
The aim of this paper is to highlight problems encountered in

the factor analysis of items and to demonstrate two ways in

which these problems may be dealt with, namely item response

theory and item parcelling. Factor analysis is an analytic

technique used to identify a reduced set of latent variables,

called factors, which explain or account for the covariances of a

larger set of related observed variables. In unrestricted or

exploratory factor analysis, the aim is to establish the minimum

number of latent variables that can adequately explain the

covariances among the observed variables. 

In an unrestricted factor analysis the meaning of a latent variable

is typically determined by inspecting the content of the

observed variables that have strong relations with it. For

instance, if a factor has strong relations with observed variables

that reflect the ability to solve verbal problems, one may

conclude that the factor represents verbal ability. In restricted or

confirmatory factor analysis, however, the researcher has an

explicit hypothesis regarding the number of latent variables, the

meaning of the latent variables, and how they relate to the

observed variables. The aim of confirmatory factor analysis is to

examine how well the hypothesised factor structure accounts for

the covariances among the observed variables.

Within the context of psychological test construction, individual

items typically represent the observed variables, and the

constructs that the test or scale is supposed to measure represent

the latent variables or factors. By subjecting items to an

unrestricted factor analysis, test constructors hope to discover a

smaller number of psychologically meaningful factors that

account for the covariances among the items. Clusters of items

with strong relations with a factor are typically combined to

form a scale.

Very often, however, test constructors have explicit hypotheses

regarding the way items should combine to form scales.

Confirmatory factor analysis may be used to test the validity of

these hypotheses. Here the items serve as observable indicators of

the latent constructs that directly correspond to the traits or

characteristics that the researcher wishes to measure.

Although it is widely used in the test construction process,

empirical studies have shown that the unrestricted factor analysis

of items often produces factors that do not correspond with the

anticipated constructs and/or the scoring key of the scale or scales.

Furthermore, in confirmatory factor analysis, test constructors

often conclude that the hypothesised factors do not adequately

account for the relations among the observed indicators. 

Problems with the factor analysis of items

Several authors have commented on the problems associated

with the factor analysis of items (Bernstein & Teng, 1989;

Gorsuch, 1997; Reise, 1999; Waller, Tellegen, McDonald &

Lykken, 1996). Three points that summarise these problems are

emphasised in the paragraphs that follow. 

In the first place, in comparison with scales, items are unreliable,

which leads to attenuated correlations between the items, low

factor loadings, low communalities, and large unique variances

relative to shared variance. In unrestricted factor analysis the

unreliability of items may contribute to difficulties in rotating

factors to independent clusters (Kishton & Widaman, 1994). In

confirmatory factor analyses the unique variances of items may

be correlated. Such correlations are likely to manifest if two or

more variables share a source of non-random or reliable variance

that is not specified in the confirmatory factor analysis model.

Correlations between unique variances occur when two or more

items share a specific component in addition to the major

construct of interest. This is mostly due to overlap in item

content (Floyd & Widaman, 1995), but may also be due to shared

method variance. The fit of the measurement model to the data

may be improved by explicitly modelling shared unique

variance (by allowing the unique factors to be correlated), but

when large sets of items are analysed researchers are seldom able

to specify such relations a priori (Little, Cunningham, Shahar &

Widaman, 2002).
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In the second place, the relations between items are often non-

linear, which violates the assumption of linearity and normality

underlying factor analysis (Bernstein & Teng, 1989; Waller et al.,

1996). The problems with non-linearity, which is reflected in

significant univariate skewness, univariate kurtosis and

multivariate kurtosis, manifest in so called “difficulty factors”,

where items with similar distributions tend to form clusters or

factors irrespective of their content (Finch & West, 1997;

Gorsuch, 1997; McDonald, 1999). Such factors are often spurious

with little if any psychological meaning.

In the third place, the intervals between the scale points of items

are likely to be fewer, larger, and less equal than that of scales

(Little et al., 2002). Bandalos (2002) described the intervals

between scale points of items as “coarse categorisations”. The

lack of equal intervals violates the assumption that the input

variables are linear and measured on at least an interval scale

level (Finch & West, 1997). 

In confirmatory factor analysis the consequences of the

violation of the assumptions are reflected in inflated likelihood

chi-square tests of fit, reduced standard errors, and inflated error

variances (Finch & West, 1997). However, these consequences

become less acute when the item response scales contain more

scale points or categories. For instance, an item with an ordered

seven-point response scale is more likely to approximately

satisfy the assumptions of factor analysis than a dichotomous

item. Byrne (2001) pointed out that when categorical variables

approximate a normal distribution the number of categories

does not appreciably influence the chi-square test of fit between

the model and the data. Furthermore, under these conditions

factor loadings and factor correlations are only modestly

underestimated. Overall, research suggests that items with five

or more ordered response categories perform relatively well in

confirmatory factor analyses when responses to these items

follow an approximate normal distribution (Byrne, 2001). 

Two approaches to dealing with non-normality and non-

linearity in the analysis of items will be discussed in the

paragraphs that follow, namely (a) using measurement models

from item response theory, and (b) using item parcels rather

than individual items as the basic units of factor analysis. Item

response theory techniques are useful in the analysis of

unidimensional scales, whereas the factor analysis of item

parcels is appropriate when the research focuses on the relations

between latent variables or factors rather than the items

themselves. 

Item analysis using item response theory based methods

Item response theory focuses explicitly on the non-linear

relations between items and the hypothetical latent trait that

underlies the items. There are several competing item response

theory models, of which the most popular are (a) Rasch’s (1960)

logistic model, which is also sometimes called the one-

parameter logistic model, (b) the two-parameter logistic model,

and (c) the three-parameter logistic model (Embretson & Reise,

2000). In the present study the focus falls on the Rasch model. 

The Danish mathematician, Georg Rasch, developed a

mathematical model where the probability of a correct or

incorrect response to a dichotomous item may be predicted as a

function of an individual’s standing on the latent trait (or

ability) that is measured by the items. The probability that an

individual will endorse or correctly answer an item depends on

two aspects only, namely (a) the ability, or whatever is being

measured, of the individual (�), and (b) the difficulty of the item

(�). In Rasch analysis person ability and item difficulty are

expressed on the same logit scale, which allows for a direct

comparison of persons and items. If an individual’s ability

matches the difficulty of an item, the Rasch model predicts that

he or she will have a 50% probability of answering the item

correctly or endorsing the item. If, however, the individual’s

ability exceeds the item difficulty, there is a greater than 50%

chance that he or she will answer the item correctly or endorse

the item. Similarly, if the item’s difficulty exceeds the

individual’s ability, there is a less than 50% chance that he or she

will answer the item correctly or endorse the item (Bond & Fox,

2001). These relationships can be mathematically expressed by

the following formula:

where Pni (xni = 1/�n, �i) is the probability of person n on item i

scoring a correct (x = 1) response given person ability (�n) and

item difficulty (�i), and e is the natural log function.

Andrich (1978a, 1978b) extended the Rasch model for

dichotomous items to a rating scale model for ordered category

items. In the rating scale model each item is described by a single

item location or difficulty parameter (�). In addition, an item

with m + 1 ordered categories or response options is modelled as

having m thresholds or category intersection parameters (�).

Each threshold corresponds with the difficulty of making the

step from one category to the next. In the rating scale model the

same set of category intersection parameters is estimated for all

the items in the scale (this requires that all items must have the

same number of categories). The item difficulty parameter serves

to move the item thresholds up or down the logit scale (�). The

probability of person n endorsing category j on item i is

estimated by the following formula:

where Pni (xni = 1/�n, �i) is the probability of person n on item i

endorsing category j (x = j), given person ability (�n), item

difficulty (�i) and the category intersection parameter (�j), and e

is the natural log function.

Person ability and item difficulty may be estimated by 

joint, marginal, or conditional maximum likelihood

procedures. In the present study all parameters are estimated

with the Winsteps programme (Linacre, 2003), which uses an

unconditional or joint maximum likelihood method. One 

of the attractive theoretical features of the Rasch model is 

that the raw scores for persons and items are sufficient

statistics for the estimation of person and item parameters

(Embretson & Reise, 2000). The property of sufficient statistics

leads to a condition called specific objectivity, which holds

that person ability can be estimated separately from item

difficulty and vice versa. This means that an individual’s

ability estimate is independent of the particular sample of

items that were chosen and that an item’s difficulty estimate 

is independent of the particular persons that were chosen for

the calibration of the items (Andrich, 1989; Embretson & Reise,

2000; Fischer, 1995). 

The estimated person and item parameters can be used to

estimate the probability of each individual endorsing a

particular item. These probabilities may then be compared with

the actual data and on the basis of this comparison the fit of the

items and persons to the rating scale model may be computed.

Commonly used fit statistics are the INFIT mean square and the

OUTFIT mean square (Wright & Masters, 1982). For each

individual an expected item score, Eni, is calculated which is then

subtracted from the observed item score, Xni to produce a score

residual, Yni, which is standardised to give a standardised score

residual Zni. By summing the squared standardised residuals a

chi-square statistic is obtained, which when divided by N, gives

the OUTFIT mean square. The INFIT statistic weighs the squared

standardised individual items by their standard deviations,

rendering it more sensitive to deviations from the measurement

model for on-target items (i.e. when the difficulty of an item
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matches the ability of an individual). In contrast, the unweighted

OUFTIT mean square is more sensitive to deviations from the

measurement model for off-target items. INFIT and OUTFIT

mean squares range between zero and infinity and have an

expected value of 1,0. Values below 1,0 indicate that the person

or item overfits the model (i.e. there is less variation in the

observed responses than were modelled), whereas values above

1,0 indicate a less than desirable fit (i.e. there is more variation

in the observed responses than was modelled). Generally, fit

values below 1,0 are of less concern than fit values greater than

1,0. The Rasch model presents a mathematical ideal and it is

unrealistic to expect that items or persons will fit the model

exactly. Hence, following the recommendations of Linacre and

Wright (1994) for the analysis of rating scales, items with INFIT

and OUTFIT mean squares between 0,7 and 1,4 may be regarded

as demonstrating adequate fit. When the items fit the model it

provides evidence that all the items are measuring the same

latent trait.

Note that the Rasch model does not include an item

discrimination parameter to be estimated. Hence, the model

proceeds on the requirement that all items discriminate

equally well. Items that do not satisfy this requirement may be

measuring something in addition to the trait of interest and

will not fit the rating scale model properly (as indicated by

INFIT and OUTFIT). Wright (1999) demonstrated that the

introduction of a discrimination parameter destroys the

property of specific objectivity and therefore the separation of

item and person parameters.

The properties described in the paragraphs above suggest that

the Rasch model may be fruitfully applied in the analysis of

items. Specifically, a Rasch analysis can show whether (a) the

items in a scale fit the requirements of the model and therefore

measure the same trait, (b) the categories of the rating scale

function appropriately, (c) the items succeed in separating

individuals with different standings on the trait of interest, and

(d) the items form a meaningful hierarchy in terms of the

probability of endorsement. Furthermore, a Rasch analysis

produces standard errors for each item calibration and person

measure, which may be used to construct confidence intervals

around individual observations. The standard errors for

persons may be plotted against the person measures to show

how precisely the scale measures over different levels of the

latent trait. 

Item parcelling

Although a Rasch analysis may shed important light on the

functioning of items within a unidimensional scale,

researchers may be interested in the multidimensional

structure of a set of items. A common strategy is to subject the

items of the scales to a factor analysis (Gorsuch, 1997). As

pointed out in the preceding paragraphs, however, items

violate the assumptions of factor analysis because they are

ordinal and have non-linear relations with each other, and are

relatively unreliable. 

Some researchers deal with the problems associated with the

factor analysis of items by using item parcels rather than

individual items as the basic units of analysis. An item parcel

may be defined as “an aggregate-level indicator comprised of the

sum (or average) of two or more items …” (Little et al., 2002, p.

152). Parcels are more reliable than individual items, have more

scale points, and are more likely to have linear relations with

each other and with factors (Comrey, 1988; Little et al., 2002;

Kishton & Widaman, 1994). Hence, one would expect the factor

analysis of parcels to provide more satisfactory factor analytical

results with improved model-data fit. 

The proponents of parcelling view it as an attempt to iron out

the inevitable empirical “wrinkles” caused by the unreliability

of items, the non-linear relations between items, the unequal

intervals between scale points, the smaller ratio of common

variance to unique variance, and the tendency for unique

variances to be correlated in confirmatory factor analyses. Such

“wrinkles” may lead to unsatisfactory factor analytic results and

the rejection of useful measurement models (Little et al., 2002). 

When items are aggregated their shared variance is pooled,

which means that the proportion of common variance increases

relative to the proportion of unique variance. This leads to

stronger factor loadings and communalities. Furthermore, the

distributions of parcels are likely to be more normal than the

distributions of individual items. Further advantages are that the

number of scale points in parcels is increased and that the

distances between scale points are likely to be reduced.

Bandalos (2002) demonstrated that when items within a

particular scale have a unidimensional structure, the factor

analysis of parcels leads to improved model-data fit and less

biased structural parameters. When the items have a

multidimensional structure, however, the factor analysis of

parcels may mask the multidimensionality and lead to the

acceptance of misspecified models. Furthermore, under these

conditions parcelling may lead to biased structural parameters.

Hence, it is recommended that parcelling should be used only

when the items within a scale have a unidimensional structure

(Bandalos, 2002; Little et al., 2002).

The general practice of parcelling is criticised by some authors

(see Bandalos, 2002; Little et al., 2002). The critics, whom Little

et al. (2002) described as philosophically empirical-conservative,

argue that parcelling distorts the reality and that it serves as a

smoke screen that clouds the issues of incorrect model

specification and/or poor item selection. These critics believe

that all sources of variance in an item should be reflected in a

confirmatory factor analysis. In contrast, the proponents of

parcelling, described as philosophically pragmatic-liberal, take

the view that it is impossible to account a priori for every

possible source of variance in each item (Little et al., 2002). 

Three methods of parcelling are briefly described in the

paragraphs that follow, namely (a) random assignment of items

to parcels, (b) a priori parcel construction, and (c) empirical

assignment of items to parcels. Random assignment of items to

parcels is justified when the items form an essentially

unidimensional scale. Under this condition each item may be

seen as an alternative and equivalent indicator of the construct

or factor. Here the researcher first decides on the number of

parcels he or she prefers and then randomly assigns (without

replacement) items to the parcels. The random assignment of

items to parcels is the method used in the present study.

A second approach to parcelling is to intentionally construct

homogenous sets of items that are aggregated to form parcels.

This approach requires of the researcher to first specify the

number of parcels and the content or meaning of the parcels.

Homogeneous sets of items are then written for each parcel.

Comrey (1970) followed this approach in the construction of the

Comrey Personality Scales (note, however, that Comrey used a

combined empirical and rational approach in determining the

content of each parcel). 

In the last place, parcels may also be formed empirically, where

the total pool of items is subjected to a factor analysis. Clusters

of highly correlating items are then combined to form parcels,

which then serve as the input variables for further analyses (see

Cattell & Burdsal, 1975; Gorsuch, 1997; Schepers, 1992).

The primary aim of the empirical part of this study is to

demonstrate techniques that may be used to deal with the

problems associated with the factor analysis of items. The

techniques are demonstrated in terms of responses to the items

of the Locus of Control Inventory (Schepers, 1995). A secondary

aim, therefore, is to shed more light on the construct validity of

the Locus of Control Inventory. 
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METHOD

Participants

Participants were 1662 first-year students who completed the

Locus of Control Inventory (Schepers, 1995) as part of a larger

test battery. The test results are used for counselling and research

purposes and are dealt with confidentially. 

Instrument

The Locus of Control Inventory (Schepers, 1995) consists of 80

items that measure three constructs, namely External Control,

Internal Control, and Autonomy. On the basis of a previous item

analysis, three items were rejected due to poor item

characteristics, resulting in a total of 77 items (J.M. Schepers,

personal communication). The reliabilities of the three scales for

the present group of participants, as estimated by means of

Cronbach’s coefficient alpha, may be described as satisfactory:

External Control (25 items), � = 0,84; Internal Control (26

items), � = 0,83; and Autonomy (26 items), � = 0,87. Each item

is endorsed on a seven-point scale. All negatively phrased items

were reflected for the purposes of the Rasch analyses in the

present study.

RESULTS

The first step in the analysis process was to investigate the

distributions of the items. The Mardia coefficient of multivariate

kurtosis for the items was 914,99 (normalised multivariate

kurtosis = 169,09), which clearly indicated a violation of the

assumption of multivariate normality. Table 1 shows the

skewness and kurtosis coefficients for each of the items.

Inspection of Table 1 shows that several of the items were not

normally distributed. 

Principal axis factor analysis of the Locus of Control

Inventory items

To provide a basis for comparison, the 77 selected items of the

Locus of Control Inventory were subjected to an unrestricted

principal axis factor analysis. The eigenvalues-greater-than-unity

criterion, which is often used as a guide to the number of factors

that should be extracted, suggested that 19 factors should be

extracted from the intercorrelations of the 77 items. However, on

theoretical grounds, as reflected in the scoring key, one would

have expected only three factors. 

Separate factor analyses of the items within each of the three

scales obtained by Schepers (1995) were also conducted. The

eigenvalues-greater-than-unity criterion suggested five factors

for the Autonomy items, six for the External Control items, and

five for the Internal Control items. On face value, these findings

suggest that the three scales are multi-dimensional and that the

existing scoring key of the Locus of Control Inventory, which

treats each of the three scales as unidimensional, might be

inappropriate. As explained in the introduction, however, these

results may reflect methodological artefacts rather than

psychologically meaningful and replicable factors.

Rasch rating scale analysis 

An important goal of the Rasch rating scale analysis was to

determine whether the items of each of the three Locus of

Control Inventory scales form a unidimensional scale. From the

Rasch perspective, the investigation of unidimensionality

proceeds by diagnosing idiosyncratic response patterns using

item fit statistics. The item calibrations and fit statistics for the

Autonomy items are given in Table 2. Inspection of the INFIT

and OUTFIT mean squares shows that only one item did not fit

the rating scale model, namely item 62 (OUTFIT mean square =

1,44). This item should be scrutinised to identify the reason for
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TABLE 1

SKEWNESS AND KURTOSIS OF THE 80 LOCUS OF CONTROL INVENTORY ITEMS

Item Skewness Kurtosis Item Skewness Kurtosis Item Skewness Kurtosis

1 -0,476 -0,414 28 -1,021 0,896 55 -0,708 0,972 

2 -0,838 0,354 29 -0,639 0,267 56 0,529 -0,577 

3 -0,301 -0,459 30 -0,613 0,026 57 0,286 -0,626 

4 0,166 -1,128 31 -1,149 1,544 58 1,173 0,577 

5 -0,596 0,573 32 -0,621 0,352 59 -1,216 1,108 

6 -0,804 0,796 33 0,582 -0,386 60 -1,623 3,064 

7 -0,695 0,449 34 0,715 -0,286 61 -1,614 3,410 

8 -1,005 1,125 35 0,535 -0,336 62 -1,036 1,369 

9 -0,509 -0,001 36 0,294 -0,631 63 -1,259 2,221 

10 -1,291 2,632 37 -1,497 3,692 64 -0,411 -0,081 

11 0,994 0,503 38 0,152 -0,604 65 -0,033 -0,885 

12 0,592 -0,416 39 -0,510 -0,370 66 -0,946 0,988 

13 -1,059 2,183 40 -0,849 0,299 67 -0,960 1,350 

14 -0,606 0,356 41 0,839 0,094 68 -0,773 0,918 

15 -0,327 -0,710 42 -1,578 3,324 69 -0,935 1,029 

16 -0,993 0,193 43 0,408 -0,784 70 -0,821 0,346 

17 -0,670 0,182 44 -0,526 0,643 71 -0,180 -0,444

18 -1,441 3,068 45 0,977 0,550 72 -0,041 -0,553 

19 -1,759 5,194 46 -0,737 0,797 73 -0,826 0,362 

20 0,166 -0,584 47 -0,382 -0,389 74 -0,602 0,319 

21 0,187 -0,537 48 -0,903 0,686 75 -1,247 1,890 

22 -0,995 1,003 49 -1,407 2,951 76 -0,732 -0,141 

23 0,631 -0,145 50 -0,391 -0,202 77 -0,271 -0,863 

24 -0,883 0,662 51 -0,082 -0,617 78 0,750 -0,359 

25 -0,609 0,088 52 1,432 1,426 79 0,681 -0,318 

26 -0,486 -0,438 53 1,243 1,186 80 0,043 -0,833 

27 -0,698 0,467 54 -0,854 0,816  

Note. Mardia coefficient of multivariate kurtosis = 914,99; Normalised multivariate kurtosis = 169,093 



the misfit. The mean INFIT value was 1,01 (SD = 0,20) and the

mean OUTFIT value was 1,04 (SD = 0,22), suggesting a

reasonable fit between the data and the model as a whole. The

difficulty calibrations of the 25 items ranged between -0,91

(item 66) and 0,74 (item 72), indicating a reasonable spread of

item difficulties. The standard error of each item difficulty

calibration was low (either 0,02 or 0,03), indicating that the

calibrations were precise. The range of item-score correlations

was relatively small (between 0,33 and 0,57), which shows that

the items related similarly to the latent trait. The person

separation reliability, which is similar in interpretation to

Cronbach’s alpha coefficient, was 0,85, suggesting that the items

succeeded in separating individuals with different trait levels. 

Three items of the External Control Scale had INFIT or OUTFIT

mean squares greater than 1,40, namely items 4, 78, and 52 (see

Table 3). Note that these items had relatively low item-score

correlations, suggesting that they measure something different

from the other items in the scale. The mean INFIT value was 1.02

(SD = 0,23) and the mean OUTFIT value was 1,03 (SD = 0,23),

which showed good overall fit between the External Control

items and the rating scale model. The item difficulty calibrations

ranged between -0,99 (item 9) and 0,64 (item 52) and the

standard errors of the calibrations were low (0,02 for each item).

The person separation reliability was 0,82, which may be

described as satisfactory.

Five items of the Internal Control Scale had INFIT or OUTFIT

mean squares greater than 1,40, namely items 16, 59, 26, 76 and

60 (see Table 4). Note that the OUTFIT mean square for item 16

was particularly high (OUTFIT mean square = 1,83), suggesting

that this item detracts from the measurement quality of the

Internal Control scale. The mean INFIT value was 1,03 (SD = 0,22),

which might be described as satisfactory. The mean OUTFIT value

was 1,11 (SD = 0,26), which is less satisfactory and shows that

some of the items were responded to in an inconsistent way. The

item difficulty calibrations ranged between -0,73 (item 19) and

0,78 (item 26) and the standard errors of the calibrations ranged

between 0,02 and 0,03. The person separation reliability was 0,79,

which although lower than that of the Autonomy and External

Control scales, might still be regarded as satisfactory. 

Overall, the Rasch rating scale analysis suggested that the

majority of the Locus of Control Inventory items showed

adequate fit to the Rasch model. A reasonable spread of item

difficulty calibrations was observed for each scale and the

standard errors of the calibrations were very small. Furthermore,

the person separation reliabilities of the three scales were

satisfactory. Hence, it was concluded that each scale measures an

essentially unidimensional construct. However, some items were

identified that did not fit the model very well. Although one

might decide to eliminate these items, it may be more fruitful to

study them in order to identify the reasons for their poor fit.

Close scrutiny of these items may reveal the reasons for the

misfit and may provide some illumination as to the meaning of

the constructs that are measured by the scales.

Unrestricted maximum-likelihood factor analysis 

of the item parcels

On the basis of the Rasch analyses each of the three Locus of

Control Inventory scales was treated as unidimensional. Within

each scale the items were randomly assigned to one of five item

parcels, giving a total of 15 parcels (parcels A1 to A5 represented

the Autonomy items, parcels E1 to E5 the External Control

items, and parcels I1 to I5 the Internal Control items). Each

parcel contained between five and seven items. 
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TABLE 2

ITEM CALIBRATIONS AND FIT INDICES FOR THE AUTONOMY SCALE

Item Measure Error Infit Infit Outfit Outfit Item-score

MSQ t-value MSQ t-value Correlation

Item 62 -0,33 0,03 1,36 8, 6 1,44 9,9 0,33 

Item 2 -0,20 0,02 1,30 7,4 1,37 9,0 0,42 

Item 17 -0,03 0,02 1,26 6,7 1,32 8,1 0,38 

Item 28 -0,17 0,02 1,32 7,8 1,28 7,1 0,51 

Item 39 0,40 0,02 1,22 6,0 1,25 6,8 0,41 

Item 3 0,60 0,02 1,15 4,5 1,24 6,8 0,36 

Item 15 0,46 0,02 1,16 4,5 1,21 5,8 0,53 

Item 70 -0,36 0,03 1,17 4,4 1,18 4,5 0,50 

Item 72 0,74 0,02 1,08 2,5 1,15 4,5 0,39

Item 1 0,39 0,02 1,09 2,7 1,13 3,8 0,46 

Item 30 0,06 0,02 1,10 2,8 1,11 3,0 0,50

Item 73 0,07 0,02 1,07 2,0 1,09 2,4 0,48 

Item 64 0,70 0,02 1,02 0,6 1,06 1,8 0,39 

Item 24 -0,15 0,02 1,05 1,4 1,06 1,5 0,52 

Item 29 -0,01 0,02 ,98 -0,6 1,02 0,50 0,47 

Item 22 -0,53 0,03 1,00 0,0 0,99 -0,20 0,54 

Item 71 0,64 0,02 ,95 -1,6 0,98 -0,60 0,45

Item 67 -0,48 0,03 ,94 -1,5 0,96 -1,1 0,50 

Item 66 -0,91 0,03 ,90 -2,7 0,86 -3,8 0,50 

Item 46 -0,11 0,02 ,86 -4,0 0,89 -3,2 0,49 

Item 68 -0,46 0,03 ,81 -5,3 0,81 -5,5 0,53 

Item 14 0,07 0,02 ,78 -6,8 0,79 -6,3 0,56 

Item 74 0,06 0,02 ,73 -8,3 0,74 -7,9 0,57 

Item 13 -0,52 0,03 ,73 -7,9 0,74 -7,7 0,54

Item 44 0,08 0,02 ,64 -9,9 0,66 -9,9 0,53 

Item 5 0,02 0,02 ,62 -9,9 0,64 -9,9 0,54 

Mean 0,00 0,02 1,01 0,1 1,04 0,7 

S.D. 0,42 0,00 0,20 5,5 0,22 5,9 

Note. Fit mean squares >1,40 are printed in bold face. Items are sorted in descending order according to the OUTFIT mean square. 
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TABLE 3

ITEM CALIBRATIONS AND FIT INDICES FOR THE EXTERNAL CONTROL SCALE

Item Measure Error Infit Infit Outfit Outfit Item-score

MSQ t-value MSQ t-value Correlation

Item 4 -0,24 0,02 1,50 9,9 1,53 9,9 0,34 

Item 78 0,12 0,02 1,41 9,9 1,50 9,9 0,34 

Item 52 0,64 0,02 1,47 9,9 1,48 9,9 0,38 

Item 58 0,48 0,02 1,35 8,8 1,26 6,2 0,47 

Item 77 -0,59 0,02 1,34 9,8 1,35 9,9 0,43 

Item 65 -0,29 0,02 1,19 5,8 1,20 6,3 0,40 

Item 43 0,01 0,02 1,10 3,1 1,13 3,9 0,46 

Item 11 0,40 0,02 1,10 2,8 1,12 3,2 0,38 

Item 34 0,29 0,02 1,10 3,0 1,09 2,6 0,46 

Item 35 0,16 0,02 1,03 0,8 1,05 1,6 0,47 

Item 53 0,61 0,02 1,03 0,1 1,01 0,3 0,47 

Item 47 -0,75 0,02 1,00 0,0 1,00 0,1 0,37 

Item 38 -0,22 0,02 0,94 -2,1 0,97 -1,0 0,36 

Item 56 0,06 0,02 0,96 -1,4 0,97 -1,0 0,46 

Item 12 0,20 0,02 0,92 -2,6 0,93 -2,2 0,56 

Item 41 0,35 0,02 0,92 -2,5 0,89 -3,2 0,56 

Item 45 0,37 0,02 0,86 -4,3 0,88 -3,4 0,53 

Item 9 -0,99 0,02 0,87 -4,2 0,87 -3,9 0,40 

Item 20 -0,13 0,02 0,81 -6,6 0,86 -4,7 0,41 

Item 80 -0,25 0,02 0,84 -5,6 0,84 -5,5 0,54 

Item 79 0,26 0,02 0,84 -5,2 0,83 -5,3 0,60 

Item 21 -0,14 0,02 0,78 -7,8 0,81 -6,6 0,40 

Item 36 -0,02 0,02 0,80 -7,0 0,80 -6,7 0,53 

Item 57 -0,07 0,02 0,76 -8,8 0,76 -8,2 0,56 

Item 51 -0,26 0,02 0,72 -9,9 0,73 -9,6 0,50 

Mean 0,00 0,02 1,02 -0,1 1,03 0,1 

S.D. 0,40 0,00 0,23 6,2 0,23 5,9 

Note. Fit mean squares >1,40 are printed in bold face. Items are sorted in descending order according to the OUTFIT mean square.

TABLE 4

ITEM CALIBRATIONS AND FIT INDICES FOR THE INTERNAL CONTROL SCALE

Item Measure Error Infit Infit Outfit Outfit Item-score

MSQ t-value MSQ t-value Correlation

Item 16 0,46 0,02 1,57 9,9 1,83 9,9 0,33

Item 59 0,01 0,02 1,48 9,9 1,61 9,9 0,37 

Item 26 0,78 0,02 1,33 9,1 1,51 9,9 0,31 

Item 76 0,56 0,02 1,29 7,6 1,50 9,9 0,35 

Item 60 -0,43 0,03 1,41 8,2 1,38 8,0 0,41 

Item 48 0,33 0,02 1,07 1,8 1,21 5,1 0,38 

Item 25 0,39 0,02 1,03 0,9 1,18 4,4 0,38

Item 40 0,37 0,02 1,07 1,7 1,16 4,1 0,39 

Item 61 -0,23 0,03 1,15 3,2 1,16 3,7 0,45

Item 42 -0,39 0,03 1,11 2,4 1,07 1,5 0,48

Item 18 -0,34 0,03 1,04 1,0 1,09 2,1 0,41

Item 8 0,13 0,02 0,98 -0,5 1,08 1,9 0,37 

Item 31 -0,07 0,02 1,00 -0,1 1,05 1,2 0,44 

Item 10 -0,42 0,03 0,92 -1,9 1,02 0,4 0,42 

Item 75 -0,23 0,03 0,99 -0,2 1,02 0,4 0,51 

Item 6 0,06 0,02 0,87 -3,4 0,98 -0,5 0,43 

Item 19 -0,73 0,03 0,97 -0,6 0,95 -1,2 0,46 

Item 32 0,41 0,02 0,85 -4,2 0,96 -0,9 0,44

Item 63 -0,52 0,03 0,93 -1,6 0,96 -0,9 0,44 

Item 54 0,28 0,02 0,88 -3,2 0,95 -1,2 0,42 

Item 69 0,01 0,02 0,89 -2,8 0,94 -1,6 0,48 

Item 49 -0,56 0,03 0,93 -1,6 0,91 -2,1 0,46 

Item 37 -0,21 0,03 0,90 -2,3 0,88 -3,1 0,49 

Item 27 0,12 0,02 0,79 -5,5 0,89 -2,7 0,46 

Item 7 0,08 0,02 0,77 -6,1 0,85 -3,8 0,44 

Item 55 0,15 0,02 0,56 -9,9 0,61 -9,9 0,56 

Mean 0,00 0,02 1,03 0,4 1,11 1,7 

S.D. 0,38 0,00 0,22 5,0 0,26 4,8 

Note. Fit mean squares >1,40 are printed in bold face. Items are sorted in descending order according to the OUTFIT mean square. 



Mardia’s coefficient of multivariate kurtosis for the 15 

parcels was 35,72 (normalised multivariate kurtosis = 32,24),

which showed that the violation of multivariate normality

was less extreme than for the items. The skewness and

kurtosis coefficients of each of the 15 parcels are reflected 

in Table 5. Comparison of this table with Table 1 also 

shows that the parcels deviated less severely from normality

than did the items.

The 15 item parcels were subjected to an unrestricted

maximum-likelihood factor analysis with oblique Promax

rotation (k = 4). The Scree-plot suggested that three factors

should be extracted (see Figure 1), which jointly explained

63.52% of the variance. Although the significant likelihood

chi-square suggested that more factors might be extracted,

�2(63) = 229,61, p < 0,001, inspection of the residual matrix

showed only two residuals > 0,05 (see Table 6). The overall

smallness of the residuals showed that the extraction of more

factors was not warranted. Moreover, the extraction of only

three factors was consistent with the theoretical measurement

model that underlies the Locus of Control Inventory. 

The Promax rotated factor pattern matrix is presented in Table

7. Inspection of this table shows that each factor was well

defined: Factor 1 by item parcels A1 to A5, Factor 2 by item

parcels I1 to I5, and Factor 3 by item parcels E1 to E5. The

primary factor pattern coefficients ranged between 0,53 (I1 on

Factor 2) and 0,82 (A2 on Factor 1). The highest secondary

factor pattern coefficient of any parcel was 0.16 (A1 on Factor

2), suggesting that each parcel was a relatively pure indicator of

its respective factor.

The correlations between the factors were as follows: Factor 1

(Autonomy) and Factor 2 (Internal Control), r = 0,64; Factor 1

(Autonomy) and Factor 3 (External Control), r = -0,38; and Factor

2 (Internal Control) and Factor 1 (External Control), r = -0,24.

Overall, the findings of the unrestricted factor analysis of the

item parcels are consistent with the postulated structure of the

Locus of Control Inventory and provide support for the

construct validity of the three scales.

Figure 1. Scree plot of eigenvalues for the item parcel

solution

Maximum-likelihood confirmatory factor analysis

The construct validity of the postulated factor structure of the

Locus of Control Inventory was also examined with a

maximum-likelihood confirmatory factor analysis. The first
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TABLE 5

SKEWNESS AND KURTOSIS OF THE 15 LOCUS OF CONTROL INVENTORY ITEM PARCELS

Parcel Skewness Kurtosis Parcel Skewness Kurtosis Parcel Skewness Kurtosis 

E1 0,167 -0,444 I1 -0,294 0,048 A1 -0,374 -0,001 

E2 0,114 -0,164 I2 -0,828 1,075 A2 -0,055 -0,078 

E3 0,365 -0,095 I3 -0,550 0,334 A3 -0,236 -0,011 

E4 0,090 -0,229 I4 -0,388 0,096 A4 -0,121 -0,048 

E5 0,446 0,031 I5 -0,342 0,072 A5 -0,172 -0,220 

Note. Mardia coefficient of multivariate kurtosis = 35,72; Normalised multivariate kurtosis = 32,242 

TABLE 6

STANDARDISED REESIDUAL MATRIX AFTER UNRESTRICTED MAXIMUM LIKELIHOOD EXTRACTION OF THREE FACTORS

E1 E2 E3 E4 E5 I1 I2 I3 I4 I5 A1 A2 A3 A4 

E2 0,07

E3 -0,02 -0,04    

E4 -0,01 0,04 -0,02    

E5 -0,03 -0,04 0,07 -0,01

I1 0,00 -0,01 0,02 0,00 -0,01   

I2 0,01 0,01 -0,03 0,01 0,01 -0,01   

I3 0,01 0,00 0,01 -0,03 0,00 -0,02 0,00   

I4 -0,01 0,00 0,02 0,00 -0,01 0,02 0,00 0,01  

I5 -0,01 0,00 -0,01 0,02 0,01 0,01 0,01 0,01 -0,02

A1 -0,01 -0,01 0,01 0,00 0,00 -0,02 0,02 -0,02 0,00 0,00  

A2 0,01 0,00 0,02 -0,02 -0,01 0,00 -0,01 0,03 0,00 -0,01 -0,01  

A3 -0,02 -0,02 0,00 0,02 0,02 -0,01 -0,01 -0,01 0,00 0,01 0,01 0,00 

A4 0,01 0,02 -0,02 0,02 -0,03 0,00 0,01 -0,02 0,00 0,00 -0,01 0,02 -0,01 

A5 0,01 0,00 -0,01 -0,01 0,01 0,01 0,00 0,00 -0,01 0,00 0,01 0,00 0,00 -0,01

Note. Residuals > 0,05 are printed in bold face. 



step in the confirmatory factor analysis was to specify the

measurement model (see Figure 2). This model, which was

labelled Model 1, postulated that parcels E1 to E5 were

indicators of an External Control factor, parcels I1 to I5 were

indicators of an Internal Control factor, and parcels A1 to A5

were indicators of an Autonomy factor. Model 1 is consistent

with the scoring key of the Locus of Control Inventory. In

accordance with common factor theory, each parcel was also

influenced by a unique factor that represented error variance

and specific variance. The unique variances and the loadings

of the factors on their respective indicators were freely

estimated from the data. The loadings of a factor on the

parcels that do not serve as indicator of that factor were

constrained to zero (for instance the loading of Autonomy on

parcel E1 was hypothesised to be equal to zero). The

correlations between the factors were also freely estimated

from the data. To statistically identify the model, the

variances of the factors and the regression weights of the

parcels on the unique factors were fixed to unity. In the last

place, the correlations between all unique factors were

constrained to be equal to zero.

TABLE 7

UNRESTRICTED PROMAX ROTATED FACTOR PATTERN MATRIX

(K = 4) OF ITEM PARCELS

Parcel Factor  

1 2 3 h2

E1 -0,03 -0,07 0,67 0,49 

E2 0,07 0,04 0,76 0,53 

E3 0,06 -0,04 0,75 0,54 

E4 -0,01 0,06 0,68 0,46 

E5 -0,14 -0,02 0,66 0,53 

I1 0,14 0,53 -0,04 0,41 

I2 -0,14 0,81 -0,01 0,53

I3 -0,06 0,74 -0,10 0,53 

I4 0,14 0,71 0,03 0,63 

I5 0,07 0,71 0,10 0,54 

A1 0,69 0,16 0,11 0,58 

A2 0,82 -0,06 0,04 0,59 

A3 0,76 0,02 0,04 0,53 

A4 0,73 -0,09 -0,12 0,52 

A5 0,75 0,06 -0,10 0,69 

Note. Factor loadings > 0,15 are printed in bold face. 

Figure 2: Confirmatory factor analysis model for the Locus

of Control Inventory

The fit indices (see Appendix A for explanations of the fit

indices) obtained in this study were as follows: �2 (87) =

628,51; Goodness of Fit Index (GFI) = 0,95; Adjusted

Goodness of Fit Index (AGFI) = 0,93; Tucker-Lewis Index (TLI)

= 0,94; Comparative Fit Index (CFI) = 0,95; Root Mean Square

Error of Approximation (RMSEA) = 0,062 (,058 – 0,067); and

Standardised Root Mean Squared Residual (SRMR) = 0,05.

Although the hypothesis of an exact fit was rejected, the GFI,

AGFI, TLI, CFI, RMSEA, and SRMR suggested satisfactory fit

between Model 1 and the data. The rejection of the

hypothesis of exact fit was not unexpected, because with a

sample size of 1662 the chi-square was rendered so powerful

that even very small discrepancies would have led to a

significant chi-square.

Inspection of the standardised residual matrix shows that, 

for the most part, the residuals were small (see Table 8). It

does seem, however, that the External Control and 

Autonomy parcels share some variance that is not 

adequately modelled. The statistical fit of Model 1 could be

improved by estimating the correlations between the

External Control and Autonomy unique variances. This 

was not done, however, because in the absence of 

theoretical justification for such correlations, they would

have been difficult to explain.

The standardised estimated factor loadings of Model 1 are

summarised in Table 9. Each of the factors had high 

and statistically significant loadings on their respective

parcels, which shows that the parcels are good indicators of

the constructs. The loadings ranged from 0,65 (I1 on 

the Internal Control factor) to 0,84 (A5 on the Autonomy

factor). Note that these loadings, and therefore also the

communalities, are higher than what would have obtained 
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TABLE 8

STANDARDISED RESIDUAL MATRIX AFTER CONIRMATORY MAXIMUM LIKELIHOOD AXTRACTION OF THREE FACTORS

E1 E2 E3 E4 E5 I1 I2 I3 I4 I5 A1 A2 A3 A4 

E2 0,07

E3 -0,03 -0,02    

E4 -0,02 0,06 -0,01    

E5 -0,04 -0,05 0,06 -0,02   

I1 -0,08 0,00 -0,01 -0,01 -0,11

I2 -0,02 0,08 -0,01 0,06 -0,03 -0,02   

I3 -0,08 0,01 -0,04 -0,03 -0,10 -0,02 0,03   

I4 -0,06 0,08 0,04 0,05 -0,08 0,00 0,00 0,00  

I5 0,00 0,12 0,06 0,12 0,00 0,00 0,03 0,01 -0,02  

A1 0,02 0,14 0,12 0,10 -0,01 0,06 0,02 0,01 0,09 0,06

A2 0,00 0,10 0,08 0,02 -0,07 0,02 -0,10 -0,03 0,00 -0,03 -0,01  

A3 -0,02 0,08 0,07 0,07 -0,04 0,03 -0,07 -0,03 0,03 0,01 0,02 0,01 

A4 -0,08 0,01 -0,06 -0,02 -0,17 0,02 -0,09 -0,07 -0,02 -0,05 -0,02 0,04 0,00 

A5 -0,07 0,03 -0,02 -0,03 -0,12 0,06 -0,05 -0,01 0,03 0,00 0,00 0,00 -0,01 0,00 

Note. Residuals > 0,05 are printed in bold face.



if individual items served as the units of analysis. The

correlations between the three factors were as follows:

External Control and Internal Control, r = -0,27; External

Control and Autonomy, r = -0,42; and Autonomy and 

Internal Control, r = 0,69. 

TABLE 9

STANDARDISED CONFIRMATORY FACTOR PATTERN

MATRIX FOR THE 15 PARCELS

Parcel External Internal Autonomy t-statistic 

Control Control

E1 0,70 (0,02) 0,00 0,00 45,19* 

E2 0,71 (0,02) 0,00 0,00 46,77* 

E3 0,73 (0,02) 0,00 0,00 49,93* 

E4 0,66 (0,02) 0,00 0,00 40,16* 

E5 0,73 (0,02) 0,00 0,00 49,91* 

I1 0,00 0,65 (0,02) 0,00 39,72*

I2 0,00 0,69 (0,02) 0,00 45,60* 

I3 0,00 0,72 (0,01) 0,00 49,79*

I4 0,00 0,81 (0,01) 0,00 70,51*

I5 0,00 0,72 (0,02) 0,00 51,01*

A1 0,00 0,00 0,75 (0,01) 59,92*

A2 0,00 0,00 0,75 (0,01) 60,09*

A3 0,00 0,00 0,75 (0,01) 60,55*

A4 0,00 0,00 0,70 (0,01) 49,39*

A5 0,00 0,00 0,84 (0,01) 88,52*

Note. Standard errors of the factor pattern coefficients are given in parenthesis.

* p < 0,01 

To provide a further basis for comparison, the confirmatory

factor analysis was also conducted with the 77 items as the units

of analysis (Model 2). Each item was assigned to a factor in

accordance with the scoring key. Factor loadings and error

variances were freely estimated, but the variances of the factors

and the regression of the parcels on the unique factors were

fixed to unity. The goodness of fit indices for Model 2 were as

follows: �2 (2846) = 12374,31; GFI = 0,80; AGFI = 0,79; TLI = 0,66;

CFI = 0,67; RMSEA = 0,052 (0,052 – 0,053); and SRMR = 0,06. For

all the indices, except the RMSEA and the SRMR, Model 2 (item

model) fit the data substantially poorer than Model 1 (parcel

model). To allow for quick comparison, the fit of the two models

is summarised in Table 10.

TABLE 10

COMPARISON OF FIT INDICES FOR ITEM VERSUS PARCEL BASED

MEASUREMENT MODELS

Fit index Item model Parcel model 

Chi square 12374,31 628,51 

df 2846 87 

Jöreskog and Sörbom GFI 0,80 0,95 

Jöreskog and Sörbom AGFI 0,79 0,93 

TLI 0,66 0,94 

CFI 0,67 0,95 

RMSEA 0,052 (0,052 – 0,053) 0,062 (0,058 – 0,067) 

SRMS 0,06 0,05 

Note. For the RMSEA 90% confidence intervals are given in parenthesis. 

Overall, the confirmatory factor analysis of the item parcels

revealed a good fit between the model and the data. The item

parcels were shown to be strong indicators of their respective

factors. The correlations between the factors were moderately

high to high. Note that Autonomy and Internal Control shared

approximately 50% of their reliable variance, suggesting that they

might be combined into a single factor. Inspection of the

Modification Indices, however, showed that the fit of the model

could not be improved by allowing the indicators of the two

factors to have cross loadings or by allowing the unique factors

of these indicators to be correlated. Moreover, a model where the

correlation between the Autonomy and Internal Control factors

was constrained to unity (Model 3), showed relatively poor fit: �2

(88) = 1170,46; GFI = 0,91; AGFI = 0,88; TLI = 0,88; CFI = 0,90; and

RMSEA = 0,086 (,082 - 0,090). Because Model 3 was nested within

Model 1, the difference in their respective chi-squares could be

interpreted for significance. This difference was statistically

significant, �2 (1) = 542,13, suggesting that the original three-

factor model (Model 1) fit the data significantly better than

Model 3. These findings provide support for the construct validity

of the three scales of the Locus of Control Inventory. 

DISCUSSION

The purpose of this article was to examine problems

encountered in the factor analysis of items and to demonstrate

two methods that may be used to address these problems,

namely item response theory models, and the factor analysis of

item parcels rather than individual items. It was pointed out in

the introduction that the problems might be attributed to the

violation of some of the assumptions on which factor analysis is

based. The first assumption is that the input data are continuous

and measured on an interval level, but items provide ordinal

data that typically contain only a limited number of ordered

categories. Secondly, the distributions of items are often

nonnormal, which violates the assumption of normality.

Thirdly, the relations between items and the traits that underlie

them are nonlinear, which violates the assumption of linear

relations. Furthermore, in comparison to scales items are

unreliable, which leads to low communalities, poor factor

solutions, and correlated unique factors.

The factor analysis of items, the Rasch rating scale model, and

the factoring of item parcels were applied to the items of the

Locus of Control Inventory. This inventory consists of three

scales, namely Autonomy, Internal Control and External Control.

A central focus of this study was to examine the degree to which

the different analytic methods support the construct validity of

the three scales.

Unrestricted principal axis factor analysis of the Locus of

Control Inventory items

On theoretical grounds one would expect three factors to explain

the covariances of the 77 items of the Locus of Control Inventory.

However, when subjected to a principal factor analysis the

eigenvalues-greater-than-unity criterion suggested 19 factors.

When the items of the three scales were analysed separately the

eigenvalues-greater-than-unity criterion suggested five factors for

the Autonomy scale, five factors for the Internal Control scale,

and six factors for the External Control scale. On the basis of

these results one might conclude that the scales are

multidimensional rather than unidimensional and that their

scoring keys may have to be revised to reflect this

multidimensionality. However, it should be kept in mind that the

observed multidimensional structure might be a methodological

artefact. Nunnally and Bernstein (1994) warned in this regard: 

Ordinary approaches to factoring items (i.e. those that may be

appropriately applied to scale-level analyses) are almost

guaranteed to produce spurious results. Such spurious results

may lead to inappropriate criticism of sound scales or, what is

basically the same thing, lead an investigator to falsely believe

that the scale that he or she has developed is inappropriately

multidimensional when in fact it is not (Nunnally &

Bernstein 1994, p. 316).
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Rasch rating scale analysis

The Rasch model represents a mathematical ideal for

measurement, which requires that all the items should relate in a

consistent way to the trait of interest. Only two factors influence

an individual’s response to an item in the Rasch model: (a) the

individual’s standing on the latent trait that the item measures,

and (b) the difficulty or endorsability of the particular item.

From this it follows that if the data fit the model, then the items

constitute an essentially unidimensional scale. 

The Rasch rating scale analysis of the Locus of Control Inventory

items showed that with the exception of a small number of

items, the fit between the data and the model was satisfactory for

all three scales. Hence, it is concluded that each of the

Autonomy, Internal Control and External Control scales measure

an unidimensional trait and that the items in each scale function

properly. These results are in contrast to that of the principal

factor analysis of the same data, which suggested that the scales

are multidimensional. A possible reason for the different results

might be that the Rasch model was explicitly designed for the

analysis of ordinal items and explicitly models non-linear

relations between items and the latent trait that they measure,

whereas factor analysis is more appropriate for the analysis of

continuous, normally distributed data. 

Some authors argue that it is not necessary to employ the Rasch or

other item response theory models, because the person measures

produced by these models correlate very strongly with ordinary

summated total scores (Fan, 1998). One should note, however, that

a very strong correlation is only observed if the data fit the Rasch

model. Under these conditions the total score contains all the

information necessary to estimate a person’s standing on the latent

trait (Andrich, 1989). When the data do not fit the model, the total

score is not a sufficient statistic for the estimation of a person’s

standing on the latent trait and the correlation between total scores

and the Rasch person measures will be lower. From this perspective

the Rasch model provides justification for the calculation of total

scores if the data fit the model. Rasch measures are to be preferred

over total scores because total scores represent the ordinal-scale

measurement, whereas Rasch measures are at an interval level.

Furthermore, Rasch measures are independent of the particular

sample of items, and as a consequence are not adversely affected by

missing data. In the last place a Rasch analysis allows for the

identification of individuals whose responses do not fit the model

and for whom the total score might not be an adequate indicator

of his or her standing on the latent trait.

Unrestricted factor analysis of the item parcels

The 77 items of the Locus of Control Inventory were reduced to 15

parcels through the random assignment of items within a particular

scale to a parcel. Each parcel contained five or six items and each of

the External Control, Internal Control, and Autonomy scales was

represented by three parcels. Note that the parcelling was only

performed after the Rasch analysis had supported the

unidimensionality of the three scales. Hence, each parcel might be

considered to be a mini-version of the full scale to which it belongs.

The unrestricted factor analysis of the 15 item parcels with

Promax rotation provided strong support for the validity of a

three-factor solution to the Locus of Control Inventory. These

factors corresponded with the External Control, Internal Control,

and Autonomy scales. The residual covariances of the parcels were

very small indicating that no additional factors with substance

could be extracted from them. These results are in contrast with

those of the unrestricted principal axis factor analysis of the 77

items as described in the paragraphs above. The factor analysis of

the parcels produced results that are in accordance with the

theory that underlies the Locus of Control Inventory.

Confirmatory factor analysis of the item parcels 

The effect of item parcelling in confirmatory factor analysis was

investigated by comparing the results of an item-level confirmatory

model with those of a parcel-level confirmatory model. In the item-

level model the 77 items served as indicators of the Internal

Control, External Control, and Autonomy factors, and in the

parcel-level model the 15 parcels served as the indicators of these

three factors. A comparison of the two models showed that the

parcel-level model fit the data much better than the item-level

model. The fit of the parcel-level model was very good, indicating

that the covariances of the parcels were adequately explained by

the three postulated factors of the Locus of Control Inventory. In

contrast, the results of the item-level analysis indicated poor fit.

The superior fit of the parcel-level model in the unrestricted and

confirmatory factor analyses may be ascribed to the fact that

parcels are more reliable, have more scale points, more closely

approximate an interval-scale level, more closely approximate

normality, and therefore more closely satisfy the assumptions of

factor analysis than do individual items. In addition, parcels

have proportionally smaller unique variances, which lessens the

likelihood of correlations between unique factors. 

One should consider the possibility that the parcelling procedure

might have masked poorly fitting items and model mis-

specification, but in this study the parcels were formed after the

Rasch analysis had confirmed that a common thread runs through

all the items in a particular scale. Hence, it appears safe to conclude

that the random assignment of items to parcels was justified.

RECOMMENDATIONS

Taking into consideration the results of this study and the work

of others, the following three-step strategy is recommended for

the analysis of questionnaires or inventories with more than one

scale (of which the Locus of Control Inventory is an example).

This recommendation is based on the assumption that the scales

were constructed on the basis of strong theory and that the

researcher has a very clear idea of the constructs that each of the

items serve to indicate. 

As a first step, one should determine whether each of the scales

measure a single dominant trait. A satisfactory fit between the

data and the Rasch model, which was explicitly designed for the

analysis of items, provides strong justification for the presence

of such a dominant trait. The Rasch model may also be used to

identify weak items that are in need of revision or items that

should be eliminated from the scale. 

As a second step, researchers may randomly assign the items within

a scale to parcels. Note that the random assignment of items to

parcels is only justified if the items within a scale measure a

unidimensional or dominant trait. In the absence of unidimen-

sionality it is not clear what parcels formed by random assignment

represent and any further analysis of the parcels will be meaningless. 

As a third step, the parcels may serve as the input variables for

unrestricted or confirmatory factor analysis. If the results of the

factor analysis correspond with the anticipated structure it

provides support for the construct validity of the scales. In

addition, the preceding analyses will have confirmed the quality

of the items that comprise the scales. However, if the results do

not correspond with the anticipated structure the construct

validity of the scales should be questioned. It is possible that the

original items do not serve as adequate indicators of the relevant

constructs or it may be that the theory on which the scales are

based may need to be revised.
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APPENDIX A

Goodness of fit of the confirmatory factor analysis models

The fit between the hypothesised measurement model and the

empirical data was evaluated by means of so-called goodness of fit

indicators. The hypothesis of an exact fit was tested with the

likelihood chi square, which states that the discrepancy between

the observed covariances of the indicators (which may be items or

parcels) and the covariances reconstructed on the basis of the

model parameters are zero. Some authors argue that the exact fit

test is too stringent, since it is unlikely that a hypothesised model

will ever fit the data exactly (Browne & Cudeck, 1993; McDonald,

1999). Furthermore, with increasing sample size the chi-square test

may become so powerful that even trivial differences between the

two matrices may lead to the rejection of the hypothesised model

(Byrne, 2001). This problem may be summarised as follows:

Such a hypothesis (of perfect fit) may be quite unrealistic in

most empirical work with test data. If a sufficiently large

sample were obtained this statistic would, no doubt, indicate

that any such non-trivial hypothesis is statistically untenable.

(Jöreskog, 1969, p. 200)

Several heuristic indicators of the “practical” fit between the model

and the data have been devised. In this study the following

indicators were used: Jöreskog and Sörbom’s Goodness of Fit Index

(GFI) and Adjusted Goodness of Fit Index (AGFI), the Tucker-Lewis

Indicator (TLI), the Comparitive Fit Index (CFI), the Root Mean

Square Error of Approximation (RMSEA) and the Standardised Root

Mean Squared Residual (SRMSR). The GFI and AGFI are measures

of absolute fit between the model and the data. Loosely stated, the

GFI reflects the proportion of variance accounted for by the

proposed model and in this sense it is analogous to the R2 of a

multiple regression analysis. The AGFI is the GFI corrected for the

complexity of the model, where models with less degrees of

freedom are penalised. Generally, GFI and AGFI values greater than

0.90 are thought to indicate satisfactory fit.

The TLI and CFI compare the fit of the hypothesised model to

that of a baseline model (which is usually an independance

model where all variables are hypothesised to have zero

covariances). The TLI and CFI generally range between zero and

unity (the TLI can have values greater than unity in some cases)

and a rule of thumb is that values of approximately 0.95 and

higher indicate satisfactory fit (Hu & Bentler, 1999).

The RMSEA expresses the error of approximation per degree of

freedom. Writing within the context of testing for exact fit versus

testing for close fit (or practical fit), Browne and Cudeck (1993)

summarised guidelines for interpreting the RMSEA as follows:

Practical experience has made us feel that a value of the

RMSEA of about 0,5 or less would indicate a close fit of the

model in relation to the degrees of freedom. This figure is

based on subjective judgement. It cannot be regarded as

infallible or correct, but is more reasonable than the

requirement of exact fit with the RMSEA = 0,0. We are also of

the opinion that a value of about 0.08 or less for the RMSEA

would indicate a reasonable error of approximation and

would not want to employ a model with a RMSEA greater

than 0.1 (Browne and Cudeck, 1993).

The standardised root mean square residual (SRMR) reflects the

average size of the standardised residuals in the discrepancy

matrix. Hu and Bentler (1999) suggested that SRMS values <0,08

indicate a reasonably good fit between the model and the data.

DE BRUIN26


