
In many cases it is important to know whether a relationship

exists between two variables, e.g. between personality type

and the study field of students. Other examples are the

relationship between gender and preference for or against a

new medical scheme for workers, or between years of

experience and the motivational score of personnel of a

tertiary institution. Usually the statistical significance of such

relationships are determined, which means that the (null)

hypothesis of no relationship is tested. Apart from the

criticism of the sole use of statistical significance testing in

this regard by the author (Steyn, 2000), the appropriateness of

only knowing that a relationship does exist, is also in question.

Actually, one wants to know whether a relationship is large

enough to be important.

Two situations have to be distinguished: (1) when dealing with

a population and (2) when a random sample is drawn from a

population. Only in the second situation is the statistical

significance of a relationship appropriate, since the test result

obtained from the sample is used to establish whether two

variables are related within the population (with a small

probability of concluding this erroneously). In the first situation

another way has to be found to determine whether the

relationship is “practically significant”. Here, as in the case

where two population means are compared (cf. Steyn, 2000), an

effect size, as a measure of practical significance, can be a useful

aid. Also, such an effect size can be established from a sample in

order to determine the importance of a statistically significant

relationship.

Many different effect sizes exist and are discussed in

Psychological literature (see Nickerson, 2000). While the

reporting of effect sizes is encouraged by the American

Psychological Association (APA) in their Publication Manual (4thth

edition, APA, 1994), Kirk (1996) noted on the basis of a survey of

four APA journals, that most of these measures are seldom if ever

found in published reports.

The reporting of effect sizes has the added attraction to some

analysts of facilitating the use of meta-analytic techniques (see

Rosenthal, 1991).

Different kinds of relationships exist, that depend on the scales

on which the two variables are measured. In this paper the

following cases are dealt with: 

� Both variables on a nominal scale;

� Both variables dichotomous;

� One variable dichotomous, the other on an interval/ratio

scale;

� Both variables on an interval/ratio scale.

In the following section, an overview is given of population

effect sizes for each of the cases. The second section deals with

the estimation of effect sizes by using random samples.

Examples are given throughout the two sections, and the last

section contains a discussion and conclusions of how to apply

practical significance.

POPULATION EFFECT SIZES OF RELATIONSHIPS

Both Variables On A Nominal Scale

Consider the following example:

Example 1:

In order to study the relationship between temperament type

and grouping of faculty members and students at a tertiary

education institution, the Myers-Briggs Type Indicator (MBTI)

was administered to all the lecturers and students of an

Economics and Management Faculty at a South African

university (Rothmann et al., 2000a). Table 1 gives the numbers

of lecturers, male and female students within each of the four

temperament types.

TABLE 1

CONTINGENCY TABLE OF TEMPERAMENT TYPE (X) BY GROUPS

OF LECTURERS AND STUDENTS (Y)

Temperament Type Lecturers Male Female Total

Students Students

Sensing – Judgement 20 57 79 156

Sensing – Reception 0 29 23 52

Intuition – Thinking 5 23 19 47

Intuition – Feeling 3 12 12 27

Total 28 121 133 282

Let the two nominal variables x and y be classified in a two-way

frequency (contingency) table as in Table 1. Let x have r

categories given as the different rows of the table, and y have c

categories as the columns. Further, let fij be the frequency of the
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population elements falling within the ith category of x and the

jth category of y (i.e. the frequency of the ith row and the jth

column of the table). Also, denote fi+ to be the ith row’s total

frequency, and letting f+j be that of the jth column. Let N be the

population size, i.e. the total frequency. Cohen (1988) suggested

the following effect size to measure the relationship between x

and y:

(1)

Note that , where is the usual Chi-square statistic

for this two-way frequency table.

The following guidelines are given by Cohen (1988) in order to

judge the importance of a relationship:

w = 0,1: small effect.

w = 0,3: medium effect

w = 0,5: large effect

Cohen justifies his guidelines for w by giving the equivalent

values of the contingency coefficient and Cramér’s �1. In the

following section examples are given of 2x2 contingency tables

for each of these guidelines.

Example 1: (continued)

Consider Table 1. To calculate the effect size w, it is necessary to

obtain the cell values of every cell in the contingency table: The

cell value of the cell in the ith row and jth column is given by:

For the top-left cell (i.e. first row, first column)

Each cell’s value can be calculated in the same way, resulting in:

w2 = 0,0047 + 0,0052 + 0,0014 + 0,0183 + 0,0071 + 0,0003

+ 0,0021 + 0,0014 + 0,0016 + 0,0001 + 0,0001 + 0,0002,

and 

This value of w indicates that the effect is small to medium.

Therefore there is some indication of a relationship between the

temperament type and the grouping of faculty members and

students into categories.

Both Variables Dichotomous

Consider first the following example:

Example 2:

A survey of an organisation’s 60 employees regarding their

preferences for a new medical scheme, resulted in the frequency

table given by Table 2.

TABLE 2

A 2X2 TABLE OF GENDER BY PREFERENCE FOR A MEDICAL SCHEME

Gender

Male Female

Preference New 24 14 38

Old 16 6 22

40 20 60

Is there a relationship between gender and preference?

Cohen (1988) suggested as effect size the so-called phi coefficient

�, which is a special case of the effect size w, when r = 2 and c = 2.

However, a simpler formula for the calculation of � can be used

when the frequencies in the 2x2 table is given by a, b, c and d in

the following way:

y

Category 1 Category 2

x Category 1 a b a + b

Category 2 c d c + d

a + c b + d N

Now we have

(2)

This effect size can also be negative when bc > ad, implying that

the frequencies b and c are more abundant than the other two

cell frequencies. Therefore, in contrast to the case where more

than two categories (levels) occur on one or both variables, the

direction of the relationship can also be determined.

Since the phi coefficient is a special case of w in (1), the same

guidelines for this effect size can be used (without taking the

sign of � into consideration).

Example 2: (continued)

Considering the data in Table 2 and using (2) we have:

Since � is almost 0,1 in absolute value, it can be considered as a

small effect. No relationship really exists and the negative sign

is therefore of little importance.

To get a feeling of what “small”, “medium” and “large” effects

mean in terms of 2x2 tables, consider Table 3 in which a

population of size 200 has been grouped.

For a 2x2 table to describe a positive relationship, the

frequencies in the cells where x and y have the same value (e.g.

both 1 and both 2) have to be larger than those of the

remaining two cells. In Table 3 (a) above these frequencies are

both 55 in contrast to the 45 of the other cells, resulting in a

effect size of 0,1. In Table 3 (b) and (c) these frequencies

increase relative to those of the two remaining cells and

therefore the value of � also increases.

Analogous illustrations of negative relationships can be given by

making the frequencies of cells where x and y are different,

larger. In such cases the values of � will be negative.

The value of � will be zero when frequencies in two rows (or

columns) are equal.
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TABLE 3

EXAMPLES OF 2X2 CONTINGENCY TABLES FOR

DIFFERENT VALUES OF �

(a)  � = 0,1

y

Category 1 Category 2

x Category 1 55 45 100

Category 2 45 55 100

100 100 200

(b)  � = 0,3

y

Category 1 Category 2

x Category 1 65 35 100

Category 2 35 65 100

100 100 200

(b)  � = 0,5

y

Category 1 Category 2

x Category 1 75 25 100

Category 2 25 75 100

100 100 200

Also keep in mind that the maximum absolute value of � when

dealing with 2x2 tables is 1 (which is the case when either b=c=0,

resulting in � ���, or a = d = 0, resulting in � = –1).

One Variable Dichotomous, The Other On An Interval/Ratio

Scale

Example 3:

In the study described in example 1 (Rothmann, et al., 2000a)

the means of the continuous personality type scores of the

lecturers were compared with those of the students (see Table 4).

TABLE 4

THE MEANS AND STANDARD DEVIATIONS OF PERSONALITY

TYPES PER SUB-POPULATION

Item Lecturers (N = 25) Students (N =  254)

� � � �

Extraversion – Introversion (E/I) 107,64 25,06 94,58 25,15

Sensing – Intuition (S/N) 84,57 27,60 86,65 20,58

Thinking – Feeling (T/F) 82,64 22,47 86,79 21,66

Judgement – Perception (J/P) 70,07 25,93 91,08 28,60

�: mean of population

� standard deviation of population

Here a dichotomous variable (x) can be considered an indicator

of membership of population members to two distinct groups

or sub-populations (in example 3 it is the lecturers and

students). The usual measure for a relationship between such a

variable x and one on an interval or ratio scale (y) is the point-

biserial correlation �pb. It can be calculated by taking x as a

variable with two distinct numerical values (e.g. 0 and 1) and

obtaining the Pearson product moment correlation coefficient

between x and y. Take the effect size of the difference between

two population means �1 and �2 to be (Cohen, 1988):

(3)

where � is the common standard deviation of the two

populations. The relationship between �pb and � is given by:

(4)

with p the proportion of the population members belonging to

the first population and q = 1 – p the remaining proportion.

Steyn (2000) suggested that when dealing with populations with

different standard deviations �� and �	 that the following effect

size for a difference in population means should rather be used:

(5)

It can be shown that the same relationship as in (4) exists

between �pb and the newly defined �a.

Using this relationship, guideline values for � (Cohen, 1988) of

0,2 (small effect), 0,5 (medium effect) and 0,8 (large effect)

transform to values 0,1, 0,243 and 0,371 for �pb. For convenience

the following guideline values are therefore suggested for �pb:

� small effect : 0,1

� medium effect  : 0,25

� large effect : 0,4

Example 3: (continued)

From Table 4 the effect sizes in respect of the relationship

between the personality type scores and the sub-population

membership can be calculated as in Table 5.

TABLE 5

CALCULATIONS FROM TABLE 4 RESULTS

Item Effect

E/I 13,06 632,07 0,519 0,154 Small

S/N – 2,08 457,12 – 0,097 0,029 Small

T/F – 4,15 472,70 – 0,191 0,057 Small

J/P – 21,01 803,50 – 0,741 0,216 Medium

Both Variables On An Interval/Ratio Scale

In this case the Pearson product moment correlation coefficient

(�) is the appropriate measure of a relationship. However, it only

measures linear relationships, i.e. when both x and y values are

displayed in a scatter plot, the spread of points can be best

described by a straight line.

Let both variables x and y be assumed to be normally distributed.

Also let the variable z be x when dichotomised with values at the

medians of the lower half and upper half of the x values. Now

the following relationship between the correlations of y and x

and y and z exist (Cohen, 1988):

(6)

From (6) it follows that the guideline values from the previous

section for �pb (which were derived from those of �), now

transform to the following rounded values in respect of �

(Cohen, 1988):

� small effect : 0,1

� medium effect : 0,3

� large effect : 0,5

Note that � can be negative, reflecting an inverse relationship

between x and y, but to decide upon the effect, we use the

absolute value of �.

ρ = ρ( , ) 1,253 ( , )pbx y z y
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1 2
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Example 4:

Rothmann et al. (2000b) conducted a study where the

personality preferences of all the pharmacy students at a

tertiary education institution were obtained to relate them to

academic performance. Table 6 contains the Pearson

correlations between the academic performance and the

continuous scores of the personality construct

extraversion/introversion for a core group of the students per

academic year and gender (i.e. students who passed all their

subjects the previous year and who were registered for all the

prescribed subjects of the current year).

TABLE 6

CORRELATION BETWEEN ACADEMIC PERFORMANCE AND

EXTRAVERSION/INTROVERSION PERSONALITY CONSTRUCT

Year 1 2 3 4

� (males) 0,23* 0,13 –0,05 0,47**

� (females) 0,24* 0,15 0,20 0,34*

* medium effect

** large effect

Note that since the guidelines are somewhat arbitrary, the

correlations 0,23 and 0,24 are viewed to have a medium effect,

being nearer to 0,3 than to 0,1. 

According to Cohen (1988) “… many of the correlation

coefficients encountered in behavioural science are of this order

of magnitude, and, indeed, this degree of relationship would be

perceptible to the naked eye of a reasonably sensitive observer.”

Since 0,47 is near 0,5 it can be taken to be a large effect.

Here it falls around the upper end of the range of r’s one

encounters in fields like differential, personality-social,

personnel, educational, clinical and counselling psychology

(Cohen, 1988).

The Estimation Of Effect Sizes Of Relationships From Samples

In the previous section we gave the appropriate effect sizes for

establishing the importance of a relationship between two

variables for a complete population. When dealing with a

random sample of size n from such a population, the effect

sizes can no longer be determined exactly, but can be estimated

from the results of the sample. In this section these estimates

are given together with their statistical properties as far as

unbiasedness is concerned.

Two Categorical Variables

By using the cell frequencies of a contingency table in respect of

a sample, w can be estimated by , using formula (1). From

Johnson et al. (1995, p.447) it follows that the expected value of

is approximately . This means that 

overestimates by . Where n is large, this bias term 

can be neglected and it follows that is virtually unbiased for

w. Note that in order to establish this unbiasedness, the

condition that every cell frequency must be above 5 must be

met. This is the usual condition under which the Chi-square test

on a contingency table is applicable.

Example 5:

(Elifson et al., 1990, p.422). Interviews were conducted with 70

homosexual and 110 heterosexual males concerning their fear of

contracting AIDS. Assume that these respondents were randomly

chosen from some specified population. Table 7 gives a 3x2

contingency table of the results (with the expected frequencies

when assuming no relationship in brackets).

TABLE 7

CONTINGENCY TABLE OF FEAR FOR AIDS BY SEXUAL ORIENTATION

Sexual Orientation Total

Homosexual Heterosexual

Fear of AIDS Great 40(21,4) 15(33,6) 55

Moderate 20(21,4) 35(33,6) 55

Low 10(27,2) 60(42,8) 70

Total 70 110 180

Firstly the hypothesis of no relationship was statistically tested

and found to be highly significant.

Here = 44,48/180 = 0,247 with approximate bias

, which is negligible. The effect size is =

0,497 which indicates an important relationship between sexual

orientation and fear of AIDS.

Two Dichotomous Variables

As in the previous section, the population effect size � can be

estimated by �, using the cell frequencies from a contingency

table of a sample in formula (2). Also since is a special case of

, this estimation of � is unbiased for large  n. Even for n = 20

Monte Carlo simulations (with 10 000 replications) showed a

bias of about 0,02 when data were generated from Table 3(c)

where ����
��. (See Steyn, 1999 for more details). For ����
� (as

in Table 3(b)) the bias was even smaller.

Example 6:

(Larsen & Marx, 1981, p.337): Over the years studies have sought

to characterise nightmare sufferers. To investigate whether men

fall into this pattern to the same extent as women, random

samples of 160 men and 192 women were drawn, resulting in

Table 8.

TABLE 8

CONTINGENCY OF NIGHTMARE PATTERN BY GENDER

Men Women Total

Nightmares often 55 60 115

Nightmares seldom 105 132 237

Total 160 192 352

Let the null-hypothesis be that no relationship exists between

nightmare pattern and gender, then the usual Chi-square-test

yields no statistically significant result. .

Hence the relationship between nightmare pattern and gender

would only be due to chance. A small effect size can therefore be

assumed. For completeness sake, the phi coefficient was

calculated in this case ( = 0,033).

One Variable Dichotomous, The Other An Interval Scale

In order to estimate �pb from a random sample of the

population, it suffices to estimate �a in (5). Steyn (2000)

suggested the estimator 

ϕ̂
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(7)

where and are the two sample means and Smax is the

maximum of the two standard deviations; slightly

underestimates �a. The estimator for �pb follows from (4):

(8)

Example 7:

Rothmann (1999) conducted a study to test a programme which

improved participants’ knowledge of facilitation. He assigned

half of a group of third year volunteer students randomly to an

experimental group who took the programme. The remainder of

the volunteers were used as a control group. Before the

programme a facilitation test was administered to all 48 students

and after the intervention to 44 of them. The increase in scores

between the pre- and post-tests gives the results in Table 9.

TABLE 9

MEAN INCREASE BETWEEN PRE- AND POST TESTS

AND STANDARD DEVIATIONS

Experimental (n = 24) Control (n = 20)

s s

18,95 6,26 2,18 3,45

Testing the null-hypothesis of no difference between the test

and control means, resulting in a highly significant difference in

means [t = 11,24; p < 0,0001].

Since the population studied can be viewed to be the 48

volunteers from which the two groups were randomly chosen,

the proportions p and q can be taken to be equal. First estimate

�a by:

The effect size can be estimated to be 0,80 which is very large

and indicates an important relationship between group

membership and increase in knowledge of facilitation. The

programme was therefore highly successful.

Both Variables On An Interval Scale

The natural estimator for � is the product moment correlation

coefficient r, based on a random sample from the population.

According to Johnson et al. (1995, p.55) r is a biased estimator for

�, with bias which is always between – 0,2/n and

0,2/n. This means that for large samples r is unbiased but for

smaller samples it underestimates � whenever � is positive.

When � is negative it overestimates �. Keeping this in mind, it is

suggested that r be used.

Therefore, for small samples and a positive correlation the effect

size estimator based on r will be conservative in the sense that a

practically significant relationship will not always be detected in

cases where it really exists. The opposite is true for negative

correlations.

Example 8:

(Adapted from Bartholomew and Knot, 1999, p.69). Pearson

correlation coefficients were obtained for six ability variables

from a random sample of 112 individuals (see Table 10).

TABLE 10

CORRELATION COEFFICIENTS OF ABILITY VARIABLES

Ability 1 2 3 4 5

1. Non-verbal intelligence

2. Picture completion 0,466**

3. Block design 0,552** 0,572**

4. Mazes 0,340* 0,193 0,445**

5. Reading comprehension 0,576** 0,263* 0,354* 0,184

6. Vocabulary 0,510** 0,239* 0,356* 0,219* 0,794**

** large effect

* medium effect

With the exception of the correlation between reading

comprehension and mazes, all the correlations are statistically

significant at the 5% level of significance. This means that the

null-hypothesis of no correlation is rejected. Clearly, not all

these correlations indicate important relationships, and in

viewing the correlations as estimates of effect sizes, e.g. the

correlation between Non-verbal intelligence on the one hand

and block design, reading comprehension and vocabulary on the

other hand, have large effects. 

DISCUSSION AND CONCLUSIONS

Measures of relationships like the phi coefficient and Pearson

correlation coefficient are well known. However, their usage as

measures of effect size is less known. In this paper it was shown

how effect sizes w and �pb also have their place in this regard.

Apart from Steyn (1999,2000), a clear distinction between

population and sample cases of effect sizes is rarely made. The

author tried to make this distinction in the current paper and

illustrated it by an abundance of examples.

While effect sizes are suggested for each of four cases, for

relationships when dealing with a complete population, the

estimates from random samples are not always unbiased. Especially

with small samples, biased estimations can occur and care should

be taken when drawing conclusions regarding the size of the effect.

While many other types of effect sizes exist (Nickerson, 2000;

Cohen, 1988; Steyn, 2000), the focus in this paper was on effect

sizes which arise from relationships. There are also effect sizes

when comparing several means in respect of one or more

variables (Steyn, 1999), and are topics for further research.
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