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ABSTRACT 

The forward rate unbiasedness hypothesis states that the current forward rate 
should be an unbiased forecaster of the future spot rate. Inference has always 
been done under the assumption that the forward premium is a stationary short 
memory series. Recent empirical results have indicated that this assumption is 
not valid. Standard unit root tests performed on the forward premium often 
indicate infinite long memory. However, in recent literature fractionally 
integrated models have been applied for the forward premium. Empirical 
analysis is usually performed on exchange rates of developed economies. In this 
article, the South African Rand-Dollar exchange rate is considered and the focus 
is therefore on a developing country. A bootstrap method for determining 
standard errors and confidence limits is described and implemented. 

JEL ClO, F31, Gl4 

INTRODUCTION 

The forward rate unbiasedness hypothesis is a logical starting point for the 
analysis of spot and forward exchange rates. The hypothesis states that the 
current forward rate should be an unbiased forecaster of the future spot rate. In 
terms of a regression model this is expressed as: 

(1) 

where S t+l is the logarithm of the spot rate at time 1+ k, f,). is the logarithm of 

the forward rate at time land k is the length of the forward contract (for 
example, if monthly data are used and a one-month forward contract is 
considered, the value of k will be one). 

I 

Following Fama (1984) a regression model in returns is often used instead of 
(1): 
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(2) 

where Sl+k -S, is the spot return and !,.k -S, is the forward premium. The null 

hypothesis of unbiasedness in this regression is that a' = 0 and fJ' = 1. Inference 
in (2) has always been done under the assumption that the forward premium is a 
stationary short memory series. In effect, it is assumed that the forward premium 
is integrated to order zero, denoted V,.k -s,)- 1(0). 

Recent empirical results have indicated that this assumption is not valid. For 
instance, using unit root tests, Crowder (1994) fails to reject the null hypothesis 
of non-stationarity in several forward premia series. Furthermore, he rejects the 
null hypothesis of stationarity for these series by using the KPSS test of 
Kwiatkowski et al. (1992). Crowder's empirical results therefore indicate that 
the forward premium has a unit root, so that V,.k - s,)- 1(1) . 

As pointed out by Baillie and Bollerslev (1994), the problem with unit root tests 
as well as the KPSS test is that these tests force a choice between an 1(0) and an 
1(1) process. They consider fractionally integrated processes that are I(d) with 
o < d < 1 and find evidence of fractional integration for the forward premia series. 

Most empirical analysis is performed on exchange rates of developed 
ecoQomies. We consider the South African Rand-Dollar exchange rate and our 
focus is therefore on a developing country. In this article basic results regarding 
fractional integration and long memory are given. Different methods for the 
estimation of d are cited. 

A bootstrap method for determining standard errors and confidence limits is 
described and implemented. The importance of standard errors and confidence 
limits in the interpretation of results cannot be over emphasized. If, for instance, 
a 95% confidence interval for d includes both the values 0 and 1, it is 
impossible to draw any conclusions regarding the memory properties of such a 
series. Even though it is almost always possible to estimate d, some time series 
simply do not contain enough information to estimate d accurately. It is 
standard practice to provide standard errors with the estimates. Confidence 
limits are typically calculated under the assumption of a symmetric bell-shaped 
distribution. This assumption is not necessarily valid. The advantage of the 
bootstrap is that it does not rely on any distributional form. It is used to estimate 
the probability distribution of an estimator, together with confidence limits. 

R
ep

ro
du

ce
d 

by
 S

ab
in

et
 G

at
ew

ay
 u

nd
er

 li
ce

nc
e 

gr
an

te
d 

by
 th

e 
Pu

bl
is

he
r (

da
te

d 
20

09
).



SAJEMS NS Vol 5 (2002) No 3 

A MODEL FOR TIME SERIES WITH LONG MEMORY 

Consider the simple autoregressive model for a discrete time series x, 

X, =¢t"H +~ 

501 

(3) 

where the &,' S are white noise innovations with mean 0 and variance u 2
• If 

II 1, x, is integrated to order one, denoted 1(1), and has infinite long memory. 

That is, the effect of the innovations &, is permanent. In contrast, if II < I, then 

x, is 1(0) and has short memory so that the effect of the innovations disappear 

geometrically. The problem with the autoregressive model is that a choice must 
be made between these two extremes. 

ARMA models are not designed to describe time series with long memory, where 
the effect of innovations is not permanent, but still may take relatively long to 
die out. A more suitable model for time series with long memory is the 
fractionally integrated model, which was developed independently by Granger 
(1980), Granger and Joyeux (1980) and Hosking (1981) and is given by 

(4) 

where I" is the mean of x" u, is a covariance stationary series, L is the backshift 

operator and d is the so-called fractional differencing parameter. For d ={}, x, 

has short memory (corresponding to 11<1 in the autoregressive model), while for 
d=l, x, has infinite long memory (corresponding to 11=1). For O<d<l, X, is 

said to be fractionally integrated and has long memory with the effect of the 
innovations disappearing at a slow hyperbolic rate. In particular, x, is stationary 

and mean reverting for 0 < d < M, while for M < d <I, x, is non-stationary but 
still mean reverting (a series is mean reverting for d < 1). 

If ", is a white noise series, (4) is referred to as a fractional white noise model. 

By substituting u, =¢(Lr1fJ(L)&, into (4), an autoregressive fractionally 

integrated moving average or ARFlMA(p,d,q)model is obtained: 

¢(L)(1- L)d (x, - 1") = fJ(L)~ (5) 

Using a Taylor series expansion, it can be shown that the fractional difference 
operator can be written as 
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(6) 

. k d-J 
with Iro = I , Ir\ = -d and Irt = --k-Irt-\. 

See Baillie (1996) for a summary of long memory processes and fractional 
integration as well as the other important properties of the models described 
above. 

ESTIMATION METHODS 

A comprehensive discussion of estimation methods for fractionally integrated 
models is given by Chung and Baillie (1993). These methods include a semi­
parametric estimator in the frequency domain by Geweke and Porter-Hudak 
(1983), a minimum conditional sum of squares (CSS) estimator, originally 
suggested by Hosking (1984), an approximate maximum likelihood procedure in 
the frequency domain by Fox and Taqqu (1986) and a full maximum likelihood 
estimator under the assumption of normally distributed innovations by Sowell 
(1992). 

For our application the CSS method is used. The conditional sum of squares 
function is given by: 

T 

S(l) = f loga2 + 2~ ~>,2 
,=1 

(7) 

where &, is obtained from (5) and A.=(d.'Pt •...• ;,pA, ... ,Oq.cr2
) is the vector of 

parameters that must be estimated. An iterative optimization algorithm is 
employed to minimize (7). CSS is an approximate maximum likelihood method 
with the advantage that it is not as computationally intensive as Sowell's full 
maximum likelihood. It is not based on any distributional assumptions and can 
be extended to estimate models with GARCH components. 
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STANDARD ERRORS AND CONFIDENCE LIMITS 

The bootstrap is a method that is used to detennine the standard error of an 
estimator and to construct confidence limits for the true parameter value - see 
Swanepoel (1990) for a review. In order to assess the precision of an estimate, it 
is of vital importance to calculate standard errors and confidence limits. If the 
estimate for d has a large standard error, it is not stable and the confidence 
interval will consequently be wide and may include a range of values that imply 
stationarity (d < X), non-stationarity and mean reversion (~< d < I), and non­

stationarity without mean reversion d ~ I. On the other hand, if the standard 
error of the estimate of d is small, the confidence interval will be narrow and it 
will be possible to draw accurate conclusions regarding the order of differencing 
from the estimate of d. 

The bootstrap is often applied in situations where no closed fonn expression for 
the standard error of an estimator exists, or when it is difficult to derive such an 
expression. In the case of ARFIMA models the parameters are estimated by 
minimizing a function that is non-linear in the parameters. Conditional sum of . 
squares is used in this study to estimate the parameters of ARFIMA models. 
Closed fonn expressions for the estimators are not available, let alone 
expressions for their standard errors. An advantage of the bootstrap is that it 
does not rely on any distributional assumptions. Although it is a computationally 
intensive method, that is not regarded to be a serious drawback in this age of 
ever increasing computer power. 

The bootstrap was originally proposed for cross sectional or non-time series data 
by Efron (1979). The idea is to draw random samples (with replacement) from 
the observed data. These samples are called bootstrap samples and they Me 
regarded as independent samples from the population. The statistic is calculated 
for every sample. The value of the statistic will vary from sample to sample and 
the distribution of values is an estimate of the sampling distribution of the 
statistic. The standard deviation of the estimated distribution can in many cases 
be shown to be a consistent estimator for the standard error of the statistic under 
consideration. The basic assumption is that the observed data set is 
representative of the population. 

In the case of time series data special care has to be taken to preserve the 
dependence structure of the time series. One of the methods applicable to 
dependent data is to resample from the residuals of the fitted model - see 
Chatteljee (1986). In a study on autoregressive processes, De Koster (1999) 
found that this method perfonns better than other methods for dependent data. 
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In our application, an ARFlMA model is fitted to the observed time series. The 
residuals of this fit are assumed to be representative of the error terms of the 
ARFlMA model. A large number of time series are generated using the fitted 
model as well as the residual terms. These time series are called bootstrap time 
series. Residuals are drawn randomly with replacement from the set of residual 
terms. For every time series an ARFIMA model of the same order as the original 
model is fitted. The estimates will vary from one series to the next. The standard 
deviations of the parameter estimates are then used as estimators for the standard 
errors of the estimates. Care should be taken to fit an appropriate model in the 
first place. The model may not fit well for several reasons. If the error terms 
have a relatively large variance, the bootstrap time series will also have large 
error variances and the estimates will vary relatively more across the different 
time series, resulting in relatively large standard errors and wide confidence 
intervals. In other words, if the model does not fit well in the first place, it will 
also be reflected by the standard errors of the parameter estimates and by the 
length of the confidence intervals. 

In order to calculate confidence limits, it is recommended to generate at least 
1000 bootstrap time series. We use the method of percentiles to calculate 
confidence limits. The 1000 estimates for a particular parameter are ordered and 
the 2.5th and 97.5th percentiles are used as a 95% confidence interval - see for 
example Swanepoel (1990). 

APPLICATION TO SOUTH AFRICAN EXCHANGE RATES 

We study the daily Rand-Dollar spot and thirty-day forward exchange rates for 
the period from 3 January 1995 to 5 March 200 I, a time series of 1524 
observations. The forward premium is calculated as the difference between the 
(logarithm of the) thirty-day forward rate and (the logarithm of the) spot rate 
(Figure I). 

Table I presents the results of unit root (Phillips-Perron) tests and the KPSS test 
for determining the order of integration of the forward premium. First consider 
the KPSS test, which tests H 0 : 1(0) against HI: l(l). The null hypothesis is 

rejected at a I % significance level so that it is clear that the forward premium is 
not a stationary short memory series. Ho : l(l) is tested against HI : 1(0) with the 

Phillips-Perron test. Since the null cannot be rejected, the indication is that the 
forward premium is a non-stationary infinite long memory series. 
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Figure 1 The forward premium: rand-dollar exchange rate 
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However, it is known that unit root tests have very low power against 
fractionally integrated alternatives - see Diebold and Rudebusch (1991) for the 
Dickey-Fuller test and Hassler and Wolters (1994) for the Phillips-Perron test. In 
contrast, Lee and Schmidt (1993) note that the KPSS test is quite powerful 
against fractionally integrated alternatives. Given this, the forward premium 
may be a long memory series that is fractionally integrated. 

Table 1 Testing the order of integration of the forward premium 

Ho : 1(0) 
Phillips-

Ho : [(1) 

KPSS test lJa lJ6 Perron Z(ta ) Z(t6 ) 

5.448 3.32" 
test 

-1.98 -2.48 

Notes 
I lJa and lJ" are the KPSS test statistics based on residuals from 

rcgrcssions with only an intercept and an intercept and time trend 
rcspccli\'cly - see Kwiatkowski et al. (1992). The 0.01 and 0.05 
critical values for lJa are 0.74 and 0.46 respectively. Similarly the 0.01 

and 0.05 critical values for lJ" are 0.22 and 0.15. 
2 Z(ta ) and Z(t,,) are the PhillipS-Perron adjusted test statistics of the 

lagged dependent variable in regressions with only an intercept and an 
intercept and time trend respectively - see Phillips (1987) and Phillips 
and Perron (1988). The 0.01 and 0.05 critical values for Z(ta) are-
3.44 and -2.86 respectively. Similarly the 0.0 I and 0.05 critical values 
for Z(t,,) are -3.97 and -3.42. 
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3 Results from other unit root tests (Dickey-Fuller) were similar to those 
from the Phillips-Perron test and are hence not given. 

4 For both the Phillips-Perron tests and the KPSS tests the number of 
lags were truncated at lag 7 following Newey and West (1987). 

5 • Significant at I % level. 
b Significant at 5% level. 

The correlogram of the forward premium gives more evidence of possible 
fractional integration. The first 200 autocorrelations of the spot rate, the forward 
premium and the spot return are shown in Figure 2. The spot rate is a random 
walk and hence has infinite long memory. The autocorrelations of the spot rate 
will therefore decrease at a very slow rate. Since the spot rate is 1(1), the spot 

return is 1(0) and uncorrelated at higher lags. The spot return therefore has short 
memory. The autocorrelations of the forward premium are persistent, but 
considerably less so than those of the spot rate. This is consistent with long 
memory behavior (the autocorrelations of a long memory series decrease at a 
slow hyperbolic rate). 

Figure 2 First 200 autocorrelations 
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Given the above discussion, the fractional differencing parameter d of the 
forward premium is estimated. ess is used to estimate low-order 
ARFIMA(p,d,q) models for the forward premium with p$2 and q'5.2. Since 
none of \ the estimated autoregressive or moving average parameters is 
significant, they are eliminated from the final model, giving a fractional white 
noise model. Thus, only d and (]'2 are estimated. 
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The empirical estimation results are given in Table 2. The estimate of d is 
approximately 0.8 so that the forward premium is 1(0.8) and has long memory. 
A tota1 of 1000 bootstrap time series are used to determine the sampling 
distribution of d from which the standard error and confidence limits are 
obtained. Figure 3 shows the histogram of this distribution. The distribution is 
nearly symmetrical (slightly positively skewed) but not normal. Because the 
lower boundary of the 95% confidence interval is larger than ~, the forward 

premium is non-stationary. However, the forward premium is mean reverting 
since the upper boundary of the interval is less than 1. 

Table 2 Empirical estimation results 

Observations 
Parameter Estimate 

used 

All 1524 
d 

(1'2 

First 800 
d 

(1'2 

Last 724 
d 

(1'2 0.18 E-06 

Figure 3 Sampling distribution of d 
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0.74 0.75 0.711 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.84 0.85 0.88 0.87 0.88 0.89 

d 

There was a large depreciation in the Rand against the Dollar in June 1998 
followed by a period of high volatility. This is illustrated in Figure 4. Because of 
the depreciation, there was a sharp incre,ase in the forward premium in June 
1998 as can be seen in Figure 1. The question is what the effect of this shock on 
the forward premium series will be. Theoretically, since the estimate of d is less 
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than I, the effect should not be pennanent. That is, the forward premium should 
revert back to the mean. To analyze this problem further, and to confinn our 
estimation results for d, we divided the time series in two subsets. We took the 
first 800 observations from 3 January 1995 to 31 March 1998 and the last 724 
observations from I April 1998 to 5 March 2001. For both these subsets we 
again estimated d. As can be seen in Table 2, the estimates as well as the 
confidence intervals correspond well with those of the complete dataset. The 
forward premium is therefore indeed mean reverting and we conclude that the 
forward premium is /(0.8). 

Figure 4 The daily rand-dollar spot and 30-day forward rates in 1998 
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CONCLUSION 

Recent empirical estimation results indicate that the widely accepted assumption 
of a short memory forward premium is invalid (for example Crowder, 1994). 
The evidence from unit root tests is that the forward premium has infinite long 
memory. However, Baillie and Bollerslev (I994) consider fractionally integrated 
models and conclude that the forward premium has long memory. 

All the above studies concentrate on exchange rates from developed economies. 
We consider the Rand-Dollar exchange rate and hence focus on a developing 
economy (South Africa). Using CSS estimation we also find evidence of long 
memory for the South African data. Therefore, although the forward premium is 
non-stationary and has infinite variance, it is still mean reverting. 

The long memory of the forward premium has implications for the analysis and 
modeling of exchange rates and is also one of the causes of the forward 
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premium anomaly. This anomaly refers to the fact that empirical estimates of fl' 
in the regression model in returns (2) are often negative. The null hypothesis of 
unbiasedness is then rejected (since the empirical estimate of fl' is less than 
unity). As explained in detail by Baillie and Bollerslev (2000), the rejection of 
unbiasedness is due to the persistent autocorrelations of the long memory 
forward premium. In fact, the long memory of the forward premium is in itselfa 
rejection of unbiased ness. 
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