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Abstract

The aim of this paper is to show that with a subset of a natural language, simple systems
running on PCs can be developed that can nevertheless be an effective tool for interfacing
purposes in the building of an Intelligent Tutoring System (ITS). After presenting the
special characteristics of the SmalltalklV language, which provides an appropriate
environment for the development of an interface, the overall architecture of the interface
module is discussed. We then show how sentences are parsed by the interface, and how
interaction takes place with the user. The knowledge-acquisition phase is subsequently
described. Finally, some excerpts from a tutoring session concerned with elementary
geometry are discussed, and some of the problems and limitations of the approach are
illustrated.

Introduction

This paper deals with the way in which users and computers can interact by means of
natural language. In particular, we focus our attention on the development of a restricted
and simplified, but still potentially useful, natural-language interface for an Intelligent
Tutoring System (ITS).

Although natural-language processing technology has become flexible enough to assist in -
certain problem-solving activities, only powerful systems such as INTELLECT (AIC,
1986) are currently able to tackle it effectively. Yet even such systems are subject to severe
limitations (e.g. distinguishing between nouns and verbs), and consequently the problem
arises of considering to what extent simple systems handling only a subset of a natural
. language, and running on inexpensive machines, can be effectively used for interfacing

purposes.

So far, many systems for understanding natural language have been developed, and their
advantages and disadvantages have been investigated for some time (see, for example,
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Morik, 1984; Rich, 1985; Ogden, 1986; Shneiderman, 1986). The most potent argument in
support of the use of natural language is, of course, its flexibility and ‘naturalness’. The
merits of natural-language interfaces are well documented as a result of a number of field
trials (Turner et al., 1984; Jarke et al., 1985; Capindale and Crawford, 1990; Slator e? al.,
1986). But one should remember that ‘normal’ language is not always the best way of
describing things. In fact, activities requiring mathematical skills (e.g. creating shapes or
solving equations) benefit from the use of a restricted formal language that allows the
avoidance of ambiguities inherent in natural languages. On the other hand, when
question-answer tasks are to be tackled, natural-language interaction is clearly better
suited. ‘

Intelligent Tutoring Systems

Although the goal of a system capable of entirely autonomous teaching is still very far
off, recent advancements in both hardware and software technologies mean that systems
can now be developed that offer partial but nevertheless potentially effective solutions to
problems of flexibility, and that can act as reliable partners for human teachers. It is
apparent that the overall result of bringing together multimedia devices and Al
technology will represent a significant improvement in the quality of interface systems
available for ITSs (Barker and Tucker, 1990).

ITSs originated during the 1970s, and have emerged, among other things, as tests for
Artificial Intelligence (AI) concepts. Computer-Assisted Instruction (CAI) systems,
despite their success in certain environments, suffer from an inherent rigidity, being
unable to adapt themselves to the characteristics of specific students. But AT techniques
can be profitably used to improve the performance of CAI systems. ITSs take into -
consideration individual differences in students, and provide more individualized
instruction. This adaptation to individual students has been made possible through the
development of certain modules within an ITS (Polson and Richardson, 1988; McFarland
and Parker, 1990). The most generalized architecture includes four functionally distinct,
though linked, modules:

* Database module, containing knowledge about the topic to be taught, and holding
the data created while the ITS is in operation;

¢ Student module, implementing the student model, and tailoring the system
behaviour to the student’s needs;

* Teaching module, hnplemenﬁng adequate tutoring strategies according to the
information obtained in the student module, and controlling the topic to be taught,
and how and when it should present it;

* Interface module, managing student interaction with the system, and supporting the
building phase of the knowledge base by the human expert.

The role of the interface module is of critical importance (see Brown, 1989; Laurel, 1990),
since it processes the information flow from the user to the system, and vice versa. Thus
the presentation of a topic will be made more or less understandable according to the
quality of the interface.

The knowledge base is usually built by expert AI programmers, but an important issue is
constructing the knowledge base so that a teacher-expert in the field can modify it, even
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though he or she may lack programming experience. For this, our interface module
manages the knowledge acquisition phase so that the ITS is easily maintainable.

The Smalltalk/V programming environment

The Object-Oriented Programming (OOP) paradigm allows systems to be modelled in
terms that attempt to match human thinking and language, and considering that
computer-based tutorial activity also attempts to simulate the way in which human beings
tackle teaching and learning, the importance of the OOP approach with respect to ITS
research is clear. The essence of the approach is that software systems are modelled in
terms of objects and actions on objects by means of messages. An object is essentially a set
of data and methods (the procedures that act on this data). In defining a type of object, a
class is obtained whose elements share some characteristics. The classes are hierarchically
organized so that their characteristics can be inherited by sub-classes.

We decided to implement our interface module in Smalltalk/V, a dialect of Smalltalk
developed by Digitalk Inc. one of whose main advantages is that-it runs on PCs. It also
offers very rapid coding and testing, and provides a wide range of HCI (Human-
Computer Interface) facilities. In particular, the graphical interface is very friendly, the
user interacting with the system mainly by means of windows and menus; friendly
interfaces combined with powerful facilities are an essential part of ITS development, as
has been shown many times (Or-Bach and Bar-On, 1989; Hobbs, 1990; Gisolfi and
Moccaldi, 1990; Gisolfi and Moccaldi, 1992; Fischetti and Gisolfi, 1992). Moreover,
employing OOP in ITS development is useful for diagnosis. Each concept is implemented
as an object, and objects are in turn hierarchically organized so that the attributes needed
for diagnosis can be inherited. Smalltalk/V is very economical in code: an impressive
amount of activity results from a few lines of code, and one can re-use most lines of pre-
written code. Further, editing and correcting errors is accomplished very easily. Of
course, OOP systems are not disadvantage-free (see Jones and Thorne, 1988); for
instance, dynamic binding allows software rules to be compiled, linked and loaded
incrementally, but requires complex structures for its implementation and additional time
for execution.

We can give here, in describing our work, only a vague feel for the unique features of
Smalltalk that make it quite different from conventional languages. Newcomers to the
language may be helped by standard texts on the subject, e.g. Meyer (1988) and Digitalk
(1988).

The architecture of the interface module

Our interface module consists of two distinct sub-modules: Expert and User. The Expert
sub-module manages knowledge acquisition and allows the human expert to build the
knowledge base of the ITS so that it can subsequently be consulted by the student by
means of the User sub-module. The hierarchical characteristics of the Smalltalk/V
language are exploited: thus, we have defined a sub-class of the class Object, called
Modules, and have linked the classes Interface, Engine, Expert Interface and User
Interface as depicted in Figure 1.

Although the underlying principles of the interface are simple, their translation into
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Figure 1: Hierarchical
structure of the interface

User
interface

software brings with it several unavoidable technicalities that use the advanced features of
Smalltalk/V. It is not possible in an outline paper of this kind to go into the details of
these technicalities, and we confine ourselves here to some conceptual aspects.

The class Engine is implemented by means of the minimal functions of a database
module, so that the knowledge base can be built fairly easily. In Smalltalk/V terms, the
knowledge base consists of a set of objects having an internal state, as defined by their
characteristics (instance variables), and a set of specific methods, for example those
defined for the classes String, Dictionary and Set. The knowledge base evolves gradually
as its elements are modified: after some initial conditions have been satisfied, changes in
the knowledge base are related to the inferences carried out by the database module.

As the interface has to process natural language, its dictionary plays a vital role. The non-
specific part of the dictionary is built-in: the human expert has only to add information
specifically related to the topic to be taught. The expert is guided in this activity by
appropriate windows and menus present in the Smalitalk/V environment. All the terms
inserted by the expert are added to the basic dictionary. The subset of the English
language recognized by the interface incorporates nouns, verbs, adjectives, conjunctions,
articles and prepositions. The first three of these (nouns, verbs, adjectives) contain objects
to be considered as ‘meaningful’ (a semantic value is associated with each of them),
whereas the other three (conjunctions, articles and prepositions) are used to link together
elements of the ‘meaningful’ classes. Building the knowledge base has the side-effect of
adding to the interface all the elements it needs to carry out its function.

Our prototype ITS is intended for a tutoring activity in elementary geometry. The human
expert has first to specify what objects are involved (triangles, rectangles, etc.), and then
for each object its syntactic features (singular, plural, gender in the case of Italian) and its
semantic ones (subclass of ...). Other information is also linked to each object, for
instance the number of sides, the perimeter, the area, and what operations are allowed for

- the object. For example, operations such as ‘area measurement’ or ‘verify the equivalence’
are suitably linked to Smalltalk/V methods, then saved in the appropriate class.

The goal of the interface is to associate a semantic value with the sentence typed by the
user, something which can be tackled only if the process is adequately supported by
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parsing algorithms able to check the syntactic and semantic validity of the sentence. The
analysis carried out by the user-interface, faced with the sentence X, can be summarized
as follows:

(a) Does X belong to the interface language?
(b) What is the type of X?
(¢) What is the semantic value of X?

The following section shows how sentences are parsed and these questions answered.

Parsing sentences

The process which a sentence typed by the user undergoes can be briefly described as
follows:

The interface module first analyses the sentence to check whether all its elements belong
to the dictionary. Each acceptable word is stored in the dictionary along with its
synonyms, allowing the maximum available flexibility, and therefore the maximum
available freedom for the user. Although the general structure of parsable sentences is
subject-verb-object, the interface can also cope with more complex sentences where there
are verbs indicating requests. For example, given the sentence ‘Rome is the capital of
Italy’, the interface recognizes the noun ‘Rome’ as the value of the instance variables
Capital and Italy as instances of the class Nation. If the check is positive, the next step
involves a diagnosis as to whether the sentence is the answer to a tutor question or a
user’s question, and the dialogue state has to be changed accordingly. Now, the parsable
sentences can be classified as one of:

(a) Declarative
(b) Direct interrogative
(c) Indirect interrogative

Direct interrogative sentences are recognized by the presence of the final question mark, a
crude but workable solution. User’s answers are expressed by declarative sentences.
Indirect interrogative sentences express an information request by the student. As their
structure is similar to that of declarative sentences, we have introduced into the dictionary
a set of typical expressions whose presence induces the interface to assign the sentence to
the indirect interrogative class. These expressions are, for example: Tell me, Show me,
Explain, and so on. The interface manages user’s questions by means of the Prompter, a
built-in Smalltalk/V window. The sentence typed by the student is stored in the global
variable Line, and then the parsing process starts.

A crucial problem to be tackled is the correct management of sudden changes in the
dialogue state. A dialogue between two individuals may be composed of questions and
answers, but it is hardly realistic that the roles ‘asking-answering’ of individuals carrying
on a question-answer dialogue remain static, something which happens only in quiz-like
sessions, and one has thus to consider that, for example, when the student is asked a
question, instead of answering, s/he might reply with another question. To cope with such
situations, the binary variable Dialogue-state is introduced, whose value changes
according to the circumstance that a question or an answer is expected from the student,
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Thus, if the Dialogue-state indicates that the student’s answer is expected, and an
interrogative sentence is typed, the unanswered question is saved into a stack, the
Dialogue-state switched, the student’s question answered, the tutor’s question popped
from the stack, and the Dialogue-state switched again.

Associating a semantic value with a sentence X has proven to be one of the most dlfﬁcult
problems. We have tackled it by supposing that the student can ask five types of question,
schematically classified as follows:

(1) Tellmeif...

(2) Tellmehow...

(3) Tellme why...

(4) Tell me which...

(5) Tell me howmany...

The keywords: if, how, why, which and how many are stored into Set instances, and are
declared as global variables in the basic dictionary. It is worth noting that the
performance level of the interface is strictly related to the characteristics of the
Smalitalk/V environment. This carries with it some disadvantages, but on the positive
side, this means that a hierarchy of classes can be developed, each linked to a type of
object. In this way, all the knowledge related to the object is contained in a unique class,
including internal variables and methods, so that if a particular class is selected, one is not
obliged to deal with the entire knowledge base: the methods of the selected class are used
to investigate its internal variables and related instances. But one has also to remember
that the interface is not a module independent from the others making up an ITS: indeed,
there is no sharp dividing line between ITS modules, and managing questions requires
suitable interactions between the interface and the inference engine of the database
module.

The first type of question (‘if’) is a confirmation request. Of course, it can also be
expressed, like other classes of sentences, by a direct question (‘Is a triangle a polygon?’).
The interface has simply to check that the relationship between the objects is present and,
if this holds true, the student’s hypothesis is confirmed.

The second type of question (‘how’) is concerned with requests for explanations about the
correct way of executing a specific operation. In this case, the answer requires that the
methods introduced by the expert are suitably communicated to the student. For
example, the sentence ‘Tell me how the perimeter of the triangle is measured’ activates the
inference engine to draw the symbolic code associated with the object ‘triangle’ and the
operation ‘measurement of perimeter’.

The third type of question (‘why’) is concerned with requests for explanations about the
logical steps that have led to the current state. For example, in the sentence: “Why does
the measure of the area equal 707, a Smalltalk/V method will show the steps the current
situation depends upon.

The fourth type of question (‘which’) involves situations where the student wishes to
know which objects satisfy the constraints present in the question. If, after the preposition
‘of’, we find the name of the class to be investigated, synonyms management allows the
phrase ‘surface of the triangle’ to be recognized by the system as equivalent to ‘area of the
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triangle’, and since ‘area’ is one of the instance variables of the class Triangles, the object
Triangle is scrutinized to get information about area measurement. The reasoning can be
iterated, and a similar process investigates the structure of the more complex phrase:
‘measurement of the area of the triangle’. The basic structure of the system allows for
several kinds of mistake to be detected. For example, it is easy to verify that the sentence
‘measure the area of the side’ is incorrect because there is no instance variable associated
with area in the class Side.

The last type of question (‘how many’) can be managed in a similar way to the previous
one, but the system has additionally to look for all the objects that satisfy the conditions
of the question.

Thus, in our architecture, the knowledge base can be regarded as a set of classes,
hierarchically organized according to an expert’s requirements. Each class is associated
with a class variable of type Set in order to contain the instances created during the
processing phase. One can declare, for each class, a specific sub-class named Exercises,
whose instances are ‘all the exercises concerning that class. The student model benefits
from this approach as the analysis concerning student’s knowledge can become more
specialized as lower hierarchical levels are attained. In this way, the interface becomes
more powerful because a sentence can be analysed semantically without using the
inference engine. For example, diagnosing that the phrase ‘area of the line’ is meaningless
would be immediate, although the sentence is syntactically correct.

Operating the knowledge-acquisition interface

As mentioned earlier, the dictionary required by the interface consists of a non-specific
part which includes basic information (articles, prepositions, auxiliary verbs, request
verbs, and so on), and a specific part consisting of information related to the particular
topic to be taught. Figure 2 deplcts the general structure of the dlctlonary and its
functional links.

INTERFACE

DICTIONARY /

Baslic dictionary

Articles Y Request I
KNOWLEDGE BASE

CLASSES
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00000

o
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The structure of the first part of the dictionary is relatively simple. Instances of the class
Set, declared as global variables, are used to contain articles, prepositions, conjunctions
and a collection of typical terms that characterize interrogative sentences, such as ‘Tell
me’ or ‘Show me’. The second part of the dictionary is more complex because the
information furnished by the human expert about the topic to be taught has to be
organized in a suitable way. We have defined two basic classes — Things and Actions
that represent the objects and the operations on them respectively. An instance of Things
is characterized by the name (noun), its gender (in Italian), its plural and a set of
associated synonyms. In a similar way, an instance of Actions consists of the tenses of a
verb and a set of synonyms. All the instances of Things are stored in a set called Objects;
the instances of Actions are stored in a set called Verbs. For example, as elementary
geometry is the topic to be taught, the class Things will include Triangle, Rectangle,
Circle, Side, Area, and so on. In turn, in the class Actions, we have verbs such as
Compute, Measure and Compare.

The knowledge acquisition phase can be sketched as follows. First, the expert is requested
to specify the list of objects the topic consists of. Each topic requires several specifications
because part of the information is required by the interface and another part by the
inference engine. The expert has to define the syntactic features of the object, i.e. singular,
plural, gender and synonyms. Consequently, the instance variables get their value, and
the resulting object is added to the set Objects. Subsequently, the relation ‘is a’ is
considered, and in such a way classes get hierarchically organized. For instance, one has
(the asterisk denotes that the class has no super-class):

Perimeter *
Area *
Polygon *
Square Polygon
Triangle Polygon
Right-angled triangle ————— Triangle

Figure 3 depicts the hierarchical structure of the geometric classes.

Right-angled

angles Figure 3: Hierarchical structure

of the geometric classes

45



Enrico Fischetti and Antonio Gisolfi Natural-language processing

In order to define the classes, the expert has to specify the features of the objects, and these
characteristics become the instance variables of the classes. For example, a polygon is
characterized by the number of sides, formulas for evaluating area and perimeter, and so
on. More specifically, to manage the peculiar features of the objects, for example triangles
and quadrilaterals, two global variables are defined: Features and Differences. In such a
way, the expert specifies which features are shared by objects and which characteristics are
peculiar to each object. In particular, the variable Differences contains a set of rules that
characterize the objects belonging to that class. In other words, the values contained in
such a variable represent the necessary and sufficient conditions for an object to belong to
that class: a polygon is a triangle if, and only if, three sides are present.

When the building phase is completed from the syntactic point of view (gender,
synonyms, singular, plural), the expert has to specify which operations are allowable for
these objects, and this happens by means of sentences having the general structure verb-
complement. First, each sentence is analysed with respect to its compatibility with the
objects present in the dictionary, and if no discrepancy is recognized, the sentence is
stored in the dictionary.

The activity of the interface is twofold: while the dictionary is suitably enlarged, the
engine receives the necessary information to define the methods related to the instances of
the classes. This task is by no means trivial; for example, the complement typed by the
expert might be unknown to the dictionary, so that the operation will be utterly
meaningless. If this is not the case, and the complement is a known object, the verb is
added to the set Verbs, after having been declared as an instance of the class Actions, and
its conjugation and synonyms having been specified. If the complement is unknown, the
expert is requested to re-type the name of the object, and if it is still unknown, the
interface asks whether the new object is to be added to the dictionary. If the answer is
Yes, the complement is added, through the above-mentioned procedure, to the set
Objects, and the action to the set Verbs. Of course, the expert can alternatively express the
complement in a different way if he or she does not want to introduce a new term.

The above-mentioned operations are carried out for each object declared as a class. When
all the required information is collected, the interface prepares the Smalltalk/V code
representing the methods that operate on the data.

Thus each class gets associated with a set of relevant information. For example, the class
Right-angled triangles includes slots for several pieces of data: the names of the sides and
vertices of the triangle, the lengths of its sides, and the measurement of its angles, features
such as ‘number of sides = 3’ and ‘one angle is 90>, the symbolic code for evaluating its
area, perimeter, catheti and hypotenuse. At the end, the dictionary is ready to start the
consulting phase. :

Operating the user interface

A student activates the ITS and starts interacting with the system. Suppose that the
student types:

‘Tell me how the area of the triangle can be measured’

The words this sentence consists of are recognized by the interface, and thus the sentence
is reduced to a standard form:
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‘Tell me how area of Triangle is measured’

The system displays this to the student, and asks for confirmation. If the sentence is not
confirmed, the interface asks for a new formulation of the question. Otherwise, the
module recognizes that this sentence expresses an information request thanks to the term
‘Tell me’, while the presence of the adverb ‘how’ allows it to recognize that the student
wants to know how a certain operation can be carried out. The operation is ‘area
measurement’, and the presence of the phrase ‘of triangle’ allows the system to recognize
the relationship between the operation (measurement), the feature (area) and the class
(triangle).

At this point, the interface is able to ask the engine to draw up the symbolic code
associated with the method ‘area measurement’ defined for the class Triangles. This looks
as follows:

[Engine new DrawFrom: Triangle CodOf: area measurement] Interface: Measurement of
area of triangle: Base * Height /2

Suppose now that the student types:
‘Measure the area of the quadrilateral abed’

As the noun ‘quadrilateral’ is followed by another noun, the interface is able to recognize

that the request ‘measure’ refers to some instance of the class Quadrilateral. Thus the set
of instances of this class is investigated to verify that ‘abcd’ exists, then the data is fetched.
If ‘abed’ is not an instance, the interface asks the student whether it has to be defined. If
the answer is Yes, the interface calls the engine in order to declare a Quadrilateral. The
related method gives the appropriate values to the instance variables, provided that the
rules present in Differences are not contradicted, and finally the new instance is added to
the instance of Quadrilateral. Then the method specific for area measurement is activated:

[Engine newActivate: Area measurement in: Quadrilateral for: abed].
Suppose that the interface is faced with the following statement:
‘Tell me if ptr is a polygon’

This question is a request about a possible class membership. Suppose that ‘ptr’ is an
instance of Triangles but not of Polygons. The interface asks the engine to look for such
instance:

[Engine new Search: ptr relay: is a]

and starting from the circumstance that a triangle is a polygon, the question is answered
affirmatively.

Finally, to give an idea of how the system works in practice, here is an excerpt from a
typical student-interface dialogue:

S: Tell me how the perimeter of the tide can be measured
I: Idon’tunderstand “tide”
S: Sorry, how do you measure the perimeter of the side?

I. “Measure perimeter” is not defined for side.
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Concluding remarks

We are all too aware of the constraints of our interface, but it is apparent that language-
processing capabilities which will be satisfactory in certain circumstances can be achieved
by means of a simple conceptual architecture supported by a powerful programming
environment. Field tests so far carried out show that users generally have a positive
attitude towards the interface. Most errors made by users are directly related to
restrictions in the language, and when a mistake occurs, feedback helps the user to
understand the language limitations of the interface, so that errors are subsequently
avoided. Of course, this kind of positive conclusion has to be drawn cautiously: far more
extensive evaluation is required, and we are now actively engaged in testing, evaluating
and improving the interface.
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