
(page number not for citation purpose)

1
*Corresponding author. Email: cakiroglu@ktu.edu.tr

Research in Learning Technology 2018. @ 2018 Ü. Çakiroğlu et al. Research in Learning Technology is the journal of the Association for Learning

Technology (ALT), a UK-based professional and scholarly society and membership organisation. ALT is registered charity number 1063519.

http://www.alt.ac.uk/. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License

(http://creativecommons.org/licenses/by/4.0/), allowing third parties to copy and redistribute the material in any medium or format and to remix,

transform, and build upon the material for any purpose, even commercially, provided the original work is properly cited and states its license.

Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888

Research in Learning Technology

Vol. 26, 2018

ORIGINAL RESEARCH ARTICLE

Exploring perceived cognitive load in learning programming via Scratch

Ünal Çakiroğlua*, S. Sude Suiçmezb, Yılmaz B. Kurtoğluc, Ayhan Sarid, Suheda Yildize
and Mücahit Öztürkf

aDepartment of Computer and Instructional Technology Education, Fatih Faculty of Education,
Karadeniz Technical University, Trabzon, Turkey; bMinistry of Education, Rize, Turkey;
cRecep Tayyip Erdoğan University, Rize, Turkey; dMinistry of Education, Ordu, Turkey;
eMinistry of Education, Rize, Turkey; fOrtaköy Vocational School, Aksaray University,
Aksaray, Turkey

(Received 8 July 2016; final version received 6 April 2018)

The purpose of this study is to investigate the perceived cognitive load and its
effects on the academic performance in Scratch-based programming. The four
main concepts of programming (sequences, operators, conditions and loop) were
delivered in the instructional package. Participants were 12 sixth-grade students
enrolled at a public secondary school. The results from quantitative and quali-
tative instruments indicated that students’ perceived cognitive loads were close
to each other among four programming concepts. The attractive interface of
Scratch was somewhat useful but some parts of the interface were problematic
for achieving the programming tasks. This study concludes with suggestions for
Scratch practitioners and researchers to pay attention to the sources of cognitive
load effects.

Keywords: cognitive load; programming course; Scratch; block based programming;
primary school students

Introduction

Over the past several years, teaching programming to children has become widespread
(Benton et al. 2017) and computational thinking has received considerable attention
(Grover and Pea 2013; Barr and Stephenson 2011). Wing (2006) points out that com-
putational thinking includes some mental tools for problem-solving related to the
programming concepts. Considering its great potential in developing computational,
critical and algorithmic thinking (Lee, Martin, and Apone 2014), higher-order think-
ing and problem-solving (Fessakis et al. 2013) researchers suggest starting teaching
programming at early ages to young students (Govender and Grayson 2006; Jenkins
2002; Proulx 2000). However, in prior studies, some difficulties were addressed to
learn programming syntax or deal with error messages in text-based programming
(Lewis 2010; Resnick et al. 2009). Thus, some block-based programming environments
equipped with visual tools were specifically developed for young pupils (Weintrop and
Wilensky 2015). In line with this, in recent years, Scratch has become one of the most
popular programming environments having over 13 million shared projects (URL 1
2016). Educators put in efforts to integrate Scratch activities into the curriculum and

mailto:cakiroglu@ktu.edu.tr
http://www.alt.ac.uk/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.25304/rlt.v26.1888

Ü. Çakiroğlu et al.

2 Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888
(page number not for citation purpose)

also teachers implement Scracth activities in schools for conceptualising programming
and developing computational thinking (Fesakis and Serafeim 2009; Lewis 2010;
Malan and Leitner 2007). While a large number of studies have noted the influences
of using Scratch on young students’ mental models of programming concepts, the
conditions under cognitive processes when learning to program still remain unclear.
This current study seeks cognitive processes in learning programming via Scratch to
develop computational thinking skills.

Teaching programming to children with Scratch
During programming, students are exposed to computational thinking (Brennan
and Resnick 2012). Computational thinking includes a set of thinking skills, hab-
its and approaches in solving problems using computer drawing on the fundamental
computer science concepts (Wing 2008). CSTA (2011) proposed a set of concepts for
computational thinking, including procedures and algorithms, problem decomposi-
tion, parallelisation and synchronisation, and abstraction and data representation.
Considering the idea behind computational thinking, Brennan and Resnick (2012)
argued that programming with Scratch can provide opportunities for contributing to
the skills related to the computational thinking.

Scratch was built on the constructionist ideas of Papert (1980) which allow
 learners to use the tools to work on tasks in the visual programming environment.
It has become widespread interest of schools (Kalas and Benton 2017) to introduce
programming concepts to students having limited programming experience (Malo-
ney et al. 2010). Following Papert’s ideas, researchers pointed out that suitable
Logo experiences could stimulate children’s cognitive development in, particularly,
mathematical problem-solving. As in Logo, Scratch also serves more advanced pro-
gramming environment for computational procedures and computational concepts.

Researchers suggest using Scratch for teaching programming to children because
it has various kinds of tools for creating programs with the combination of graph-
ics, animations, photos or audio (Lee 2009; Maloney et al. 2008). In line with this,
 Giannakos et al. (2013) reported that Scratch programming enhanced the creativ-
ity of 12-year-old-students. Resnick et al. (2009) suggested that Scratch provides
more conceivable, meaningful and social learning environment than other platforms
can. Accordingly, in an experimental study with sixth-grade students, Nam et al.
(2010) found that using Scratch exerted a greater influence on the improvement of
problem- solving skills. In addition; Benton et al. (2017) in their ScratchMaths proj-
ect focused on learning to express mathematical ideas through programming for the
young students.

Researchers argue that students should acquire procedural, conditional and ana-
logical thinking skills in programming process (Hui Hui and Umar 2011; Law, Lee,
and Yu 2010). Scratch or similar environments with visual components facilitate
learning programming; however, some of the researchers feel that students still have
low average scores or low problem-solving skills (Armoni, Meerbaum-Salant, and
Ben-Ari 2015; Garner 2009; Kalelioğlu and Gülbahar 2014; Lister 2011). One reason
for this lack of success may be the challenges in the cognitive processes during pro-
gramming learning process. In this sense, cognitive load has attracted considerable
attention in terms of cognitive processes of programming instruction. Since cognitive
load is seen as one of the main barriers of meaningful learning, this study focused

http://dx.doi.org/10.25304/rlt.v26.1888

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888 3
(page number not for citation purpose)

on the influences of Scratch environment on cognitive processes and dealt with the
theoretical aspects of cognitive load.

Cognitive load in programming
Cognitive load is defined as a kind of pressure exerted on learners’ cognitive system
(Leahy and Sweller 2011; Paas and Sweller 2012). This pressure is explained in the
cognitive processing within the following assumptions: two channels of human infor-
mation-processing system having limited capacity and limited amount of cognitive
processing taking place at any time (Sweller 2010). The theory defines three different
forms of cognitive load; intrinsic, extraneous and germane load. When the elements
of information interact, namely, the information is relatively complex, the elements
must be processed simultaneously in working memory and it may result in high in-
trinsic cognitive load (Sweller 2016). Extraneous cognitive load is imposed by the
form and means through the material experienced (Pollock, Chandler, and Sweller
2002; Renkl and Atkinson 2003; Sweller 2010) and weak problem-solving methods in
information sources to complete a learning task (van Merriënboer and Ayres 2005).

Germane cognitive load is devoted to the processing, construction and automa-
tion of schemas (Sweller 2010). For meaningful learning, researchers suggest reducing
extraneous load and increasing the germane load (Paas et al. 2003). In the light of the
assumptions, Mayer and Moreno (2003) proposed instructional principles for design-
ing the multimedia for educational purposes. In this sense, many features of learning
environments are considered to influence cognitive processing. Hence, appropriate use
of colour, orientation, curvature, size, motion, positioning, shape, signals, informa-
tion modes or other features may induce a lower load on working memory (Moons
and De Backer 2013; Wolfe 2000).

Researchers advocated that it is difficult to reduce cognitive load during the learning
process of programming (Mead et al. 2006; Renkl and Atkinson 2003; Stachel et al.
2013). Mason, Cooper, and Wilks (2015) documented that some of the programming
environments may be complex and cause an adverse impact on learners’ focus of atten-
tion and overloading cognitive resources for learning. In this sense, a basic idea about
designing easy-to-use platforms may be taken into consideration (Oviatt 2006). Educa-
tors generally choose appropriate programing environments to help novices; however, it
is unclear whether they pay attention to the cognitive effects of their interfaces. Although
some marked advances have been made in programming environments for children and
in the teaching methods, more research is needed in order to understand the cognitive
challenges in learning programming better. Thus, this study hypothesised that cogni-
tive load in learning programming may be caused by Scratch itself and exploring cogni-
tive load may provide suggestions regarding programming interfaces for teachers.

Purpose of the study
This study attempts to find out how the effects of cognitive load function in the
 instructional process of four main concepts of programming via Scratch. The follow-
ing sub-problems were guided to the study.

What kind of influences in terms of cognitive load did the students perceive?
What is the relationship between perceived cognitive load and academic

performances?

http://dx.doi.org/10.25304/rlt.v26.1888

Ü. Çakiroğlu et al.

4 Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888
(page number not for citation purpose)

Method

This exploratory case study was carried out at a secondary school in information
technologies and software course during four lesson periods in 4 weeks. The course in-
troduces basic components of information technologies and improves computational
thinking skills via block-based programming environments.

Participants
A total of 12 sixth-grade students (2 males, 10 females, average age: 11–12) enrolled at
a public secondary school participated in this research. Students were able to use basic
office programs and they had presented only a few sample codes in the previous year;
however, they had no experiences in how to code with Scratch.

Process
In a wide range of Scratch projects, it is seen that the frequently used program-
ming concepts are sequences, loops, parallelism, events, conditionals, operators
and data (Brennan and Resnick 2012). In line with this, most of the studies about
learning programming focus on the basic concepts of programming such as vari-
ables, loops, conditions and controls, message passing or concurrency (Kalas and
Benton 2017; Meerbaum-Salant, Armoni, and Ben-Ari 2013). In parallel with
prior studies and the objectives of the course, we focused on four main concepts
of introductory programming. Since sequences are key concepts in programming
including a series of instructions and actions that can be executed by the com-
puter, it was one of the main concepts of this study. Conditions, operators and
loops are also taken into consideration as they are common concepts of typical
programming instructions.

In the first week, the teacher introduced how to use the basic components of
Scratch. Then she presented some simple examples about the four concepts. Be-
cause the present study focuses on the external cognitive load induced from Scratch
environment, the tasks in the study were not so easy. The cognitive load theory
suggests that the capacity for total cognitive load within working memory is limited.
Hence, when intrinsic load is high, extraneous cognitive load must be lowered; when
low intrinsic load occurs, high extraneous cognitive load may not hinder learning
(van Merriënboer and Ayres 2005). Thus, we developed somewhat complex tasks
for beginners in order to observe the influence of cognitive load induced from the
programming environment itself. A brief summary of the instructional process is
outlined in Table 1.

Students were asked to fill the cognitive load scale to measure their perceived cog-
nitive load at the end of these four applications.

Instrumentation and analysis
Qualitative and quantitative data were collected and interpreted together in the study.
Interviews, cognitive load scale, rubric and screenshots were used as data collecting
tools.

http://dx.doi.org/10.25304/rlt.v26.1888

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888 5
(page number not for citation purpose)

Table 1. A brief summary of the instructional process.

Topic Scratch components
expected to be used

Summary of application conducted Period

Introducing
basic compo-
nents of Scratch

Providing information about how
to use Scratch tools in solving
 programming via Scratch.

First week

Sequences Control blocks
Motion blocks

In this application, students were
asked to use Scratch menus at basic
level for 2 h. A flying sprite was
created and the students were asked
to change the coordinates of the
sprite for a given sprite. After prac-
ticing with the scenario, students
were given an example and asked to
develop the same algorithmic pro-
cess individually. In this study, they
were asked to jump a ball to proper
coordinates described in a scene.

Second week

Operators Control blocks
Look blocks
Variables blocks
Numbers blocks

In this application, the teacher
presented a sample activity includ-
ing adding and subtracting. In the
second hour, a calculator applica-
tion in which the multiplication
and division processes were added
into the scenario was discussed with
students.

Second week

Conditions (If) Control blocks
Look blocks
Motion blocks
Sensing blocks

Examples ‘condition’ were pre-
sented to the students at the
beginning of the lesson. An object
was created and a movement feature
was assigned to the object with the
arrow keys. The object was returned
to the starting point when a differ-
ent object touched it. In the second
hour, students were shown a maze
game application. Then, they were
asked to develop a similar game
individually.

Third week

Loop Control blocks
Look blocks
Sensing blocks
Variables blocks

In this application, basic loop
 activities were discussed in the first
lesson using Scratch. A number of
objects were created on the scenes
which are continuously moving with
the arrow keys. In the second hour,
students were shown a shark game
application including a scenario
in which a small fish is trying to
catch the shark. Scenario also has a
game scoring. In order to complete
this activity, loop procedures and
control blocks were required.

Fourth week

http://dx.doi.org/10.25304/rlt.v26.1888

Ü. Çakiroğlu et al.

6 Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888
(page number not for citation purpose)

Cognitive load scale

Cognitive load scale was provided by Paas and Van Merrienboer (1993) and was
adapted to Turkish by Kılıç and Karadeniz (2005). The scale includes one item
(scored from 1 to 9) about the students’ efforts to achieve the tasks. The scale was
used to measure perceived cognitive load in similar studies (Renkl and Atkinson
2003). Under the loop concept, the item in the cognitive load scale becomes ‘How
much effort did you spend for this work?’. Students filled the scale at the end of the
four lessons. After the instructional process, the average of measured scores in four
lessons was considered as cognitive load scores (CLS).

Rubrics

In order to assess the students’ solutions for the programming problems, we devel-
oped rubrics for each concept (sequences, conditions, operators and loops) by tak-
ing the views of three field experts at programming and Scratch. The rubric scores
of students were calculated for each concept and used as academic achievement
scores (AAS).

Screenshots

Students’ navigations in the Scratch activities were recorded using a screenshot
 recorder. In this way, we collected useful data on the components and navigations
while students were solving problems in Scratch. Students’ efforts on the tasks were
analysed by searching answers for the following questions. How much time did you
spend on sub-task? Which components did you use and how did you use them in order
to complete the sub-task? What were the challenges using Scratch during completing
the sub-task?

Interviews

Semi-structured interview questions were developed with the help of an expert and
used to elaborate the data from the scale and the rubrics. The questions were devel-
oped within the framework of four main topics and related to how students used
Scratch components in the tasks.

Results

This section is organised in relation to the two research questions: (1) Students’ per-
ceived cognitive loads and (2) the relations between the measures of cognitive load
and academic achievements.

Perceived cognitive load on using Scratch components
In order to explain the students’ actions on the tasks (to find answers to why and how
they perceived cognitive load), we determined the frequency of the blocks and sprites
used in the tasks as well as the flows of the sprite on the blocks. The mean values
of the participants’ perceived CLSs were calculated and assigned as CLSs. Similar

http://dx.doi.org/10.25304/rlt.v26.1888

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888 7
(page number not for citation purpose)

analysis on CLSs is provided in some other studies (İzmirli and Kurt 2016). We exam-
ined the navigations followed by students in the tasks from screenshots and we used
the interviews to explain these navigations. The screenshots and students’ comments
on the interviews were interpreted together. The CLSs for all concepts are shown in
Table 2.

Navigations on the tasks
Students’ actions were noticed as navigations among the blocks and briefly summa-
rised in four concepts in Table 2.

Table 2 indicates that the CLSs of the concepts sequences and operators are quite
higher than the average CLSs of conditions (if) and loops. In the sequences concept,
Sprite 1 is used in the Control, Motion and Looks blocks, and Sprite 2 is used in
the Control, Motion, Sensing and Looks in Condition blocks. It is seen that in the
sequences concept, students used three blocks (Control, Motion, Looks) and two
Sprites. In the operators concept, five different sprites were used in the various com-
ponents of Control, Sensing, Variables and Operators blocks. In the loop concept,
students needed to use five blocks (Control, Looks, Motion, Sensing, Variables) and
two Sprites. Although the tasks in the loop were more complex than the tasks of other
concepts, the average CLSs were found low in the loop concept. At this point, the in-
terview data revealed that after a short adaptation period, students could use Scratch
components easily. Since they were accustomed to the interface from previous phases,
they could work on the next tasks by adding new sprites. In this sense, S6 stated that
‘It was difficult to solve the problem in the first activity but I understood the sequences
better in the next week. In the first week, I assigned wrong coordinates to code blocks
by moving the mouse on the screen unconsciously; I corrected it in time’. In addition,
S5 specified that ‘I had difficulty using the program in the first week, but I could easily
find the codes and put them in order when I practiced in the second week, I could do

Table 2. Students’ actions in using the Scratch components.

Topic Sequences Operators Condition (If) Loop

CLS 5.08 4.58 4.08 3.33
Blocks used Control, Motion

Looks
Control, Sensing
Variables,
Operators

Control, Motion
 Sensing, Looks

Control, Looks
Motion, Sensing
Variables

Sprite used in
the codes

Sprite 1 Stage Sprites 1, 2,
3, 4, 5

Sprite 1 Sprites 1, 2

Steps used in
blocks in which
Sprites were
used

Sprite 1 is used
in the sequence
of Control and
Motion, then
used in Stage;
Control, and
Looks

Sprite 1 is used
in the sequence
of Control,
Sensing and
Variables and
Sprite 2, 3, 4, 5
are used in Con-
trol, Variables,
Operators and
Variables

Sprite 1 is used
in Control,
Motion, Sensing
and Looks

Sprite 1 is used
in Control,
Looks and
Motion, then
Sprite 2 is used
in Control,
 Motion, Sensing,
Variables and
Looks

http://dx.doi.org/10.25304/rlt.v26.1888

Ü. Çakiroğlu et al.

8 Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888
(page number not for citation purpose)

it better after I used in the first task’. Whereas the students easily completed the task
related to the conditions (if), they had difficulties especially in the tasks requiring
intricate codes. S9 expressed the cognitive load which he confronted in if blocks as
follows ‘Coding long programs were challenging. It was easy to write the codes with
single lines, but it was difficult to develop multi-conditional if codes’.

In the four concepts, we have observed that students provided more effort in the
operators than the condition (if) concept. They encountered with difficulties, espe-
cially in creating variables and using operators on the Scratch blocks. Even though
students worked on the operators only with basic addition operations, they took a
long journey to complete the tasks. Figures 1, 2, 3 and 4 present the blocks, sprites
and students’ navigations in the tasks. The below example includes the solution steps
for the activity of creating a calculator about the operators concept.

Firstly, students created number 1, number 2 and the result variable for the opera-
tors activity by utilising variables code block.

After defining the variables, students wrote the code by clicking the code part on
the control block. Later, in order to enter a number, students assigned the sprite to
give the command ‘enter the number’. Thus, they used the code part ‘ask and wait’

Figure 1. Defining variables.

Figure 2. Students’ actions when clicked on the buttons.

Figure 3. Reorganising the values that the variables will take in process.

http://dx.doi.org/10.25304/rlt.v26.1888

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888 9
(page number not for citation purpose)

on the sensing block and wrote the expression of ‘enter the number’ inside. Then,
they clicked the code part ‘do ... instead of the variable ...’ on the variable block and
located on the code part ‘answer’ inside the sensing block. At the last step, they used
the code part ‘ask and wait’ on the sensing block to make sprite wait for the answer
about the operation.

Then, students inserted a code to reset the initial values of the variables. To achieve
it, under the code ‘when clicked’ on the ‘control’ blocks, students used code ‘reset for
each variable’ on the ‘variables’ code block.

Students developed new sprites for the four basic operations: addition, sub-
traction, multiplication and division. Then, they wrote codes by entering in the
code area of each sprite. For instance, first they followed the code part ‘when
clicked on the sprite’ on the control code block and then, they utilised the code
part ‘do the result variable ...’ from the variables code block. After this stage, they
assigned numbers to the variables as ‘number 1’ and ‘number 2’ in the variables
code block. These steps were repeated for the other three operations. The appro-
priate operation (add, subtract, multiply or divide) was used for each operation
on the operators code block and then, they ran the program. After the message
‘Enter the first number’, the user entered the value for the variable which was
assigned as the first and also the second variable. Later, when the user clicked
on the addition, the sum of the two numbers entered appeared as the result of
operation.

Furthermore, we analysed the screenshots to explain the navigations followed by
the students to create the sprites. Surprisingly, sometimes some basic processes require
complex navigations. For instance, the screenshots taken from the operator section of
Scratch indicated that in order to achieve a basic addition operation, a logical order
of control, variable, operators and sensing blocks are required. Although the opera-
tion of ‘10 + 20’ is an easy addition operation that almost all students can answer in
seconds, the flow of the blocks and the necessary code for the operation seems to be
complicated to the students.

By analysing the navigations in the screenshots, we defined the ways which
were frequently followed to provide codes for the tasks. The steps are outlined in
Figure 5.

The average length of the codes for the concepts was L_Condition > L_Loop >
L_Operations > L_ Sequences. The length of the codes is not directly related to CLSs.
While the average CLS of the sequences concept has the highest CLS value, the aver-
age length of codes about sequences is the shortest. Also, while the codes in condition
(if) were somewhat long, the CLSs was not so high.

Figure 4. The last step for coding the calculator.

http://dx.doi.org/10.25304/rlt.v26.1888

Ü. Çakiroğlu et al.

10 Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888
(page number not for citation purpose)

Perceived cognitive load on the tasks
Students’ perceived CLSs were calculated through the cognitive load scale and the
achievement scores were determined via the rubrics. The evaluation criteria for the
four main topics and the achievement scores in the rubric are presented in Table 3.

• Define or select the sprites for the problem
1

2

3

4

5

6

7

• Insert new sprites if necessary

• Select the sprite in which the code will be wri�en

• Determine the blocks which are necessary for the code

• Put the blocks in appropriate order for the code area

• Check whether there is anything missing

• Run the program and note the mistakes if exist

Figure 5. The steps followed by students to achieve the tasks.

Table 3. Achievement scores.

Topic Item Sub-level Average
achievement

score

Maximum
total score

Sequences 1 Selecting sprite and scene 9.66 10
2 Moving the sprite in the appropriate

period
30 40

3 Shifting to the correct phase 17.91 25
4 Providing codes in a hierarchical

order
23.75 25

Operators 1 Defining the variables 15 15
2 Responding to variable assignment 15.83 20
3 Defining arithmetic operations 25.41 40
4 Providing codes in a hierarchical

order
19.16 25

Conditions (if) 1 Assigning motion task to the keys 19.58 20
2 Adding barriers to the charter

command
28.75 30

3 Adding target to the charter
command

27.5 30

4 Providing codes in a hierarchical
order

17.91 20

Loop 1 Moving the big and small fish in the
right direction

24.16 30

2 Defining the score variable and
 creating the correct code

20 20

3 Creating the repeating command 23.75 25
4 Providing codes in a hierarchical

order
20.41 25

http://dx.doi.org/10.25304/rlt.v26.1888

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888 11
(page number not for citation purpose)

Only two students got 8 points, and ten students got 10 points in the first item of
the sequences concept. The average score for ‘Moving the sprite in the appropriate
period’ was 30 and the average score for shifting to the correct phase was 17.91 out
of 25 points. In this sub-level, three students got 25 points and only two students got
0 points. In the operators concept, all of the students got full points in ‘Defining the
variables’. ‘Variable assignment’ was evaluated out of 20 points in which five of the
students got more than 16 points and seven students had less than 16 points. In this
sub-level, five students had full score and seven students got less than 20 points. In
the evaluation of conditions (if) topic, the highest average scores was 28.75 out of 30
points on the ‘Adding barriers to the charter command’. Ten students got full points
in this sub-level. Moreover, in the loop topic, all of the students could correctly com-
plete the sub-level of ‘Defining the score variable and creating the correct code’ which
was evaluated out of 20 points.

Relationship between perceived cognitive load and academic performances
CLSs ranged from 1 to 9, the achievement scores ranged from 0 to 100. Therefore, in
order to provide a better understanding of the relations, we have made a comparison
of these two different measures mapping them in the same figures.

Sequences
In the sequences concept, the task was to create a flying sprite. Students were asked to
use several motion blocks and change the background at the end of the movement.
The correlations of AAS-CLS during the tasks are shown in Figure 6.

According to the measurements, AAS = 81.33 and the average CLS = 5.08. The
students who had low perceived CLS generally exhibited a higher score of AAS and
vice versa. For instance, whereas S1 and S3 had a CLS of 5, their AAS was 100. In
contrast, when the CLS increased, AAS generally decreased in the sequences concept;
(S2: CLS = 7, AAS = 85) and (S10: CLS = 8, AAS = 58).

Sequences

100

5 5 5

3 3

6

3

Academic achievement scores Perceived cogni	ve load scores

6

8

5 5

7
90
80
70
60
50
40
30
20
10

0
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

1

2

3

4

5

6

7

8

9

Figure 6. Relations between AAS and CLS (Sequences).

http://dx.doi.org/10.25304/rlt.v26.1888

Ü. Çakiroğlu et al.

12 Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888
(page number not for citation purpose)

Operators
In the operators concept, students were asked to use Scratch operators to create a sim-
ple calculator. In order to complete the task, they were required to create and use two
number variables and one resulting variable. They were asked to do some arithmetical
operations with the variables, store the values of the variable and also use appropriate
code blocks in order to achieve the task. Figure 7 outlines the relationship between
AAS and CLS in this concept.

In the operators concept, the AAS was 75.41 and the CLS was 4.58. No relation-
ship between AAS and CLS was found in Figure 7. For example, despite having simi-
lar CLS, S4 had 45 points and S10 had 60 points of achievement score. Furthermore,
S4 and S7 have got the same CLSs; however, their AASs are explicitly different (45
and 100, respectively).

Condition (if)
Relationship between AAS and CLS of the condition concept is illustrated in Figure 8.

The measurements in the condition (if) concept indicated that the AAS of the
group was quite high, which was 93.75, and the CLS of the group was relatively low,
which was 4.08. According to these measures, in the condition concept, students with
high AAS generally got low CLS. Where only six students’ achievement scores were
100 points, most of them had low CLS. (S2, S3, S4 and S12 had the lowest CLS value
in the score range of 2–3). It is remarkable that one of the students got the highest
CLS (7) and the lowest AAS (68).

Loop
The measures about loop concept are shown in Figure 9. The relationship between
AAS and average CLS was slightly surprising.

According to the measures in loop concept, the AAS was 89.2 points and the
CLS was 3.33. Interestingly, the average value of CLS in this concept was lower when

100

6

2

6

2

3

6

2

Academic achievement scores Perceived cogni	ve load scores

4

6 6

7

2

90
80
70
60
50
40
30
20
10

0
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

1

2

3

4

5

6

7

8

9

Operators

Figure 7. Relations between AAS and CLS (Operators).

http://dx.doi.org/10.25304/rlt.v26.1888

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888 13
(page number not for citation purpose)

compared to the other concepts. On the contrary, AAS in the loop concept was found
to be quite high and the lowest AAS was 75 points. Most of the students got 90 points
as achievement score. Surprisingly, S5 got a relatively higher score of cognitive load
(6) than other students and his AAS was also higher than the others’ scores. The
scores of S8 and S10 support the idea that when CLS increases, AAS decreases. For
example, as two students (S1 and S7) got the full score of academic achievement (100
points), S1 got the average CLS of 3 and the other, S7, got the average CLS of 4 and
their average CLSs were not the lowest. As a result, it is not easy to define an accurate
relationship between the CLS and AAS in this concept. Including all the concepts, the
relationship between AASs and CLSs is illustrated in Figure 10.

It is found that except the loop concept, there is an inverse relationship between
average AASs and CLSs. The lowest CLS was induced in the loop concept, but the

100

6

2

3

6

7

6

2

Academic achievement scores Perceived cogni�ve load scores

3

6

3

2

3

90
80
70
60
50
40
30
20
10

0
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

1

2

3

4

5

6

7

8

9

Condi�ons (if)

Figure 8. Relations between AAS and CLS (Conditions-If).

100

3

1

2

6

2

4

6

Academic achievement scores Perceived cogni�ve load scores

4

6

3

1

2

90
80
70
60
50
40
30
20
10

0
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

1

2

3

4

5

6

7

8

9

Loop

Figure 9. Relations between AAS and CLS (Loop).

http://dx.doi.org/10.25304/rlt.v26.1888

Ü. Çakiroğlu et al.

14 Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888
(page number not for citation purpose)

highest average AAS was observed in the sequences concept. The AAS from high-
est to lowest scores was for condition (if), loop, sequences and operators concepts,
respectively.

In other words, it can be concluded that the CLS decreases when the students
become more experienced in using Scratch components. In a weekly review of the
findings, the highest CLS was observed in the third week in the condition (if) and the
lowest CLS was observed in the second week in the operators concept. In this case, the
findings from the interviews revealed that the following concepts were covered after
sequences concept and at that time students had already become more familiar with
using Scratch components.

Discussion

Many young students who have no experience may hit a cognitive barrier at the begin-
ning of programming learning process (Smith, Cypher, and Tesler 2000). During pro-
gramming, students generally want to achieve the tasks or solve problems as quickly
as possible. In this sense, Scratch as a visual programming platform may be used in
order to visualise the programming process. It may be useful to visualise not only
the typical programming components (variables, arrays, I/O components, etc.) but
also the main programming concepts (sequences, operators, conditions, loops, etc.).
Resnick et al. (2009) stated that Scratch blocks may facilitate the programming me-
chanics by eliminating syntax errors, providing feedback on the location of command
blocks and giving immediate feedback to the appropriate codes. In addition, Gad-
anidis et al. (2017) reported that they also affords new approaches to mathematics

Average AAS

Algorithm Operators Condi�on (If) Loop

81,33
75,41

93,75
89,16

Average CLS

10

0

20

30

40

50

60

70

80

90

1006,00

5,00

4,00

3,00

2,00

1,00

0

Average AAS - CLS

Figure 10. Average achievement and CLS in the four concepts.

http://dx.doi.org/10.25304/rlt.v26.1888

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888 15
(page number not for citation purpose)

problem-solving. In this study, using Scratch components somehow could shorten the
necessary codes required to achieve the tasks. In a similar vein, Meerbaum-Salant,
Armoni, and Ben-Ari (2013) argued that Scratch may eliminate the extraneous cogni-
tive load induced from syntax and facilitate the programming process by the visuali-
sation. However, the findings of this study indicated that it is not easy to achieve the
tasks based on the logical and conceptual knowledge of programming using Scratch.

In this study, students found it difficult to find and use appropriate components
of Scratch and to provide a solution strategy for the problem at the same time. Thus,
this was one reason for them perceiving cognitive load. Especially in the sequences
concept, students found it difficult to remember which code was under which block.
Then, in the following tasks, students were asked to put the codes in the blocks in
order to create new code blocks. Most of them could create separate code blocks
such as ‘clicked’ and ‘pressed the arrow keys’ in which some extra effort was required
to find the necessary block and join it with others. It was difficult for the students
to remember the sequence of the components to decide which tool was appropriate
for the task. For example, a simple sequence of Scratch instructions may appear, in
which one block initialises the position of a sprite, another block, its direction, and
a third, its costume. In the study, when a number of commands (using loop in the
conditions block or using conditions in condition block) were asked to use in the code,
some students were confused which blocks they needed to use for the solution. In
doing so, some students provided extra efforts for using the code block itself and also
covered it with master code blocks.

Another extraneous cognitive load was induced from allocating the scene and
sprites on the Scratch interface, so some sprites were sometimes placed out of the
scene. In addition, in this study colours, buttons and drag/drop options were per-
ceived as extraneous cognitive load sources. In this regard, Moons and De Backer
(2013) identified some extraneous cognitive load caused by the programming editor
interfaces such as colour (hue, lightness and colourfulness), orientation, size, motion,
relative positioning and shape of the components.

This study addressed some evidences that cognitive load may occur in various con-
cepts of basic programming process. In this study, in the sequences concept in which
students created a flying sprite, the average CLS and total achievement score had
an inverse relationship with each other. In the sequences concept, students with low
scores of achievement generally provided more effort than others. In addition, average
CLSs in the condition concept were relatively low because only control and motion
blocks were used in this concept. This is because various sub-scripts that are under the
motion block may increase cognitive load. In addition, the sequence of the codes also
includes more complex codes than other concepts; therefore, it may be difficult for
students to imagine the location of the code blocks in the condition concept. Average
CLSs in the loop concept were also quite low. Hence, the results of this study suggest
that except the loop concept, students’ perceived CLSs have considerably an inverse
relationship with their academic achievements. Creating various codes with different
sprites for the first time might have negatively affected the students’ academic achieve-
ment. Overall, it was observed that the perceived CLSs decreased gradually during the
implementation. At this point, the nature of the concept and the given problem about
the concept affected the level of perceived cognitive load. A particular phenomenon
identified by Sweller (2010) can also explain this effect in which cognitive load can
decrease as the learner becomes more expert and familiar with the particular environ-
ment for learning. Sweller (2016) explains such effect as worked examples effect; that

http://dx.doi.org/10.25304/rlt.v26.1888

Ü. Çakiroğlu et al.

16 Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888
(page number not for citation purpose)

is, those who study with worked examples perform better on problems than learners
who solve the same problems themselves. A conclusion may be derived from this study
that the expertise on the use of environment and the relation of tools, components
and tasks may also facilitate solving problems in Scratch. Sweller (2016) argued that
this increased expertise reduces the element interactivity and only a few memory re-
sources become sufficient during problem-solving.

The duration of the period in which students’ learning was evaluated is limited.
However, the time period was enough to accustom to use the Scratch tools and envi-
ronment in this study. One reason of the cognitive load induced in the following weeks
by some students may be the changing nature of the programming concept. Although
some experiences about the difficulties of the concepts (operator, condition, loop and
combinations of these) are noticed, some evidence is still required to define the pos-
sible load inherited from the concepts. Thus, the results may be helpful for cognitive
load-programming studies. Another reason is split attention during solving problems
in Scratch. Sweller (2016) exemplifies this as split attention between the statements
and diagrams or between different categories of statements in geometry or physics.
Similar appearance emerges in Scratch in which disparate sources of information/
tools should be mentally integrated to reduce extraneous cognitive load.

In addition, independently from context, students who were accustomed to the
interface perceived less cognitive effort. In a recent study, Sweller (2016) argues this
effect as the expertise reversal effect. It is about the perceptions of element interactiv-
ity. When students are novices, element interactivity can be considered high and when
they become experts, element interactivity is likely to be low. In this study, the reason
for their lower AASs may be due to the fact that various code blocks were being used
in the operators concept and assigning multiple variables and using variables in the
process may have been challenging for the students.

In fact, this research is exploratory in nature and is limited for generalisation, but
it has some opportunities for future search. Since the sample size was small (n = 12)
and concepts of programming were limited, a larger sample size would increase the
sensitivity of the analysis. Also, changing the complexity of the tasks in the expanded
programming topics may suggest new insights. Although the results in four the con-
cepts may not reflect the whole programming process, various data collecting tools in
the study provided considerable evidence on the cognitive process of the children in
learning programming.

Conclusions and recommendations

A growing number of K-12 schools have begun to use Scratch as a first step platform
for teaching programming. This study suggests that although it presents many advan-
tages for understanding basic programming concepts and problem-solving, Scratch
also has some unusable components which may lead to cognitive load.

The highest cognitive load level was recorded in the sequences concept and the
lowest perceived cognitive load was observed in the loop concept. Perceived CLSs
were generally inversely related to the academic performances, however, not regularly.
When students were accustomed to use the Scratch components, their perceived CLSs
gradually decreased.

In conclusion, the results revealed that the interface of Scratch is attractive and
valuable, but it is not easy to use the interface for the tasks constructed with nested

http://dx.doi.org/10.25304/rlt.v26.1888

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888 17
(page number not for citation purpose)

concepts of programming. In this sense, this study has some implications about
teaching programming through Scratch. First of all, teachers should pay atten-
tion to students’ prior experiences when they use Scratch for the first time. After
introducing the interface, teachers can continue with the tasks in a sequence from
easy to complex. Developing simple tasks for students may facilitate the program-
ming process by reducing the necessary effort for the tasks. For instance, problems
which require using too many motion blocks may cause high cognitive load, so
tasks should be planned including motion blocks in a balanced way. To sum up,
the results of this study support the idea that problem-solving via programming is
something more than the visualisation of the problems. Thus, we hope this study
may contribute to the efforts on creating learning environments for programming
with Scratch for children.

References
Armoni, M., Meerbaum-Salant, O. & Ben-Ari, M. (2015) ‘From scratch to “real” program-

ming’, ACM Transactions on Computing Education (TOCE), vol. 14, no. 4, pp. 25–33.
Barr, V. & Stephenson, C. (2011) ‘Bringing computational thinking to K-12: what is involved

and what is the role of the computer science education community?’, Acm Inroads, vol. 2,
no. 1, pp. 48–54.

Benton, L., et al., (2017) ‘Bridging primary programming and mathematics: some findings of
design research in England’, Digital Experiences in Mathematics Education, vol. 3, no. 2,
pp. 115–138.

Brennan, K. & Resnick, M. (2012) ‘New frameworks for studying and assessing the develop-
ment of computational thinking’, Proceedings of the 2012 Annual Meeting of the American
Educational Research Association, Vancouver, Canada, pp. 1–25.

CSTA. (2011) ‘Computational thinking in K–12 education leadership toolkit’, [online]
Available at: http://csta.acm.org/Curriculum/sub/CurrFiles/471.11CTLeadershiptTool-
kit-SP-vF.pdf

Fesakis, G. & Serafeim, K. (2009) ‘Influence of the familiarization with scratch on future teach-
ers’ opinions and attitudes about programming and ICT in education’, ACM SIGCSE
 Bulletin, vol. 41, no. 3, pp. 258–262.

Fessakis, G., Gouli, E. & Mavroudi, E. (2013) ‘Problem solving by 5–6 years old kindergarten
children in a computer programming environment: a case study’, Computers & Education,
vol. 63, no. 4, pp. 87–97.

Gadanidis, G., et al., (2017) ‘Computational thinking in mathematics teacher education’,
 Contemporary Issues in Technology and Teacher Education, vol. 17, no. 4, pp. 458–477.

Garner, S. (2009) ‘Learning to program from Scratch’, Ninth IEEE International Conference on
Advanced Learning Technologies, IEEE, Riga, Latvia, pp. 451–452.

Giannakos, M., Hubwieser, P. & Chrisochoides, N. (2013) ‘How students estimate the effects
of ICT and programming courses’, Proceeding of the 44th ACM Technical Symposium on
Computer Science Education, ACM, Denver, Colorado, USA, pp. 717–722.

Govender, I. & Grayson, D. (2006) ‘Learning to program and learning to teach programming:
a closer look’, in Proceedings of World Conference on Educational Multimedia, Hyperme-
dia and Telecommunications 2006, eds E. Pearson & P. Bohman, AACE, Chesapeake, VA,
pp. 1687–1693.

Grover, S. & Pea, R. (2013). ‘Computational thinking in K–12: A review of the state of the
field’. Educational Researcher, vol. 42, no. 1, pp. 38–43.

Hui Hui, T. & Umar, I. N. (2011) ‘Does a combination of metaphor and pairing activity
help programming performance of students with different self-regulated learning level?’,
The Turkish Online Journal of Educational Technology, vol. 10 no. 4, pp. 121–129.

http://dx.doi.org/10.25304/rlt.v26.1888
http://csta.acm.org/Curriculum/sub/CurrFiles/471.11CTLeadershiptToolkit-SP-vF.pdf
http://csta.acm.org/Curriculum/sub/CurrFiles/471.11CTLeadershiptToolkit-SP-vF.pdf

Ü. Çakiroğlu et al.

18 Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888
(page number not for citation purpose)

Izmirli, S. & Kurt, A. A. (2016) ‘Effects of modality and pace on achievement, mental effort,
and positive affect in multimedia learning environments’, Journal of Educational Comput-
ing Research, vol. 54, no. 3, pp. 299–325.

Jenkins, T. (2002) ‘On the difficulty of learning to program’, Proceedings of the 3rd Annual
Conference of the LTSN Centre for Information and Computer Sciences, pp. 53–58,
Loughborough, UK.

Kalas, I. & Benton, L. (2017) ‘Defining procedures in early computing education’, IFIP World
Conference on Computers in Education, Springer, Cham, pp. 567–578.

Kalelioğlu, F. & Gülbahar, Y. (2014) ‘The effect of teaching programming via scratch on
 problem solving skills: a discussion from learners’ perspective’, Informatics in Education,
vol. 13, no. 1, pp. 33–50.

Kılıç, E. & Karadeniz, S. (2005) ‘Specifying students’ cognitive load and disorientation level in
hypermedia’, Educational Administration: Theory and Practice, vol. 40, no. 1, pp. 562–579.

Law, M. Y., Lee, C. S. & Yu, Y. T. (2010) ‘Learning motivation in e-learning facilitated computer
programming courses’, Computers & Education, vol. 55, no. 1, pp. 218–228.

Leahy, W. & Sweller, J. (2011) ‘Cognitive load theory, modality of presentation and the transient
information effect’, Applied Cognitive Psychology, vol. 25, pp. 943–951.

Lee, I., Martin, F. & Apone, K. (2014) ‘Integrating computational thinking across the K-8
 curriculum’, ACM Inroads, vol. 4, pp. 64–71.

Lee, J., Jr. (2009). Scratch Programming for Teens. eds J. Davidson, Cengage Learning, Boston,
pp. 27–44.

Lewis, C. M. (2010) ‘How programming environment shapes perception, learning and goals:
logo vs. Scratch’, Proceedings of the 41st ACM Technical Symposium on Computer Science
Education, ACM, New York, USA, pp. 346–350.

Lister, R. (2011) ‘Computing education research programming, syntax and cognitive load’,
ACM Inroads, vol. 2, no. 2, pp. 21–22.

Malan, D. J. & Leitner, H. H. (2007) ‘Scratch for budding computer scientists’, ACM SIGCSE
Bulletin, vol. 39, pp. 223–227.

Maloney, J., et al., (2008) ‘Programming by Choice: urban youth learning programming with
Scratch’, ACM SIGCSE Bulletin, vol. 40, no. 1, pp. 367–371.

Maloney, J., et al., (2010) ‘The scratch programming language and environment’, ACM Trans-
actions on Computing Education (TOCE), vol. 10, no. 4, p. 16.

Mason, R., Cooper, G. & Wilks, B. (2015) ‘Using Cognitive Load Theory to select an environ-
ment for teaching mobile apps development’, in D. D’Souza & K. Falkner (eds), Proceed-
ings of the 17th Australasian Computing Education Conference, Sydney, Australia, 27–30
 January, The Conference in Research and Practice in Information Technology (CRPIT)
series; 160, Australian Computer Society, Sydney, Australia, pp. 47–56.

Mayer, R. E., & Moreno, R. (2003). ‘Nine ways to reduce cognitive load in multimedia
 learning’. Educational Psychologist, 38(1), 43–52.

Mead, J., et al., (2006) ‘A cognitive approach to identifying measurable milestones for program-
ming skill acquisition’, ACM SIGCSE Bulletin, vol. 38, no. 4, pp. 182–194.

Meerbaum-Salant, O., Armoni, M. & Ben-Ari, M. (2013) ‘Learning computer science concepts
with Scratch’, Computer Science Education, vol. 23, no. 3, pp. 239–264.

Moons, J. & De Backer, C. (2013) ‘The design and pilot evaluation of an interactive learn-
ing environment for introductory programming influenced by cognitive load theory and
 constructivism’, Computers & Education, vol. 60, no. 1, pp. 368–384.

Nam, D., Kim, Y. & Lee, T. (2010) ‘The effects of scaffolding-based courseware for the Scratch
programming learning on student problem solving skill’, in Proceedings of the 18th Interna-
tional Conference on Computers in Education, eds S. L. Wong et al., Asia-Pacific Society for
Computers in Education, Putrajaya, Malaysia, pp. 723–727.

Oviatt, S. (2006) ‘Human-centered design meets cognitive load theory: designing interfaces that
help people think’, in Proceedings of the 14th ACM International Conference on Multimedia,
ACM, Santa Barbara, CA, USA, pp. 871–880.

http://dx.doi.org/10.25304/rlt.v26.1888

Research in Learning Technology

Citation: Research in Learning Technology 2018, 26: 1888 - http://dx.doi.org/10.25304/rlt.v26.1888 19
(page number not for citation purpose)

Paas, F., Renkl, A. & Sweller, J. (2003) ‘Cognitive load theory and instructional design: recent
developments’, Educational Psychologist, vol. 38, no. 1, pp. 1–4.

Paas, F. & Sweller, J. (2012) ‘An evolutionary upgrade of cognitive load theory: using the
human motor system and collaboration to support the learning of complex cognitive
tasks’, Educational Psychology Review, vol. 24, pp. 27–45.

Paas, F. G. W. C. & Van Merrienboer, J. J. G. (1993) ‘The efficiency of instructional conditions:
an approach to combine mental effort and performance measures’, Human Factors, vol. 35
no. 4, pp. 737–743.

Papert, S. (1980) Mindstorms: Children, Computers, and Powerful Ideas, Basic Books, Inc.,
New York,USA

Pollock, E., Chandler, P. & Sweller, J. (2002) ‘Assimilating complex information’, Learning and
Instruction, vol. 12, pp. 61–86.

Proulx, V. K. (2000). ‘Programming patterns and design patterns in the introductory computer
science course’. In ACM SIGCSE Bulletin (Vol. 32, No. 1, pp. 80–84). ACM.

Renkl, A. & Atkinson, R. K. (2003) ‘Structuring the transition from example study to problem
solving in cognitive skill acquisition: a cognitive load perspective’, Educational Psycholo-
gist, vol. 38, no. 1, pp. 15–22.

Resnick, M., et al., (2009) ‘Scratch: programming for all’, Communications of the ACM, vol. 52,
no. 11, pp. 5–15.

Smith, D. C., Cypher, A., & Tesler, L. (2000). ‘Programming by example: novice programming
comes of age’. Communications of the ACM, vol. 43, no. 3, pp. 75–81.

Stachel, J., et al., (2013) ‘Managing cognitive load in introductory programming courses: a cog-
nitive aware scaffolding tool’, Journal of Integrated Design and Process Science. Computer
Science, vol. 17, no. 1, pp. 37–54.

Sweller, J. (2010) ‘Cognitive load theory: recent theoretical advances’, in Cognitive Load
 Theory, eds J. L. Plass, R. Moreno & R. Brünken, Cambridge University Press, New York,
pp. 29–47.

Sweller, J. (2016) ‘Story of a research program’, Education Review/Reseñas Educativas, vol. 23.
URL 1, (2016), MIT Media Lab, [online] Available at: https://scratch.mit.edu

Van Merriënboer, J. J. G & Ayres, P. (2005) ‘Research on cognitive load theory and its design
implications for e-learning’, Educational Technology Research and Development, vol. 53,
no. 3, pp. 5–13.

Weintrop, D. & Wilensky, U. (2015). ‘Using commutative assessments to compare conceptual
understanding in blocks-based and text-based programs’, 11th Annual ACM Conference
on International Computing Education Research, ICER 2015, Association for Computing
Machinery, Inc. Omaha, United States, pp. 101–110.

Wing, J. M. (2006) ‘Computational thinking’, Communications of the ACM, vol. 49, no. 3,
pp. 33–35.

Wing, J. M. (2008) ‘Computational thinking and thinking about computing’, Philosophical
Transactions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, vol. 366, no. 1881, pp. 3717–3725.

Wolfe, J. M. (2000) Visual attention, In Seeing, Academic Press, San Diego.

http://dx.doi.org/10.25304/rlt.v26.1888
https://scratch.mit.edu

