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Abstract

A spider map is a type of schematic map that allows one to answer questions like "From where I am, where
can I go?", as it provides only the essential information for a given geographical area (hub), from which lines
emerge, whilst keeping the geographic context. They are often designed manually for a limited set of locations,
thus reducing its widespread adoption. Moreover, spider maps should conform to several design constraints,
which turns the automated generation into a complex problem. Optimisation techniques have been applied to
this problem, although existing solutions are time costly and require heavy computational power. This paper
presents an approach to automatically generate feasible spider maps within a short execution time based on
an algorithm that adapts state-of-the-art methods, producing adequate quality maps to be manipulated in
interactive media, based on the areas selected by the user. We report the results of a case study for areas in the
city of Porto, Portugal.
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1. Introduction
Major cities have complex public transport systems that
are part of citizens’ daily commuting. Such systems
ought to be encouraged as an alternative to private
transport. Public transport maps provide simplified
representations of their corresponding network infras-
tructure, thus they should be of easy interpretation,
aiming to facilitate the user experience and to increase
public transport ridership.

Public transport maps are often represented by
schematic maps, since they fulfill the need for simple
and effective representation of complex networks [1],
with indication of the available services and navigation
alternatives. Schematic maps are subject to a number
of generalisation and simplification processes so as to
translate the mental representation of the network,
depicting the services and commuting possibilities
within the map range. A specific type of schematic
map is the spider map, which can be used to represent
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complex areas like bus networks in city centres. For
instance, Figure 1 depicts a spider map for the city of
Porto, Portugal which depicts the surroundings of St.
John’s Hospital (Hospital de São João).

Spider maps allow one to answer questions like
"From where I am, where can I go?", as they indicate the
travel possibilities from a small geographical area. They
are useful during the pre-planning state of a trip as it
provides better geographical context by eliminating the
visual clutter derived from other information available
in the map that is not relevant to that area, in contrast
to schematic maps. The central element of a spider
map is the hub – a rectangular geographic map –
that introduces the spatial context from which the
schematic lines emerge. The automatic construction of
spider maps is a complex problem, as it is subject to
a number of design constraints that should be obeyed,
e.g. line angles, location of lines emerging from the hub,
spatial constraints due to real-world features like rivers,
bridges, etc.

Although spider maps are effective for providing
passengers with public transport information, some
factors impact their widespread adoption in transport
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Figure 1. The spider map for the St. John’s Hospital (Hospital de São João) transport hub in Porto, Portugal. The map’s centre
contains a tile image that represents the location of several bus stops (the hub). Several lines emerge from the tile’s streets. [2]

networks. Firstly, the generation of such maps is
frequently manual, and depends on the expertise of
designers. The related studies provide a number of
methods and techniques to automate the generation
of spider maps, but current solutions based on multi-
criteria optimisation algorithms are time-costly and
require heavy computing power. Secondly, as an
implication, spider maps are created for a few major
locations of a city only. We argue that such a limitation
undermines the potential of spider maps, as they
can be useful to passengers from any location of a
transportation network served by various lines.

This paper proposes an approach to generate feasible
interactive spider maps within a small timeframe, based
on an algorithm that modifies and adapts some of
the state of the art techniques. The goal is to tackle
the complexity of the problem and present viable
solutions with short execution times and using less
computational power. Thus, it aims at simplifying
the traditional spider map generation process and
potentially make an impact on the use of spider maps.
Bringing interactive capabilities to spider maps allows
citizens to actively explore their transport network
and a have map that is tailored to the desired
geographic area, whilst introducing new challenges for
generation of such maps within an acceptable time
frame, especially if they are available for interactive
displays like smartphones and tablets, and kiosks
placed in stations and streets. Users can leverage the
potential of the proposed approach to generate spider

maps for virtually any city area, and become aware of
not only the nearby stops, but how far can he go from
that area by boarding one of the available services.

This paper extends the work described in [3] with
the following contributions: a more comprehensive
description of the state of the art; each phase of
the proposed algorithm is described in increased
detail, as well as the user stories that guided the
proposed approach, and other practical aspects of
the implementation architecture. The prototype was
validated with another set of geographical areas of the
city of Porto.

The remaining of this paper is structured as follows:
Section 2 defines the fundamental concepts related to
spider maps, and describes the state-of-the-art methods
for their generation. Section 3 details the proposed
algorithm. Section 4 describes the architecture of the
prototype, which is evaluated and discussed in Section
5. Section 6 concludes this paper.

2. Related work
Transport maps support complex public transport
networks by providing essential information, e.g.
routes, stops and points of interest [4]. An important
process associated with these maps is schematisation,
where certain aspects are emphasised and unimportant
information is removed.

There are several methods for guiding this process.
For instance, line generalisation methods, such as
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simplification, remove some line points, keeping only
those that ensure the overall line shape; exaggeration
amplifies certain portions of objects; enhancement
elevate the message and importance of certain features
[1]. Another technique adapts the initial map (where
points correspond to geographical locations) to a grid
[5]. In this technique, line points are moved to grid
intersections, while ensuring certain constraints, such
as orientation and distance between points. The result is
a map with a simpler overall shape, where incremental
optimisation processes can be applied to improve the
result.

Nonetheless, adapting maps to a grid can lead to
very saturated areas, for instance, representing complex
centre areas that have lines ending on city outskirts.
Sarkar and Brown [6] proposed a method denominated
fish-eye that applies different scales throughout the
map, thus enabling magnification of crowded areas [7].
This is a Focus+Context visualization technique that aids
the schematization process, as it emphasises important
information while keeping the global context [8].

Spider maps are an effective means of providing
information about public transport networks, although
few studies addressed this type of maps, in particular
how to automate their generation. The majority of the
developments in this area relate to the work of João
Mourinho [8] in the development of techniques to
automate the generation of spider maps.

Spider maps are based on spider diagrams [9]
and combine elements from both geographical and
schematic maps. These maps are often used to
represent complex public transport network, for
instance, bus networks in a city centre, and provide
passengers information in the pre-planning stage of
trips, answering the question “From where I am, where
can I go?” [10].

These maps are characterised by a central area, a
hub which represents the geographical context [11].
The schematic lines that represent the network routes
emerge from the hub. Along with the map, a route
finder table is also provided to indicate the direction
and route that are associated to each stop within the
hub.

The hub is generally depicted by a rectangular shape
and details a geographic map of the location, proving
the spider map a better spatial context. Around there
are located the points that connect the route lines with
the stop inside the hub. This corresponds to the points
where lines emerge from, hence, their location in the
frame should consider route orientation and the stop
location within the hub.

Similar to schematic maps, the schematic lines in
the spider map do not follow the geographic layout,
since they are the result of several simplification and
displacement operations [8]. Moreover, spider maps
adopt the concept of map point, which describes a

relevant point in the map, for instance, stops along the
line route, located at a certain canvas coordinates that
do not relate to the real geographical location.

Spider maps’ schematic lines are defined by a set
of segments and map points, some of them shared
with different lines, and a start and ending map point.
Shared segments are drawn parallel and lines only
follow 0, 45 or 90 degrees orientation angles. Segment
nodes relate to route stops, however, some stops may
be grouped together if they are geographically closed.
Moreover, to increase spatial awareness, geographical
accidents, such as rivers or seashore, can be added to
the map [8].

Spider maps have several other design constraints
that should be considered in the generation process. For
instance, lines have a certain colour, usually defined
by the transport provider, and position of stops and
line labels. Similar to schematic maps, spider maps
generation is mostly a manual process. However, several
techniques for simplification and generalisation can
be borrowed from the schematic process. Hence, João
Mourinho [8] depicts a set of eight guidelines that
spider maps should follow:

1. Simplification of lines: Generalise the line as
most as possible, while maintaining overall shape.

2. Group map points: If several map points are
very close together and have similar names, most
likely they are related; hence they can be grouped
together. This step must be taken carefully, as it
can eliminate relevant map information.

3. Zoom in crowded areas: Emphasise crowded
areas by zooming, which increases readability.

4. Remove or simplify environment features: For
instance simplify the shapes of geographical
accidents.

5. Group segments that have the same start and
end nodes: draw lines parallel if the segments
share the same start and end nodes.

6. Simplicity over completeness: depict only the
essential elements on the map

7. Symbol shapes and colours: use different sym-
bols to emphasise or deemphasise certain map
characteristics.

8. Emphasise important aspects: direct the user’s
attention to the most important map aspects, for
instance, emphasise the hub to enable a better
spatial context to the users.

2.1. Automatic generation of Spider Maps
To the best of our knowledge, very few studies
tackled the challenge of automating the generation of
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Figure 2. Example of spider map model presented in [8]

spider maps. João Mourinho [8] proposed a method to
automatically generate a spider map for a hub location,
given a transport network with the same characteristics
described above. Since the current general generation
process relies mostly on the design expertise and
evaluation, the goal is to automatically generate a
spider map that preserves topology and ensures the
aforementioned restrictions (e.g., line angles).

An important solution this method provides is a
complete model representation for the spider map. The
spider map SM is defined as SM = (P, V, H, E, L, A, Gr),
where P is a set of map points, V the vertices, H the
hub, E a set of direct edges, L a set of lines, A a set of
angles and Gr a set of geographical restrictions. Figure
2 depicts a spider map represented by this model.

The initial algorithm state is a geographical accurate
map, i.e., map points correspond to the accurate
(or similar) geographic location, then a multi-criteria
algorithm is applied where the decision variables
are the spatial coordinates of each vertex and point
belonging to the spider map. The goal is to minimise the
objective function while ensuring a set of constraints
and design guidelines. Furthermore, two types of
constraints are defined: soft constraints mostly related
to visual qualities and should be followed if possible,
and hard constraints that ensure a feasible solution and
should be enforced. The objective function translates
how soft constraints are followed, i.e., if all soft
constraints are completely respected, then the objective
function is zero, which means the solution is “optimal”.

The solution successfully attained the proposed
goals. However, this is a complex multi-criteria
optimisation problem with great computational effort.
For instance, for the default parameters results were
obtained in execution times around 5 seconds for
simpler maps and 12 seconds for more complex

solutions. However, when testing the adjustment of
parameters to increase quality, such as the search radius
for possible map point displacements, the execution
times obtained increased significantly. The quality of
the obtained results increased and execution times
averaged 14731 seconds [8]. Thus, for a dynamic mobile
environment, which has less computational power and
should produce results in a shorter time span, this
solution needs some adaption, for instance, discarding
some constraints.

Ribeiro et al. [12] also proposed a solution to
automatically generate a schematic map. Even though
it does not fully integrate all the constraints needed for
a considerable feasible spider map solution, it proposes
a fast solution for the schematic portion of spider maps,
which can be an interesting technique for dynamic
mobile problems.

The proposed approach is based on the application
of force-direct algorithms. Force-direct algorithms are a
class of graph algorithms that aim at drawing graphs
in an aesthetically pleasing way. Also, this algorithm
is computationally lightweight and relatively quick to
implement, providing acceptable results, though not
optimal. The algorithm’s goal is to position nodes so
that all edges are approximately equal length, there are
as few crossings as possible and objects are distributed
uniformly. The method is divided in three steps: initial
dataset manipulation, force-directed iterative loop and
final adjustments.

Force-directed algorithms apply forces to move nodes
to better positions. The algorithm ends when the
forces have reached an equilibrium. This approach uses
Coulomb’s and Hooke’s laws to represent, repulsion
and attraction forces between nodes, respectively.
Additionally, the algorithm implements a set of
assumptions and rules, such as two lines intersect if at
least a pair of edges intersect, or the flow of execution is
dependent on the parametrization.

An important step in this approach is the
parametrization, since it influences the quality of
the final result. Several parameters are defined,
concerning a threshold distance in which nearby nodes
are merged, definition of k value constant for Hooke’s
and Coulomb’s law and design restrictions, such as
pinning start nodes that can be altered to improve the
result map.

To test and evaluate the solution, a prototype and
an evaluation function were created. Several tests were
done with different parameters and total number of
nodes. In general, with an average of 15.08 seconds,
95 nodes, 5 lines and 129 edges. The evaluation
function combines criteria, such as displacement from
original position, line length variation and line crossing
variation.

This approach presents relatively fast results and is
able to simplify lines, merge close points and present
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an aesthetic schematic representation, while preserving
the map’s topology. However, this solution does not
consider many constraints of those spider maps: lines
only follow 0, 45 or 90 degree orientations, merge
stations (nodes) typically have close names and share
the same geographic space and routes that share the
same segment are parallel. Furthermore, there is no
explanation on how the initial graph is obtained and
hub integration is also not considered. Finally, results
are linked with parametrisations that are manually
provided and change depending on the initial graph.

Finally, in [11] an interactive application was
developed that enable the user to select the area of
the hub and then the map was produced automatically.
Even tough the resultant map could not be designated
as a strict spider map representation, it provides a
starting point for adapting automatic generation of
spider maps with interaction techniques.

2.2. Summary
Transport maps provide passengers an easy way of
understanding the underlying network and wayfinding
in cities. Spider maps are a type of transport
map that combine elements from both geographic
and schematics maps. They provide all the travel
possibilities from an area (hub) and are typically used in
busy city centres where the networks are usually denser.

Such maps are not widely used in comparison
with other existing map types. This may be due
to the fact that spider maps are mostly manually
generated and still rely on the expertise of the designer
and stakeholders. Notwithstanding, there are several
techniques applied to line generalisation in schematic
maps that can be adjusted to assist the spider map
generation process.

Moreover, there is not much literature focused on
spider maps, and the majority of the efforts made for
automating the spider map generation process were
done by João Mourinho [8]. Mourinho’s solution is able
to successfully produce spider maps, however, the goals
focus on the quality over performance, making this a
complex solution with great computational effort.

3. Automatic generation of spider maps
3.1. Problem definition
The spider map generation process is a complex
problem, since these maps have several design
constraints as depicted in Section 2. Additionally,
the process is mostly done manually, relying on the
expertise of the map maker. Even though some current
solutions can automatically generate spider maps, they
are complex and time expensive for producing results.

Thus, we aim to develop an algorithm capable of
producing a spider map by creating, adapting and

modifying existing techniques. The solution must take
as input the spider map hub area selected by the user
and generate as result a viable spider map. A result is
considered viable if it satisfies the design restrictions
of spider maps aforementioned in Section 2. The goal
is to develop a prototype that integrates the developed
algorithm capable of producing spider map results in
short execution times, since it will affect the prototype
usability.

Along with automating the spider map generation
process, the prototype should also integrate interaction
and visualisation techniques, taking advantage of the
benefits of digital maps over the traditional form
and thus potentially achieve better usability. Such
techniques can be integrated before generating the map,
for instance, during the hub selection process, and when
visualising the map result, e.g. different levels of zoom
and clickable items for additional information.

The developed prototype is focused on Porto city and
all the public transport data was provided by OPT1.
The user is presented a geographic map of Porto for
choosing the hub area that will be used as input for
generating the spider map. Section 3.2 describes the
algorithm for generating a spider map solution.

3.2. Map generation algorithm
The algorithm comprises a sequence of steps that
apply displacement operations, to ensure conformance
to the spider map restrictions. The pseudo-code of
the several steps can be found in Appendix A. The
major restrictions are octilinear angles and maintain
the topological relations, hence the biggest challenge
of the algorithm is to find a location for every map
point that ensures octi-linearity, while maintaining the
topological relations between points.

Beforehand, the algorithm needs as input the
coordinates of the hub, defined by the top left and
bottom right corners. These geographical coordinates,
i.e., a set of latitude and longitude, will allow querying
the server for all the data needed for the spider map
generation process. Thus, the server will provide all
information related to stops inside the hub and the
lines that will belong to the spider map. The lines
are defined by a sequence of map points, already
established by the database and these will be the points
taken into consideration in the algorithm. The goal of
the algorithm is to find a location for all map points so
that lines follow the spider map design constraints.

Nonetheless, the map points returned from the server
are defined by geographic coordinates of their accurate
location. Hence, map points need to be projected onto
the map canvas, being defined by an x and y instead of

1http://www.opt.pt/
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Figure 3. Determination of where lines should emerge from the
hub. After hub insertion, the map state is depicted as in the left.
The hub on the right demonstrates the calculation of the emerging
points and the elimination of segments inside the hub.

latitude and longitude. The map canvas is defined as an
SVG using the D3.js tool and map points coordinates are
projected using the Mercator projection centred at the
hub centre. The projection process uses the D3.js Geo
plugin that provides map projection features.

At this stage, map points have a similar location to
their geographic representation, so lines also follow an
approximation to the real geographic form. The next
step is to insert the hub, defined by the four corners
coordinates that represent the boundary area. These
coordinates have also been projected so they are defined
by an x and y in the canvas. After the hub insertion,
the following step is to determine where lines should
emerge from the hub and eliminate line segments inside
the hub. Therefore, the emerging points, i.e., the points
where lines emerge from the hub, will be determined
by the intersection of the line segment with the hub.
This intersection point represents an approximation
of the orientation and path of the line, since the
hub is a geographical representation of the area and
map points are still located at their original positions,
i.e., a close representation of the geographic location.
Additionally, all segments positioned inside the hub
are eliminated. Figure 3 illustrates this process: the left
image exemplifies the map state after hub insertion
and the right image demonstrates the calculation of the
emerging points and elimination of segments inside the
hub.

Map points can be shared by multiple lines and lines
can even share segments, thus duplicated information
may exist. Hence, the spider map is modelled as a
graph G(V,E), where V represents the vertexes, i.e.
the map points, and E the edges, i.e. route segments
that represent the connection between two map points.
Each vertex and edge may belong to one or multiple
lines, thus avoiding having duplicated map points or
segments. Vertexes have x and y coordinates, a list of
lines they belong to, a name representative of the stop
or area and an attribute that records if the vertex is
an emerging point. It is important to register which

vertexes are hub emerging points, since they should
not be moved during the algorithm process. On the
other hand, edges have two vertexes associated and a
list of lines. The order of the map points in the lines is
also recorded as well as the colour that lines should be
drawn.

Spider maps have associated distortion, since their
points do not represent geographical locations, but
the product of multiple operations. Furthermore,
dimensions are altered, i.e., the hub area is usually
augmented and distances between map points are
reduced, resulting on a compression effect centred
on the hub. However, at this point in the algorithm
process, the map dimensions still resemble the real
dimensions: the hub is small, and lines are very spread
out. Hence, the next step is to resize the hub, increasing
its dimensions and translating the lines accordingly.
The result of this operation causes the distortion and
compression effect aforementioned.

The resized hub dimension was set to 300 by 300
hundred pixels, however, hub selection may not follow
this aspect ratio. Hence, the final size of the hub is
recalculated so the original aspect ratio is preserved. For
instance, if the original hub width is 200 pixels and the
original height 100 pixels, the resized hub will have 600
pixels of width and 150 pixels of height.

Nevertheless, after resizing and translating opera-
tions, some of the lines may end up intersecting the
hub. Thus, map points inside the hub are identified
and the maximum distance to the hub boundary is
calculated. Then a translation operation corresponding
to this distance value is applied, pushing the line out of
the hub. At this stage, the map is similar to the original,
but with distortion and with lines closer to the hub
boundaries.

The hub is a portion of a geographic map that depicts
the area associated with the spider map. To obtain the
geographic map image Here API2 was used, providing
services that return a map image of the specified area.
The image already has the correct size, i.e., same size as
the hub, thus it is placed on the hub coordinates. Figure
4 illustrates an example of a hub of Casa da Música
surroundings. The markers represent the stops in that
area.

Furthermore, before beginning the displacement
operations to satisfy the spider map restrictions, a
matrix containing the topological relations between
points is built. It is important to build the matrix
before the generation process starts, since at this stage
all the points relate to each other close to their real
geographical location. Thus, for each map point is
calculated the relation to every other map point. A map
point can be north of (No) or south of (So) and east of

2https://developer.here.com/
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Figure 4. Hub example of Casa da Música area

Table 1. Example of topological relation matrix between points
P1, P2 and P3

- P1 P2 P3
P1 - inLine, Wo No, Wo
P2 inLine, Eo - No, inLine
P3 So, Eo So, inLine -

(Eo) or west of (Wo) another point. When two points
have an equal coordinate (x or y), they are defined as in
line of each other. Table 1 depicts the topological matrix
of points P1, P2 and P3 relations.

After this step is completed, the displacement
operations begin in order to find a location for every
map point that satisfies spider maps restrictions. First,
a grid adaptation operation is done with the intent of
simplifying the overall shape of lines. Next, all angles
are ensured to be octilinear and then the spider map is
displayed, following the draw rules. The next sections
depict these algorithm steps, that will displace map
points trying to generate a viable map solution.

1) Grid adaptation. The first step of the algorithm is
to adapt the current map to a predefined grid, by
assigning a grid intersection point to every map point.
This step simplifies the overall shape of lines, leading
to a closer solution where spider map restrictions are
followed.

The first task is to build the grid over the map,
thus the maximum and minimum x and y values of
the map points are determined which represent the
bounds of the map and, subsequently, the boundaries
of the grid. Then, the grid is built with an initial grid
cell size of 20 pixels by 20 pixels. It is important to
note that the cell size will affect the complexity of the
algorithm, since grid cells with smaller cell size lead
to finer grid granularity, which increases the search for
possible displacements. On the other hand, it may not
be possible to adapt a map to a grid if cells have a large

size, given that possible displacements will be scarce.
After several tests with different sizes, this initial cell
size was chosen since results showed that most maps
could successfully adapt to a grid with this cell size,
without the need of repeating the process by adapting
the cell size. The final step in building the grid is to
determine the grid intersection points. These points
represent all the possible displacement for map points
during the grid adaptation process and the subsequent
algorithm steps.

Therefore, for every map point the nearest grid inter-
section points are calculated, i.e., the 16 surrounding
and closest grid intersection points are determine. How-
ever, not every nearest grid intersection point is a valid
displacement. A grid intersection point is considered
for a valid displacement if it causes no hub occlusions,
i.e., does not cause any segments to intersect with the
hub; does not lead to any segment overlapping, i.e.,
segments do not pass through map points that do not
belong to that segment; and the grid intersection point
is free, i.e., it does not have a map point assigned.

The grid intersection point selected for the displace-
ment is the one with the smallest score, which repre-
sents the attribution of less penalties. The score com-
bines the distance from the map point to the grid inter-
section point being evaluated (points with greater dis-
tance will be more penalised) and a score that translates
how well topology relations are maintained, by giving a
penalty to every topological violation. A displacement
causes a topological violation if it changes the relation
between two points. For instance, having P1 south of
and east of P2, a displacement that leads to P1 being
north of or west of P2 is considered to cause a topolog-
ical violation. Smaller penalties are given to displace-
ments that cause relations to change to in line. This
trade off by loosening the topological constraints leads
to simpler line shapes, where lines become straighter
which causes less non-octilinear angles. If no topologi-
cal violation occurs, then the topological score given is
zero.

However, in some cases it may not be possible to
adapt the map to the grid with the current grid cell size.
This means that some map points may not have any
possible valid displacements. Hence, the grid cell size
is decreased, the map points coordinates are restored to
their original locations and the grid adaptation process
is restarted. Decreasing the cell size leads to a finer
grid granularity, which in turn leads to more possible
displacements. This processed is repeated until the grid
adaptation is successfully completed or the grid cell
size reached a defined minimum. In this last case, the
grid adaptation process may not be possible, thus a map
solution will not be produced.

Figure 5 depicts the grid adaptation process,
illustrating initial locations in the top image and the
displacement result in the bottom image. In the figure
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(a) Initial point locations

(b) Displaced point locations

Figure 5. Grid adaptation process. The initial locations in (a)
are displaced to new locations on the grid as in (b), yielding
simpler shapes. Some of the angles become octilinear as a result
of this process.

is possible to note that lines have a simpler shape and
some of the angles already comply with the octilinear
angle restriction.

However, not all the nearest grid intersections are
valid displacements. Grid intersection points that will
cause hub occlusion, i.e., will intersect the hub, and that
will cause line segments to overlap or pass through map
points that do not belong to that segment are removed
as possible displacement locations. The addition of this
restriction will lead to, in some cases, map points that
will not have any possible displacements. When this
happens, the graph is returned to the original state, the
grid cell size is decrease and the grid adaptation process
is restarted. By decreasing the grid cell, the granularity
is increased which leads to more displacement options.
This process is repeated until all points are displaced to
a grid intersection or the grid cell size reaches a defined
minimum. In this last case, the grid adaptation process
may not be possible, thus a map solution will not be
produced.

2) Correcting non-octilinear angles. After the grid
adaptation process is finished, the result is a map with
simpler line shapes and where map points respect the
topology relations. However, some of the lines may
still not follow octilinear angles. Just as mentioned in
Section 2, one of the spider maps restrictions is that
angles should only be of 0, 45 or 90 degrees, i.e., only
octilinear angles. Hence, the next algorithm step is to
identify and correct non-octilinear angles.

The first step is to identify all the map points
where two segments form a non-octilinear angle. Map
points corresponding to hub emerging points are not
taken into consideration, since they will be approached
using a different method to ensure the lines also form
octilinear angles when intersecting the hub boundaries.

Afterwards, for each map point identified with an
incorrect angle, the algorithm will try to identify a
grid intersection point which displacement will correct
the angle. The process is similar to the nearest grid
intersection points search in grid adaptation, where
the closest grid points are identified and invalid
displacements are removed from possible options. A
grid intersection is considered not valid for non-
octilinear angle correction if:

1. The displacement will cause octilinear angle to
become non-octilinear;

2. The displacement will disturb topological rela-
tions between points (changes to in line are not
considered as disturbance);

3. The displacement will cause occlusions with the
hub, line overlapping or lead to segments passing
through map points that do not belong to that
segments;

4. That grid point already was a map point
associated;

5. The displacement will cause the angle to remain
non-octilinear.

Just as in grid adaptation, scores are calculated for
every valid option and the map point is displaced to
the best scored grid intersection point, i.e., the grid
intersection point with the smallest score. Figure 6
exemplifies the correction of a non octilinear angle by
displacing a map point to another grid intersection
point.

Nonetheless, some map points will not have any
possible valid displacements that will correct the non-
octilinear angles, thus making them candidates for a
break point introduction. A break point is a map point
introduced in one of the segments of the incorrect angle
to correct the non-octilinear angle without displacing
any map point. This new map point is added to the
graph representation and marked as being a break
point. Break points are introduced to correct angles and
have no other meaning to the spider map, so they need
to be represented differently.

To introduce a break point, grid intersections
surrounding the identified segments are searched and
checked if the displacement will correct the angle.
Similar to the previous operations, a displacement is
valid if causes no occlusions, and no segments overlap.
A break point introduction will transform one segment
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(a) Line shape with a non octilinear angle

(b) Line shape after point displacement

Figure 6. Line shape before (a) and after (b) the correction of a
non-octilinear angle by map point displacement

in two new ones, allowing angles to be corrected. Figure
7 illustrates a result of a break point introduction.

Figure 7. Non-octilinear angle correction with segment break
point

Although introducing a break point will correct most
of the remaining non-octilinear angles, in some cases,
mostly in very dense areas, it is not possible to find a
valid location to introduce the break point. Hence, two
break points are introduced to correct these last cases.
The introduction of two break points is very similar
to inserting a single one. However, the goal is to find
the best combination of two valid grid points that can
correct the angle. The complexity of this problem is
restrained by limiting the grid points search to the
nearest grid points and by eliminating all the invalid
grid locations. Figure 8 depicts non-octilinear angle
correction by inserting two break points.

Moreover, lines emerging from the hub should also
make an octilinear angle with the hub boundaries and,
just as aforementioned, the correction of these angles

Figure 8. Non-octilinear angle correction with two break points

is treated separately from the remaining map points.
To correct the angles from hub emerging segments is
established that those segments should make a 90º
angle with the hub boundary. Then, a break point is
introduced in that segment, so the corresponding angle
is 90º or, if not possible, 45º degrees. Figure 9 depicts
the correction of angles from hub emerging segments.

Figure 9. Correction of non-octilinear angles of hub emerging
segments

3) Draw the spider map. After correcting the angles,
the final map point locations are determined, and
the drawing process can begin. The first is to obtain
and place the hub image, that is a geographical
representation of the area. The image is obtained using
the API Here3 that returns an image of the geographical
map giving a boundary box. Moreover, the stops are
identified with markers.

Map points are drawn in the associated locations and
do not need further processing. However, segments are
shared between lines and need to be drawn parallel,
thus making it necessary introducing an offset between
shared segments.

In order to introduce an offset that will lead
to parallel segments, it is necessary to calculate
the slope of the line. Thus, identifying the correct
orientation (vertical, horizontal or diagonal), is possible
to introduce a correct offset to the x and y coordinates,
just as illustrated in Figure 10.

The final step is to draw the labels that identify
the map points. Not all map points need to be
labelled, only the last and the most important of

3https://developer.here.com/
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Figure 10. Shared line segments

each line. Nonetheless, the label’s position needs to be
determined. Thus, a score is calculated that translates
how many occlusions will the label cause. For that, a
bounding box of the label is placed at top, bottom, left
and right of the corresponding map point and a penalty
score is given for each line intersection. The chosen
place will be the one with the smaller score.

After this step, the generation process is finished
and a valid spider map solution is presented to the
user. Figure 11 depicts the algorithm generation process
in a flowchart. Hence, a valid spider map solution is
generated if all the aforementioned algorithm steps are
successfully completed. In some cases the algorithm is
not capable of producing a valid solution, for instance,
if grid adaptation fails, no solution will be presented, or
if not every non-octilinear angle is corrected, the spider
maps will have errors.

The developed algorithm is integrated in the
developed prototype depicted in Section 4 and results
will be illustrated and evaluated in Section 5.

4. Prototype development
For the purpose of testing how the developed algorithm
performs in real situations, a prototype was created
integrating the algorithm depicted in Section 3.2 and
taking advantage of digital map characteristics by
combining visualisation and interaction techniques.

4.1. Use cases and stories
The main use cases consist of selecting the desired hub
area, and generating the respective spider map. A set
of user stories was defined (see Table 2); they cover
the main functionalities that such a prototype should
implement. Moreover, there is the ambition to integrate
interaction and visualisation techniques to enhance the
user experience.

In the first screen, a map of Porto city with interaction
capabilities is presented to the user, i.e., the user can

Figure 11. Algorithm workflow for the generation of a spider map.
The corresponding pseudo-code can be found in Appendix A.

Table 2. User stories defined for the functional prototype

User
story

Description
(As a User, I would like to...)

US01 See and navigate a map of Porto city area
US02 See a pre-defined grid that marks possible

hub placements
US03 Choose one or multiple grid cells that define

the hub area
US04 Clear current grid selections
US05 Check the stops inside the hub selection
US06 Check additional information about stops
US07 Generate a spider map given the hub

selected in the grid
US08 Visualise the spider map resulted from my

hub selection
US09 Check information about the hub stops and

lines that belong to the spider map
US10 Interact with the spider map by zooming,

moving and clicking on elements for addi-
tional information

zoom and navigate through the map. Furthermore, in
the top right corner, the user can access control buttons
illustrated in Figure 12 left. In this controls users can
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Figure 12. Example of grid selection (left) and control buttons
(right)

show/hide the pre-defined grid, check stops inside the
grid selection and finally generate the spider map.

The pre-defined grid lays over the Porto city
corresponding to the boundaries of the available data.
Then, the user can select one or combine several grid
cells to create a personalised hub area. As the grid
has an arbitrary size, it could have been possible to
previously generate a spider map for each grid cell
in advance, to reduce the user’s waiting time for
navigating a map. However, such assumption would
imply that the user could not select more than one grid
cell, thus limiting the user’s capability of defining a
region of interest that may span a number of adjacent
grid cells. Figure 12 right shows an example of grid
selection, where selected cells are shown in orange and
markers depict stops inside the hub selection.

After the user chooses the desired hub and selects
“Generate Spider Map”, the algorithm takes the hub
coordinates as input and generates a spider map result.
In the next screen the user can visualise and interact
with the map result. The user can navigate, zoom and
click on map points to check additional information.
All these interaction features were developed using
D3.js Behaviour plugin that allow to catch and handle
interaction events. Figure 13 depicts an example of a
portion of a spider map result where it is possible to
check the additional information box when a map point
is hover or clicked on.

4.2. Architecture
The developed solution follows a simple two-tier
architecture or client-server, illustrated in Figure 14.
This architecture style is commonly used in distributed
systems to separate operations into the client and
server, where the server provides services to the client
[13]. Thus, the server is responsible for dealing with
all the necessary data operations, while the client
is responsible for the spider map generation and
rendering operations.

Figure 13. Interaction mechanism within the spider map: clicking
on map points reveal additional information

Figure 14. Solution Architecture for the prototype

The server was implemented using Node.js4 and
Express.js5 for the REST API. Moreover, the server
establishes a connection with a MySQL6 database that
stores all the public transport data, that will be depicted
in detail in the next section. Hence, the server is
responsible for gathering and processing all the data
needed for the spider map generation. The architecture
was built and tested on a mid-range 2019 laptop.

The implemented API has two main models – routes
and stops – with several endpoints for handling and
retrieving information associated with each one of the
models, as described in Table 3.

On the other hand, the client consists of a web
application based on the two major use cases described
in Section 4.1. For the geographic maps and hub
selection Leaftlet7 and OpenStreetMap8 were used, while
the spider map drawing and generation was developed
using D3.js9 and Javascript technologies.

4https://nodejs.org
5https://expressjs.com/
6https://www.mysql.com/
7https://leafletjs.com/
8https://www.openstreetmap.org/
9https://d3js.org/

11 EAI Endorsed Transactions 
on Smart Cities 

01 2021 - 04 2021 | Volume 5 | Issue 14 | e2



S. Santos, T. Galvão, T. Sobral

Table 3. API Endpoints for retrieving input data for the
generation of a spider map

Endpoints Parameters Description
/stops - Get all stops
/stops/hub topLong;

topLat;
bottom-
Long;
bottomLat

Get stops within a rect-
angular hub defined by
two pairs of geographi-
cal coordinates

/stop stopID Get stop by ID
/stop/lines stopID Get routes of all of the

lines that go through a
stop

/line/stop stopID Get all lines that serve a
stop

/line lineID Get line by ID
/line/code code Get line by code
/line/route lineID Get line route by line ID

Figure 15. Data model for the structural elements of a spider
map

4.3. Data model
The data related to public transport network of Porto
was provided by OPT and stored in a MySQL database
following the model depicted in Figure 15.

Lines are characterised by a code, name and a
line colour. Stops are defined by a code, name and
geographic coordinates (latitude and longitude). Lines
consist of several stops; each stop may belong to zero
or more lines. Nonetheless, routes are defined by the
table "Path" that define the sequence of stops identified
by the attribute "order". The data provided already
defines map points that may represent groups of stops.
Henceforward, when a stop is associated with a map
point, it should be replaced when forming the path of
a line.

Furthermore, stops and map points have associated
geographical coordinates (latitude and longitude),
which will represent the initial position of the points.
Moreover, lines and stops also have other attributes
associated, such as names and line colours.

5. Evaluation and validation
Current solutions are complex and take very long to
produce spider map results. Hence, the ambition is
to tackle the complexity of the generation process
of spider maps and develop a solution capable
of automatically generate spider maps in real-time.
Thereby, the two variables taken into consideration
during the evaluation and validation are if the map
is correctly generated, i.e., the spider map follows
the establish design rules, and the execution time
needed to produce the result. A result is considered
valid if it complies with the spider map restrictions
aforementioned in Section 2.

5.1. Tests and results
Performed tests aim at testing if the solution is capable
of generated valid spider maps at real-time using the
prototype develop to select the input hub area and
generate and evaluate map results. Several tests were
performed by choosing different hub areas as input
and evaluating the results. Even though tests were
only performed for Porto’s bus network, the number
of possible hub inputs is extensive. Hence, the tests
focused on testing areas where the network is denser,
i.e., areas served by many public transports’ lines
like city centres. In Porto, some of the busiest areas
are Aliados,Casa da Música, Hospital São João, Castelo
do Queijo. Tests demonstrated that the developed
algorithm produces feasible spider map results for the
city of Porto. Figures 16 depicts the initial map state for
Castelo do Queijo, a coastal area, and Figure 17 depicts
the corresponding spider map. Figure 18 also depicts
a spider map result for Aliados, a busy centre area in
Porto.

The complexity of the generation process and,
subsequently, the spider map is directly related to the
number of map points, i.e., the complexity increases as
the number of map points also increases, since more
displacement operations and angle corrections will be
needed to generate a valid map. Hence, to control
the continuous increase in complexity, a limit to the
number of lines in the spider map was set, as well as
a limitation on the hub size. This prevents the user
to select large areas for the algorithm, preventing the
exponential increase in complexity.

There is not much literature in automating the
generation process of spider maps, and most of the
efforts made in this area were through Mourinho’s [8]
work. However, in his work the goal was to find the
optimal spider map solution, hence the quality was
valued over fast results. Thus, the solution required
great computational effort and long execution times.
For instance, in tests accessing the quality versus the
number of algorithm iterations, the average execution
times were of 2797 seconds.
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Figure 16. Initial map state for Castelo do Queijo hub area

Figure 17. Spider Map result for Castelo do Queijo hub area

Even though is not possible to establish a direct
comparison with the tests performed by Mourinho, it
is possible to conclude that the developed solution was

able to produce results faster. The developed solution
produced spider maps under 500 milliseconds for
complex centre areas. Table 4 depicts tests results for
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Figure 18. Spider Map result for Aliados hub area

valid solutions, describing the number of map points,
the numbers of different lines of the map, hub area and
the execution time (ET) in milliseconds. In addition,
Table 5 depicts the success of test results, identifying
how frequently a valid solution was obtained, the
number of times where a solution was not possible
and the number of incorrect solutions (i.e., spider map
results that contain some non-octilinear angles).

It can be concluded that the developed algorithm suc-
cessfully produces results, i.e., the solution generates
valid spider map results in real time, taking signifi-
cantly less time compared to state-of-the-art solutions.
Thus, this work successfully tackles the complexity of
the spider map generation process and contributes to
the identified gap of current work.

5.2. Limitations and Future Work
The quality of the result depends on how and if all
the stages of the algorithm are successful. In the grid
adaptation stage, the algorithm will adapt the cell size
until the initial map is successfully adjusted to the
grid; however, in some cases, grid adaption may not
be possible. In dense areas, a vast number of map
points compete for a grid allocation. Thus, even by
increasing the grid granularity, it may not be possible
to assign a grid point to every map point. Moreover,
since the subsequent algorithm steps depend on the
success of grid adaptation, a solution may not be found.
Nevertheless, the introduction of a constraint to the

Table 4. Tests results for generated spider maps

No. map
points

No.
lines

Hub area ET (ms)

153 6 Castelo do Queijo 844.29
153 6 Castelo do Queijo 710
32 1 Av. Boavista 122.21
153 6 Casa da Música 419.23
144 1 Casa da Música 298.64
10 1 Aliados 35.04
108 4 Aliados 387.71
130 4 Trindade 664.88
52 2 Boavista 215.83
88 2 Hosp. São João 272.87
106 4 Hosp. São João 432.53
102 4 Av. Boavista 5445
32 1 Av. Boavista 102.67
105 4 Praça da República 482.9
105 4 Aliados 496.27
27 1 Bolhão 95.45
39 1 Campo Lindo 177.45
66 3 Marquês 244.62
177 6 Marquês 599.46
37 6 Passeio Alegre 105.96
51 6 Foz do Douro 159.23
33 6 Ramalde 102.33
79 6 Parque Real 194.93
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Table 5. Outcome of performed tests

Solution No. of results
Valid solution found 22
No solution found 3
Solution with errors 5

maximum number of lines overcame this problem,
and tests showed that the grid adaptation process is
successfully completed even in complex areas, and with
just one or two iterations. Therefore, reducing the cell
size in each iteration to increase the grid granularity
was proven adequate. Hence, it is likely that users may
need to select one or more grid cells in order to define
the desired geographic area.

The next algorithm step that will influence the
quality of the solution is the correction of non-octilinear
angles. In the developed solution, the algorithm has
several iterations that aim correcting the non-octilinear
angles through several approaches. The first approach
is identifying a valid grid allocation to displace
the identified map points and correct the angle.
Nevertheless, in some cases is not possible to find a
valid displacement that corrects the angle, thus the next
iterations try to correct the remaining non-octilinear
angles by inserting one or two break points. The
integration of different approaches to correct identified
non-octilinear angles was effective in producing valid
spider map results.

Notwithstanding, in some cases the algorithm may
not produce a valid spider map (i.e., some angles
may not be corrected) or, in the worst-case scenario,
not produce a solution. Most invalid algorithm results
derive from the non-octilinear angle correction, not the
grid adaption as depicted in Table 5. Thus, even for
invalid results, the algorithm can present a solution that
may not be completely correct (some angles may not be
octilinear).

Some errors are the result of incorrect map point
coordinates, that lead to incorrect projections, which
subsequently cause the failure of grid adaptation or
angle correction.

On the other hand, circular lines are viewed as a
special case, since they sometimes lead to particular
results. For instance, results with circular lines often
cross themselves, which may be valid according
to spider map restrictions, but is not aesthetically
pleasing. Also, scaling the hub may lead to undesired
distortion, that in some cases may preclude the success
of the non-octilinear angle correction.

Even though some limitations were identified and the
algorithm may be improved so it becomes more robust
to certain cases, results have proven that the developed
solution was successful and provides enhancements in
the current state-of-the-art solution. The solution is able

to produce viable spider map solutions at real-time
and taking in consideration the hub area as user input,
whilst maintaining a feasible quality that allows users
to explore the transportation network. Furthermore, the
prototype demonstrated the successful integration of
the algorithm with the advantages of digital maps by
incorporating visualisation and interaction techniques.

Finally, the spider map solutions can be aesthetically
improved in a post-processing stage, with more line
simplifications. Nonetheless, the developed solution
provides advances in the simplification of the genera-
tion process of spider maps, thus potentially making
an impact on the use of spider maps in providing
public transports information. Through the developed
prototype, the user is able to choose a desire hub area
and visualise all the travel possibilities by the generated
spider map.

6. Conclusions
Spider maps are a type of transportation map that
presents all the public transport possibilities available
within a geographic area. These maps allow one to
identify how far they can go by using the available
transport network service within that area. However,
their production is still mostly manual, and tailored
to a restricted set of locations. Some efforts have been
made to automate the generation of these maps, but
state-of-the-art solutions require great computational
effort and long execution times to produce results.
Hence, the proposed approach aimed at developing
a solution capable of automatically generating spider
maps, tackling the complexity gap of current solutions.

This work focused on two goals: developing an
algorithm that automatically generates spider maps
results in real-time and considering a hub that can
be defined by the user according to the desired area,
regardless of a cell grid size defined by the system’s
implementation; developing a prototype that integrates
the map generation algorithm, adding interactive
capabilities to map results. The algorithm adapted
techniques used in schematic maps generation, such as
adapting a map to a pre-defined grid, and developed
new processes that apply several operations to produce
a spider map compliant to all the design restrictions.

Throughout the validation and evaluation process,
the objective was to test if the solution could produce
feasible spider map solutions at real-time, reducing
the execution time needed to produce map results
whilst correctly depicting the information about the bus
network. The prototype and tests focused on the bus
network of Porto.

Performed tests showed that the solution is successful
and can produce map results in shorter execution
times than state-of-the art solutions. Furthermore, the
prototype developed validated that the algorithm can
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be incorporated into a web or mobile application that
provides an interface for passengers to interact and
customise the map generation.

Future work may improve the map aesthetics in a
post-processing phase by applying more simplification
to the spider map schematic lines, which will increase
the quality of the solution, and other algorithm
improvements so it becomes more robust to complex
network data. Notwithstanding, the developed solution
contributed to the identified gap in state-of-the-art
solution, producing spider map solutions at real-time
and considering user input.
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Algorithm 1: Resize initial map
Input : Hub corners coordinates; map graph

G(V,E)
Output: Resized hub coordinates and graph

G(V,E)

calculate hub width, height and centre from
coordinates;

newWidth← 300 * width / height;
newHeight← 300 * height / width;

scalingFactorX← newWidth / width;
scalingFactorY← newHeight / height;

for each v ∈ G(V,E) do
if v is hub emerging point then

calculate vector from hub centre to v;
calculate new v coordinates applying a
translation of the obtained vector with the
scaling factor;

else
identify the corresponding line hub emerging
point;

apply same translation of the identify hub
emerging point;

end
end
lines← GetLines(E);
for each line ∈ lines do

if line is inside then
calculate maximum distance to hub
boundaries;

apply translation to every line map point;
end

end

Algorithm 2: Adapt map to grid

Input : Map graph G(V,E)
Output: Map graph G(V,E) adapted to grid
for each v ∈ G(V,E) do

if v not hub emerging point then
calculate nearest grid intersection points;
for each nearest grid point do

if grid point is valid then
calculate grid point score;

end
end
if valid displacements found then

update v coordinates to grid point with
best score;

else
if cellSize < min then

solution not found;
else

decrease cell size;
reset graph to original locations;
restart GridAdaptation;

end
end

end
end

Algorithm 3: Correct non-octilinear angles with
displacement

Input : Map graph G(V,E)
Output: Break point candidates
incorrectVertexes←
FindNonOctilinearAngles(V);

for each v ∈ incorrectVertexes do
if v not hub emerging point then

calculate nearest grid intersection points;
for each nearest grid point do

if grid point is valid then
calculate grid point score;

end
end
if valid displacements found then

update v coordinates to grid point with
best score;

else
add v to break point candidates
breakPointCandidates;

end
end

end
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Algorithm 4: Correct non-octilinear angles with
break point insertion

Input : Map graph G(V,E), break point
candidates breakPointCandidates

Output: Two break point candidates
for each v ∈ breakPointCandidates do

if v not hub emerging point then
calculate nearest grid intersection points;
for each nearest grid point do

if grid point is valid then
calculate grid point score;

end
end
if valid grid intersection gridPt found then

add break point gridPt to V;
transform edge E(pt1,pt2) into
E1(pt1,gridPt) and E2(gridPt,pt2);

else
add v to two break point candidates
twoBreakPointsCandidates;

end
end

end

Algorithm 5: Correct non-octilinear angles with
two break points insertion

Input : Map graph G(V,E)
Output: Map graph G(V,E)
for each v ∈ twoBreakPointsCandidates do

if v not hub emerging point then
calculate valid nearest grid intersection
points;

for each nearest grid point do
calculate two grid point combination;
calculate score;

end
if valid two points grid intersection
combination gridPt found then

add break points gridPt1 gridPt2 to V;
transform edge E(pt1,pt2) into
E1(pt1,gridPt1), E2(gridPt1,gridPt2)
and E3(gridPt2,pt2);

else
G(V,E) with non-octilinear angles;

end
end

end

Algorithm 6: Correct non-octilinear angles of
hub emerging segments

Input : Map graph G(V,E)
Output: Map graph G(V,E) with correct hub

emerging segments
for each v ∈ G(V,E) do

if v is hub emerging point then
find grid intersection for 90º angle;
if grid intersection not found then

find grid intersection for 45º angle;
end
insert break point at grid intersection found;

end
end

Algorithm 7: Generate Spider Map
Input : Hub coordinates
Output: SVG of spider map
Retrieve route information from database;
build map graph G(V,E);
adaptToGrid();
if grid adaptation successful then

correct non-octilinear angles;
else

reset graph G(V,E) to original coordinates;
end
drawSpiderMap();
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