called forward propagation and backward propagation.
The forward propagation of time series data in BILSTM
layer where time t ranges from 1 to T , can be formulated
as below,

−→
it = σ (−→ui

−−−−−→
h(t−1) + −−→wi −→x t +

−→
bi ) (10)

−→ct =
−→
ft � −−−−→c(t−1) +

−→
it � tanh(−→uc

−−−−−→
h(t−1) ) + −→w c

−→xt +
−→
bc )
(11)

−→
ft = σ (−−→uf

−−−−−→
h(t−1) + −−→wf −→xt +

−−→
bf ) (12)

−→ot = σ (−→uo
−−−−−→
h(t−1) + −−→wo −→xt +

−→
bo ) (13)

−→
ht = −→ot � tanh(−→ct ) (14)

The left arrow denotes the forward process. During
backward propagation of time series data in BILSTM
layer time, t ranges from T to 1. The backward

propagation operations, represented by the right arrow,
can be formulated using Equation 15-19.

←−
it = σ (←−ui

←−−−−−
h(t−1) +←−w i

←−xt +
←−
bi ) (15)

←−ct =
←−
ft �←−−−−c(t−1) +

←−
it � tanh(←−u c

←−−−−−
h(t−1) ) +←−−wc←−x t +

←−
bc )
(16)

←−
f t = σ (←−−uf

←−−−−−
h(t−1) +←−−wf ←−x t +

←−−
bf ) (17)

←−ot = σ (←−uo
←−−−−−
h(t−1) +←−−wo←−x t +

←−
bo ) (18)

←−
ht =←−ot � tanh(←−c t) (19)

The final hidden element ht can computed by using
Equation 20

ht =
−→
ht �

←−
ht (20)

where
−→
ht ,
←−
ht denote forward out and backward output

respectively.

5.3. spatial modeling
Monitoring air quality concentration level at each
corner of a location and implement those data
for further analysis to determine the air pollution
impact on public health in a particular area are the
essential steps in government initiated smart cities.
The Indian government could establish a few air
quality monitoring stations due to the high construction
cost of monitoring sites and low government budget.
Therefore, it is challenging to predict the air quality
level at each location of a study area. It arises the
necessity of spatial modeling of air pollution for air
quality prediction. It helps to trace the harmful effect
of pollution over a particular location. Identifying the
spatial distribution of pollutant concentration for the
present time may not be useful all the time; instead,
it will be helpful if it can be predicted for the future.
Hence, the IDW layer is added to the top of the
CNN-BILSTM temporal modeling layer. CNN-BILSTM
layer predicts air pollution levels for the existing 16
monitoring sites for the next four weeks of December
2015. Then the IDW layer of the model could predict
the spatial distribution of pollutants by utilizing that
predicted output of the CNN-BILSTM layer.

This paper used a distance-based spatial interpola-
tion, IDW (Bhunia, Shit, and Maiti 2018; Gorai, Tchoun-
wou, and Mitra 2017; X. Xie et al. 2017; Contreras and
Ferri 2016) layer on the top of the temporal prediction
layer to get the prediction value of each spatial distri-
bution. It can be formulated as follows:

Ẑ(st0 ) =

∑N
i=0wisti∑N
i=0wi

(21)
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where, Ẑ(st0 ) is the predicted value for unsampled
point st0 , wisti is the weight function and and sti is
the sampled point value. In case of IDW, weight is the
function of distance and can be estimated as follows:

wi =
1

d(st0 , sti )
p (22)

Where the distance between measured point sti and
unmeasured point st0 denoted as d and the power
factor as p. As closer points often have similar
characteristics in space as per the first law of geography,
those neighborhood points have more influence on
interpolated point st0 values. The power value signifies
the impact of neighborhood points on the interpolated
point. The higher the power values, the more is the
influence of neighborhood points on unsampled ones.

The pseudocode of the CNN-BILSTM-IDW algorithm
is presented in Algorithm 1. The first part of the
algorithm is meant to perform time series modeling
followed by linear interpolation to handle missing
values of the dataset. The second part of the algorithm
conducts spatial modeling using IDW interpolation.

Algorithm 1 Spatio-temporal prediction algorithm for
PM10

Input: Air quality pollutant time series dataset
PM = [PM1, PM2.....PMT ], latitude and

longitude ( x,y), data sampling time t
Output: Pollutant prediction map

Initialization: Training process of CNN-BILSTM
model with parameters φ.

1: for 1 ≤ x, y ≤ N do
2: for t = 1 to T do
3: if PM has missing value for duration t then
4: Conduct linear interpolation
5: else
6: PMt+d ← (x, y) prediction of PM10 level for

N number of monitoring sites by CNN-
BILSTM model.

7: return PMt+d
8: end if
9: end for

10: end for
11: Generate spatio-temporal prediction map of PM10

for study area:
12: if (m, n) are the latitude and longitude of non-

monitoring sites then

13: return P̂Mt+d
m,n ←

N∑
x,y=1

w(x, y) ∗ PMt+d
x,y

14: else
15: return PMt+d

x,y

16: end if

6. Results and Discussions

To evaluate the performance of the CNN-BILSTM-IDW
model, we compared the performance of this model
with ordinary IDW (Ya’acob et al. 2016), Exponential
Kriging (EK) (Son, Bell, and J.-T. Lee 2010), Gaussian
Kriging (GK), Spherical Kriging (SK) (Gong, Mattevada,
and O’Bryant 2014), Universal Kriging (UK) (Son,
Bell, and J.-T. Lee 2010), Radial Basis Function (RBF)
(Bhunia, Shit, and Maiti 2018) and Empirical Bayesian
Kriging (EBK) (Krivoruchko and Gribov 2019) models
as shown in Table 1. Root Mean Square Error (RMSE)
and Mean Error (ME) indicators are utilized to evaluate
the performance of the CNN-BILSTM-IDW model.
RMSE and ME can be calculated using Equation 23-24,

RMSE =

√√√
1
n

n∑
i=1

[
Ẑ(xi) − Z(xi)

]2
(23)

ME =
1
N

n∑
i=1

[
Ẑ(xi) − Z(xi)

]
(24)

where, Ẑ(xi) is the predicted value at location (xi),
Z(xi) is the observed value at (xi) and N are the
total number of monitoring stations. RMSE value of
IDW, EK, RBF, GK, EBK, SK, UK, CNN-BILSTM-IDW
model reduced (25.94), (24.64), (24.62), (24.48), (22.44),
(24.38), (24.37), (21.71) respectively. Table 1 shows
that the proposed spatio-temporal prediction model has
better prediction performance than the other spatial
prediction models.

Table 1. Model cross validation

Method type Model RMSE ME
Deterministic IDW 25.94 4.77
Geostatistics EK 24.64 3.73
Geostatistics GK 24.48 3.54
Geostatistics SK 24.38 3.52
Geostatistics UK 24.37 3.52
Geostatistics EBK 22.44 3.53
Machine learning RBF 24.62 3.80
Deep learning CNN-BILSTM-IDW 21.71 3.50

Prediction maps generated by CNN-BILSTM-IDW for
the four weeks of December 2015 are represented in
Figure 4-7. Color scale indicates the variation of air
pollution levels over the study area.
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Figure 4. First-week prediction map. Spatial distribution of
average PM10 value in the first week of December 2015.

Figure 5. Second-week prediction map. Spatial distribution of
average PM10 value in the second week of December 2015.

Figure 6. Third-week prediction map. Spatial distribution of
average PM10 value in the third week of December 2015.

Figure 7. Fourth-week prediction map. Spatial distribution of
average PM10 value in the fourth week of December 2015.
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Few conclusions are derived from the above predic-
tion maps of Odisha:
As presented in Figure 4-7, the eastern part of Odisha
is predicted as a highly polluted area during Decem-
ber 2015, where PM10 concentration ranges from 67-
132(µg/m3). That might be due to improper human
activity, biomass burning, coal fields, and road trans-
port emissions. It can be seen that the last week of
December has the highest concentration level than
the previous weeks. The results prove that the CNN-
BILSTM-IDW model predicts air pollution levels not
only for the current time but also for the future and
the entire area by solving data imputation issues. It
can be essential information for smart city users to take
necessary preventive steps.

Figure 8-10 presents the user-friendly designed
mobile application and web application to show the
spatial prediction map of PM10 at a different period
in advance. The spatial prediction maps are generated
using the proposed CNN-BILSTM-IDW model. These
user-end applications can be accessed from anywhere
to get alert about the air quality level. These user
applications are developed by Web App Builder
of ArcGIS software, which provides location-based
service accessibility. These services can also be used
to access location information of treatment facilities
and emergency services (Mbuh et al. 2020). The geo-
enabled, IoT based dynamic end-user applications
facilitate the decision-making process by improving
situational awareness.

7. Conclusion
To conclude, this research paper proposed a new
methodology framework that combines both deep
learning and geostatistical approach to improve spatial
prediction accuracy at a larger temporal granularity.
The neural network layer improved the temporal
prediction accuracy, whereas the IDW interpolation
layer improved the spatial prediction accuracy in the
study area.

This research work is conducted using only PM10
pollutant data due to proper data unavailability.
Analyzing the influence of meteorological and traffic
parameters on the ambient air quality could further
improve the model prediction performance. In the
future, if more data will be available, then using
multivariate interpolation technique is expected to
improve the prediction results.
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