
Integrating Virtual
Reality, Motion
Simulation and A 4D
GIS
JUERGEN ROSSMANN, ARNO BUECKEN, MARTIN HOPPEN,

MARC PRIGGEMEYER

Rossmann, J., Buecken, A., Hoppen, M., & Priggemeyer, M. (2016). Integrating Virtual Reality, Motion

Simulation and a 4D GIS. Research In Urbanism Series, 4(1), 25-42. doi:10.7480/rius.4.854

R
IU

S 4: G
EO

-D
ESIG

N

26

Abstract
Geodesign requires the visualization of concepts and ideas within a context
of geo-information of the respective place in a way that is understandable to
people with different backgrounds – planners, geographers, architects, but
also the users or inhabitants of the place. All of the roles involved have different
requirements and need different information to fulfil their tasks within the
geodesign process. In this contribution, we present the structure of a software
system combining a GIS, a simulation system and a VR component, as well as
interfaces to different interaction devices (like a GPS receiver, a spacemouse,
multi-screen projection systems or devices for haptic feedback). This enables
simulations of the place in its geographical context, as well as immersive
presentations that are understandable regardless of the knowledge of a plan’s
symbolic language. All this happens without the need to convert frequently
between the software tools that are commonly used by the different roles.

KEYWORDS

Virtual reality; Motion simulation; 4D GIS; Geodesign; Virtual Forrest

IN
TEG

R
ATIN

G
 VIR

TU
A

L R
EA

LITY, M
O

TIO
N

 SIM
U

LATIO
N

 A
N

D
 A 4D

 G
IS

27

1. INTRODUCTION
According to Steinitz (2012) Geodesign “is the development and applica-

tion of design-related processes intended to change geographical study areas
in which they are applied and realized”. He states that collaboration between
the different roles involved in a geodesign process can be challenging. There-
fore an intuitive visualisation of the steps and results is an essential part of a
successful geodesign process. This goes together with the evolution of geo-
graphic information systems (GIS) from 2D to 3D, which happened in recent
years, By now, some approaches even consider time as a fourth dimension.
Visualization of the corresponding data moved ahead from simple maps to-
wards three-dimensional landscapes and cities. However, in most cases, it is
limited to a single display on a single computer.

In this contribution, we present an approach of a fully integrated 4D geo-
graphic information and virtual reality (VR) system. While data management
is based on OGC (Open Geospatial Consortium) standards like the Geography
Markup Language (GML), it supports the synchronization of multiple clients
and allows rendering views for multiple screens – even for a seven screen
panoramic projection system or a CAVE environment. Besides VR-style vis-
ualization techniques, it is also possible to use the data for simulation or to
even feel it with a motion simulator system.

We will describe the synchronization of multiple computers, the visuali-
zation component and the use of a highly versatile motion simulator, which is
based on an industrial robot. Several aspects like the used washout filter and
the physiological foundations that enable the use of a robot with a still limited
workspace to display poses and forces in a large world are introduced.

The rest of this paper is structured as follows: The next section illus-
trates, how we extend a 3D simulation system by GIS functionality. In the next
section, we describe the simulation system’s VR capabilities. Subsequently,
the motion simulation approach is presented. The contribution ends with a
conclusion of the presented work.

2. CREATING A GIS FROM A 3D SIMULATION SYSTEM
Most software environments require multiple independent components

for editing and displaying 3D geo-data. While standard GIS provide a 2D
top view on the scenery and in some cases a 2.5D or even a rather limited 3D
view, additional software is needed to display the same scenery on large scale
displays or in virtual reality systems. The disadvantage of multiple software
products in the tool chain from data editing to the impressive visualization is
the frequent need to convert and exchange data.

The presented approach was developed for a forest information and sim-
ulation system that required a number of algorithms and user interface ap-
proaches, which were already implemented in VEROSIM, an existing 3D sim-

R
IU

S 4: G
EO

-D
ESIG

N

28

ulation system. Originally, this system was developed for the simulation of
robotic work cells, but has since been enhanced to a variety of applications
from the fields of industrial automation, space robotics and environment.
Thus, for the latter, instead of starting with a standard GIS, support for stand-
ard geo-data modelling and interfaces for geo-databases like SupportGIS Java
(SGJ) or native PostgreSQL/PostGIS were added to the existing VEROSIM.

 2.1	 Flexible	Database	Interface
For accessing (geo-)databases from a simulation system, a flexible yet

efficient concept was developed (Hoppen, Rossmann, Schluse, & Waspe,
2010). Its basic idea is to synchronize a simulation system’s internal runtime
database with the central database on schema, data and functional level. Us-
ing schema synchronization, the simulation system adopts the schema from
the central database once during system start-up so both systems “speak the
same language”. Subsequently, data conforming to this schema can be repli-
cated to the simulation database, on-demand. For example, driving a virtual
car through a large forest model, spatially nearby data (e.g. surrounding trees,
tile data) is loaded into the simulation database while objects are unloaded
when they are left behind. Thus, the simulation database can be seen as an
“intelligent”, real-time capable cache for the central database. The approach
also allows modifying replicated data. Here, change notifications are used to
synchronize updates between the databases (Hoppen, Waspe, Rast, & Ross-
mann, 2014). Thus, when synchronizing multiple simulation clients to the
same central database, it cannot only be used for data management, but also
as a communication hub for the shared simulation model.

Figure 1. The architecture of the database synchronization approach.

In Figure 1, an exemplary synchronization scenario is shown. Two sim-
ulation clients with their respective databases (#1 and #2) are connected to

IN
TEG

R
ATIN

G
 VIR

TU
A

L R
EA

LITY, M
O

TIO
N

 SIM
U

LATIO
N

 A
N

D
 A 4D

 G
IS

29

a central database containing a simple ‘Tree’ object with a ‘felled’ state. The
object is replicated to both clients. Client #1 changes the state to ‘true’ and
syncs it to the central database where the previous value is versioned with
a timestamp tend. Subsequently, a notification sent to client #2 allows it to
adopt the change. Finally, besides schema and data synchronization, func-
tional synchronization is used to translate semantics between the systems.
For example, the transformation matrix of a CityGML (Kolbe, Gröger, &
Plümer, 2005) implicit geometry is translated to a data structure known to
the simulation system’s render engine. Altogether, for the presented work,
this database synchronization concept was realized using the VEROSIM Active
Simulation Database (VSD) and SGJ.

 2.2	 Temporal	Data	Management
Additionally, basic GIS functionality required for editing the stored data

was implemented, e.g., for measurement, vector or raster editing, or gradient
visualization, yielding a 3D simulation system with an integrated GIS. In or-
der to capture and reproduce the changes of the 3D forest model (or any other
model), we added time as a fourth dimension (Hoppen, Schluse, Rossmann, &
Weitzig, 2012). This is realized by using a temporal database (Jensen, & Dyre-
son, 1998) as the central geodatabase. When changing data in a temporal da-
tabase, its previous state does not get lost, but is preserved in terms of historic
versions that are still accessible by the user. As geo-data represents the state
of real world phenomena at one or more points in time, a temporal database
allows capturing this inherent time dependence. Different interpretations of
time, so-called time dimensions, may be applied. A transaction time database
automatically associates committed timestamps with any change. In contrast,
in a valid time database, the user (or some process) assigns timestamps that
represent the point in real time a change has taken place or will take place.
Both concepts can even be combined, yielding a bi-temporal database. Using
the aforementioned database synchronization concept, a temporal snapshot
is replicated to the simulation system’s runtime database. For that purpose,
the user specifies a reference time within the simulation system. On changing
this reference time, the snapshot gets updated accordingly. When altering
the replicated data within the simulation system’s database, synchronized
changes are versioned within the central, temporal database. Figure 1 shows
an example, where a change from a simulation client is replicated to the cen-
tral temporal database. Here, the previous value (“false”) becomes a historic
version before the new value is adopted and a notification is emitted.

 2.3	 Client	Synchronization
Note that all these mechanisms are independent of the actual data model

and can be transferred to other (geo-)data than trees and forests. Thus, the

R
IU

S 4: G
EO

-D
ESIG

N

30

very same approach can also be used to monitor the change in urban areas,
e.g. using the CityGML data model, but also other common formats like IFC
(Industry Foundation Classes), STL (STereoLithography) and many others are
supported.

Figure	2. Example scenario for database synchronization.

Furthermore, our approach allows the synchronization of multiple in-
dependent clients either by a simple property synchronization mechanism,
a fully-fledged distributed simulation protocol, or by using a central, active
geo-database (Hoppen et al., 2014) as presented above. This allows to either
link multiple displays for CAVE environments or multi-projector panoramic
projections, or to generate independent views of the same scenery for several
users. The approaches can even be combined so that each connected client
can in turn use multiple screens. Figure 2 shows an example using combined
synchronization approaches: the simulation model is managed by a central
geo-database and replicated to two clients (jeep on TV, helicopter on mul-
ti-projector panoramic projection). The projection system itself distributes
the simulation to six slave systems for rendering the three stereo images.

3. VIRTUAL REALITY
There are multiple virtual reality applications that deal with geo-infor-

mation. Examples are landscape visualization, architecture as well as simula-
tion of cars, aircrafts or other vehicles. In most cases, it is required to export
the geo-data and convert it to some 3D format like DXF (AutoCAD Drawing
Exchange Format) or IGES (Initial Graphics Exchange Specification) in order
to use it in a simulation system. In the presented system, however, the inte-
grated 3D renderer of VEROSIM is activated, the view is changed from 2D or-

IN
TEG

R
ATIN

G
 VIR

TU
A

L R
EA

LITY, M
O

TIO
N

 SIM
U

LATIO
N

 A
N

D
 A 4D

 G
IS

31

thogonal to a 3D perspective projection and – if required – multiple comput-
ers are linked together with the synchronization approach described above.
On each computer, the view frustum can individually be adjusted, allowing to
define stereo views (where two computers render the images for the right and
left eye), panoramic views (using adjacent screens) as well as a combination
of both. The renderer supports different lighting situations, change of day-
time, different weather scenarios and even the photorealistic visualization
of natural objects. Figure 3 gives an example with a virtual city guide. The
performance of the renderer scales with the hardware of the computer. On
a standard PC with a graphic board designed for computer games it is possi-
ble to visualize environments with eighty million vertices at forty frames per
second. 2D geography features can simply be projected on a 3D ground. It is
also possible to use metaphors for this information – like an auto-generated
fence for a surface feature representing property boundaries.

Figure 3. A virtual city guide.

The software system also offers physical simulation of objects. This way,
it is possible to use the geo-data for simulation purposes. The objects can be
controlled by the user with several different interaction devices like a wire-
less six DOF (degrees of freedom) tracking system, data gloves, a spacemouse,
joysticks or even a dedicated hardware like a harvester seat with the man-
ufacturer’s on-board computer. The simulation can be configured in a way

R
IU

S 4: G
EO

-D
ESIG

N

32

that the results or performance logs are also geo-coded. Therefore, it is pos-
sible to study and discuss results of the simulation in the corresponding envi-
ronment. Examples of geo-coded logs are track-marks or geo-coded notices
which can be displayed as a small sign.

4. MOTION PLATFORM
Although providing a deep visual immersion, it is still difficult, e.g., to es-

timate the real inclination of a hill or the effort needed to follow a steep road.
This impression, however, can easily be achieved by moving the user accord-
ing to the hill’s slope. There are several approaches for this so-called motion
cueing. Conventional approaches mostly utilize a Stewart/Gough platform, a
hydraulic hexapod that allows moving the top plate in six dimensions. This
system is scalable from a small installation, which can only carry a seat with
a single person and a data helmet, towards a solution that moves a flight deck
or a ship’s bridge for professional multi-user training applications.

Due to their mechanics, all Stewart/Gough hexapods are limited in their
rotatory movement. Thus, steep inclinations cannot be simulated with these
devices. A more advanced approach is a motion simulator based on an in-
dustrial robot. While the main disadvantages against the hexapod are a low-
er maximum payload and a larger space requirement, the motion simulator
benefits from the versatile movements of the industrial robot. With this de-
vice, even an overhead situation becomes possible.

Figure 4. The capsule of the motion simulator.

IN
TEG

R
ATIN

G
 VIR

TU
A

L R
EA

LITY, M
O

TIO
N

 SIM
U

LATIO
N

 A
N

D
 A 4D

 G
IS

33

For the work described in this contribution, we decided to use a ro-
bot-based motion simulator with a small capsule, which is equipped with a
180 cm wide hemispherical screen in front of a high resolution 3D projector
with a fisheye lens above the user as well as a stereo sound system (Figure
4). For user interaction, the capsule provides two touchscreens, which can
be used to display instruments or additional information, two three-axis
joysticks, two pedals and a throttle control. The capsule is equipped with an
opaque textile cover that keeps out visual impressions from the outside pro-
viding a better immersion.

Figure 5. The motion simulator system.

Our system features a KUKA KR-500 TÜV robot, a six-axis industrial robot
with a maximum payload of 500 kg. This is sufficient for the capsule including
all installed electronics and a passenger with up to 120 kg (Figure 5). The robot
operates in a work cell with a diameter of approximately 10 m and requires a
height clearance of about 7 m. The capsule can be accessed in a height of 2.4
m by using a staircase and a retractable platform. To ensure the user’s safety,

R
IU

S 4: G
EO

-D
ESIG

N

34

the capsule is equipped with a bidirectional audio link, a video downlink and
a smoke detector. The robot is hardware-restricted in its movements to avoid
collisions between the capsule and the ground as well as between the capsule
and the robot. Furthermore, the robot control includes an acceleration limit
to control the forces that are applied to the user. The impacts are limited ac-
cording to DIN EN 13814 (DIN, 2004), but still the user feels accelerations up
to 2 g.

Figure 6. Components involved in motion cueing.

 4.1	 Motion	Cues
The benefit of this six-degrees-of-freedom robot is the precise mapping

of simulated movements and accelerations onto a pose in the real world. This
way, an attached seat can be positioned and oriented according to the user’s
situation within the simulation. For example, in the simulation of a wood
harvester (Figure 6, left), when a driver navigates through a forest, passing
through rough terrain and evading obstacles, it is invaluable for a realistic
simulation to extend the 3D visual information with a tactile element. In con-
trast to smaller screens, the hemispherical projection provides for the possi-
bility of strong peripheral visual cues. These motion cues are caused subcon-
sciously by motion visually observed in the peripheral field of view. Different
researchers have already put huge efforts into studying these effects. Their
conclusion is that these cues already provide a very strong motion feedback,
but they can still be amplified by motion observed through the vestibular sys-
tem (Telban, 2005).

The vestibular system responds differently to translational and rotation-
al motion. Due to the robot’s construction, there is a strong influence on the
semi-circular canals and, therefore, motion perception due to extended ro-
tations is intensified by design. Nevertheless, since thresholds for the hu-
man motion perception have been proposed (Zacharias, 1978), strong jerking
movements can be utilized to convey translational accelerations by stimulat-
ing the otolithic organs.

By computing the appropriate robot motion in real-time, the driver’s
motion and the visual feedback can be synchronized for a holistic driving

IN
TEG

R
ATIN

G
 VIR

TU
A

L R
EA

LITY, M
O

TIO
N

 SIM
U

LATIO
N

 A
N

D
 A 4D

 G
IS

35

impression (Telban, 2005). This can be achieved by estimating motion cues
caused by a vehicle and induced to a passenger. By calculating accelerations of
the passenger frame with a subsequent washout filtering, a motion subset can
be estimated that can be used to stimulate a passenger’s vestibular system
causing the relevant motion cues. Additionally, the passenger perceives the
visual motion cues due to her peripheral field of view.

The washout-filtering step is essential to provide measures for the lim-
ited workspace of the robot (Grant, & Reid, 1997). Since a vehicle in the real
world can move freely, with regards to its physical behaviour, while the pas-
senger seat’s motion envelope in the simulator is rather limited due to the
constraints of the robot, a mapping of the motion has to be applied. Models of
the human inner ear can be applied to preserve the perceived motion. Since
the semi-circular canals as well as the otolithic organs can be modelled as
damped systems (Zacharias, 1978), only parts of the actual motion are per-
ceived until the “washout” masks others. Thus, it is possible, e.g., to stop ac-
celerating the capsule in one direction after a short period of time and then to
slowly move backwards to the pristine position for further motion induction
without the passenger noticing.

This motion has to be performed by an actuator, e.g., a six-axis robot like
our motion simulator, carrying a capsule providing a passenger seat. For this
robot to move, an interface to the manufacturer’s robot control system has
to be provided. In general, such an interface needs to meet hard real-time
constraints specified by the manufacturer, which are specific to a particular
robot control system. Communication protocols, simulation, planning and
execution are separated onto different machines constituting a distributed
simulation. This way, time critical parts of the software are detached from
the non-time-critical parts and executed on dedicated computers providing
enough computing resources to meet the specified constraints.

 4.2	 Distributed	Simulation
The simulation comprises different computers to carry out specific tasks

(Figure 6). Computer (A) either runs a Windows or a Linux operating system.
It provides a platform for VEROSIM to simulate a vehicle’s dynamics and the
environment it interacts with. For a realistic simulation, the vehicle’s mod-
el is composed of different parts with different masses. A wheel suspension
modelled as a damped mass-spring system is attached to provide realistic in-
teraction between rough terrain and the vehicle (Jung, Rast, Kaigom, & Ross-
mann, 2011). In the example of the wood harvester, the vehicle also has a
crane to grab and work on tree trunks. As this provides a huge level of inter-
action between vehicle and environment, it also provides a huge potential for
a realistic motion feedback.

R
IU

S 4: G
EO

-D
ESIG

N

36

The motion feedback is calculated on computer (B) by transforming ve-
locities and accelerations into new poses and robot trajectories. It runs the
QNX operating system with its pre-emptive scheduler (Hildebrand, 1992).
This is a mandatory component of the whole setup to meet the real-time con-
straints imposed by the Kuka Robot Control (KRC2). A sampling frequency of
1/12kHz has to be attained to achieve smooth robot motion. Thus, the QNX
system clock runs with a 1 ms resolution to provide a fine granularity for the
VEROSIM task scheduler.

To cope with the inverse kinematics and path planning, the simulation
system VEROSIM uses a model of the physical robot and its environment. This
model is used to evaluate the motion, considering the available workspace
and robot constraints. These constraints are imposed by limits for the axis’
positions, velocities and accelerations. By exceeding any of these limits, the
robots movement is stopped and an error message is issued to signal a fault
state. Because this also prevents the simulation from continuing, the robot
constraints have to be strictly adhered to, to prevent a passenger from un-
comfortable accelerations.

When a target pose is calculated that exceeds the robot limits, steps have
to be taken to move the robot in a way to minimize the wrongly perceived
motion cues. One examined approach was to move the robot to its farthest
possible Cartesian position and then only continue moving those axes that
are sufficiently far away from their limits to provide a smooth stop.

Two different approaches were implemented to compute velocity profiles
for the robot to follow. When a velocity profile is calculated, it is used to in-
terpolate new target positions for the robot’s axes. These positions are set by
the internal position controllers of the KRC2.

 𝑃𝑃𝑃𝑃+
−

𝑝𝑝𝑣𝑣𝑎𝑎𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐

Figure 7. Linear control model for accelerated motion.

The first approach utilizes a simple linear model describing accelerat-
ed motion (Figure 7). Accelerations (a) are integrated twice (with the velocity
(v) as intermediary) to provide positions (p). Since positions are controlled
by accelerations, a closed-loop linear controller is necessary to ensure a sta-
ble system behaviour. The controller is implemented with the PD (propor-
tional-derivative) control algorithm comparing the desired position (p_cmd)
with the actual position (p). The controller is parametrized to provide small

IN
TEG

R
ATIN

G
 VIR

TU
A

L R
EA

LITY, M
O

TIO
N

 SIM
U

LATIO
N

 A
N

D
 A 4D

 G
IS

37

system response times while being stable with little overshoot. Subsequently,
the acceleration values are truncated to fit the robot acceleration limits.

The second approach parameterizes cubic hermite splines to describe
a velocity profile. When a new target position is received, it is taken as the
spline’s final point setting the velocity to zero. Accordingly, the robot’s cur-
rent position and velocity is used for the spline’s starting point. This allows
coping with two scenarios. First, no new target position is received until the
spline’s final point is reached. Thus, the robot is stopped and waits for new
commands. Second, a new target position is received while the robot is still
moving. Since the current position and velocity is used to calculate a new pro-
file, the current one can be replaced by the newly computed velocity profile
without causing jerking behaviour.

Either way, resulting poses of the simulated robot are sampled with a fre-
quency of 250Hz and subsequently used as target values for the internal posi-
tion controllers of the KRC that move the physical robot accordingly.

To provide target positions for the previously described approaches, a
washout filter was implemented being the basis for the whole motion cuing
process. To this point, a classical washout filter design (Krämer, 2004) has
been utilized on computer (B), executed with a frequency of 250 Hz. A basic
layout of this filter is depicted in Figure 8. Three main parts can be identified
that operate in close coordination. For all of them, the vehicle simulation has
to provide accelerations (a,ω) that are separated into a translational and a ro-
tational component. The translational component is utilized by the tilt coor-
dination (TILT, Figure 8) as well as the high pass filter (HP, Figure 8 top) for
the translational motion. Since the translational high pass filter removes low
frequency components, which would be useful for long acceleration phases in
vehicles, the tilt coordination transforms these low frequency accelerations
into an orientation that is applied to the passenger seat. This way, the earth’s
gravitational force is used to display accelerations that would otherwise be
lost.

HP

TiltSimulation

HP +

𝜔𝜔

𝑎𝑎

𝑑𝑑

𝛼𝛼

Figure 8. Basic washout filter principle.

R
IU

S 4: G
EO

-D
ESIG

N

38

These changes in orientation will ultimately induce rotational motion
cues if performed too rapidly. Since thresholds for the perception of these
changes exist, the effects can be compensated. As with translational accel-
erations, rotational accelerations are also high-pass-filtered (HP, Figure 8
bottom) to remove unacceptably long acceleration phases that would cause
the robot to move outside its predefined limits. However, low frequency com-
ponents are processed differently as there is no counterpart to the tilt coordi-
nation. Thus, they are lost and cannot be utilized in motion cueing.

The filtered accelerations (d,ω) can be used to control the robot motion.
To guarantee the capsule to return to its pristine position, a linear controller
is used. The controller is parameterized to keep accelerations for this motion
below perceptual thresholds to avoid the induction of false motion cues. The
pristine position has to be chosen carefully to provide for a maximum flexi-
bility in the consecutive movements. The aforementioned lengthy accelera-
tion phases might exhaust the robot’s workspace reducing otherwise possible
motion cues.

 4.3	 Synchronization
Different computer systems are combined to provide a distributed simu-

lation for our motion simulator. All computers have a specific task to perform
and, therefore, have to synchronize specific properties. As mentioned above,
VEROSIM provides a simple property synchronization mechanism (Hoppen
et al., 2014). It can be used to replicate individual properties of the simula-
tion model between VEROSIM instances on different computers. Every time
a property is modified, the new value and its timestamp are sent to all other
connected instances.

The VEROSIM instance on computer (A) simulates a vehicle whose seat’s
frame is used as an input frame for the washout filter. As the washout filter
is executed on the QNX VEROSIM instance on computer (B), the seat’s frame
has to be synchronized between both instances. Hence, computer (A) acts as a
server for computer (B) and changes of the seat’s frame are sent to computer
(B) where the appropriate accelerations for the translational and rotational
components are calculated for further processing.

As this synchronization is a non-time critical part of the simulation,
frames are not sampled at fixed rates, but rather as soon as changes occur.
Therefore, as the vehicle simulation on computer (A) is carried out with an
update frequency of 25 Hz to 30 Hz, new samples arrive at the least every 40
ms.

 4.4	 Robot	Control
For its KRC2 robots, KUKA provides a control panel that can be used for

IN
TEG

R
ATIN

G
 VIR

TU
A

L R
EA

LITY, M
O

TIO
N

 SIM
U

LATIO
N

 A
N

D
 A 4D

 G
IS

39

robot control. It is a graphical user interface to display variables, states and
system information. It can also be used for writing KRL (Kuka Robot Language)
programs to be executed on the robot’s real-time hardware. Furthermore, it
allows to directly moving the robot with a simple keystroke. Even though this
enables the user to easily manipulate the robot’s position, it is not sufficient
to implement large sensor applications or applications dependent on external
path planning.

For such applications, KUKA provides the Robot Sensor Interface (RSI)
technology package. It is a KRL application-programming interface compris-
ing function blocks that can be connected into block diagrams implementing
complex algorithms. On the KRC2, the RSI programming is carried out using
KRL code to instantiate blocks and manually connect them by function calls.
When the RSI definition is finished, a function call can pass control over the
robot position from the integrated control panel to an external system by en-
tering the so-called sensor driven mode. This mode enables the RSI function
blocks and, therefore, causes an override of the user interface.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝐴𝐴

𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐶𝐶𝐸𝐸𝐸𝐸𝐶𝐶𝑝𝑝𝐸𝑝𝑝𝐴𝐴. 𝐶𝐶𝑃𝑃𝐸𝐸𝐸𝐸𝐸𝐸𝐶𝐶𝐶𝐶𝐴𝐴𝑃𝑃𝐸𝐸𝑄𝑄𝑄𝑄𝑄𝑄 𝑉𝑉𝐸𝐸𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

𝐶𝐶𝑃𝑃𝐶𝐶𝑝𝑝𝐶𝐶𝐶𝐶𝐸𝐸𝐶𝐶 (𝐵𝐵) 𝐾𝐾𝐾𝐾𝐾𝐾𝐴𝐴 𝐾𝐾𝑉𝑉𝐶𝐶𝐾

Figure 9. Position control integration with the Robot Sensor Interface.

For our motion simulator, a block diagram as depicted in Figure 9 (right)
is implemented. A function block is instantiated for Ethernet connectivity
(Ethernet), axis control (Axis Ctrl) and position sensor (Axis Pos). This way,
new positions can be commanded via Ethernet to be applied to the robot’s
axes. The axis control block passes positions to the internal position control-
ler and makes the robot move. The robot’s current position is also transmit-
ted back to the external system (QNX VEROSIM) via Ethernet (Figure 9 left).
Thus, here, a closed-loop feedback controller for the motion feedback algo-
rithms can be implemented on Computer (B) as well.

On the QNX computer, VEROSIM is executed as a real-time process and is
connected to the KUKA KRC2. As mentioned above, its primary task is to exe-
cute a simulation of the robot kinematics and to calculate velocity profiles for
the physical robot to follow. Thus, the QNX VEROSIM opens a data channel to
the Ethernet function block running in the RSI block diagram and replicates

R
IU

S 4: G
EO

-D
ESIG

N

40

the simulated robot’s motion by commanding positions sampled from the
velocity profile. Since the RSI Ethernet block demands a 12 ms time slot, new
positions are sampled asynchronously with a 1/12 kHz frequency.

A combination of these techniques yields a simulation system that pro-
vides holistic driving impressions. A passenger driving a simulated jeep (Fig-
ure 10) can see and feel accelerations by steering a vehicle through simulat-
ed terrain in a realistic manner. For example, while driving a long left-hand
curve the motion simulator capsule is moved likewise to induce the realistic
driving impression. Figure 11 gives an impression of the motion simulator’s
dynamic behaviour.

Figure 10. Motion simulator responds to left-hand curve of simulated jeep.

Figure 11. An impression of the motion simulator’s dynamic behaviour.

5. CONCLUSIONS
Altogether, the presented combination of a 3D simulation system with

VR, GIS and motion simulation functionalities provides a fully integrated
virtual reality and GIS approach. It reduces the usually required tool chain
to a single software, eliminates the need to permanently import and export

IN
TEG

R
ATIN

G
 VIR

TU
A

L R
EA

LITY, M
O

TIO
N

 SIM
U

LATIO
N

 A
N

D
 A 4D

 G
IS

41

data between multiple systems and adds the possibility to interact with the
geo-data like in a common GIS even when displayed in a VR system. It be-
comes possible to change object data in the GIS, even to generate live maps
from the geo-data and to immediately explore the results in the virtual re-
ality environment. On the other hand, georeferenced simulation results can
be evaluated with all available GIS tools, which is one of the ideas of a Virtual
Testbed (Rossmann, Jung, & Rast, 2010). For example, performance logs of a
harvester can be combined with 2D or 3D maps and displayed in the GIS or VR
view.

The haptic feedback from an industrial-robot-based motion simulator
adds even more information about the geo-data to the impressions of the
user. Movements of the camera or of any simulated object within the geo-da-
ta are converted to robot movements by using washout filters which consider
the limits of the physiological movement perception of a human. These cal-
culated movements are then passed to the robots inner control loop in a re-
al-time process. Together with the visual impacts of the visual-range-filling
hemispherical projection, this haptic feedback provides a holistic impression
for the user.

The motion feedback induced to the passenger’s perceptual organs is
directly depending on the path and motion planning carried out on the re-
al-time system. A huge variety of different parameters and perceptual limits
can be exploited to increase the immersion of a passenger into the simulated
environment, holding the capabilities for future research. A washout filter
implementation specifically applied to the robot axes in favour of the Car-
tesian filter implementation will lead to a more efficient workspace utiliza-
tion. Hence, specific feedback channels can be prioritized (e.g. lateral motion)
leading to an enhanced motion perception, while simultaneously reducing
the risk of motion sickness.

With the presented approach, GIS, VR visualization, simulation and hap-
tic feedback are merged together, delivering added value for each of these
fields. In geodesign processes, this combination provides a foundation for
information exchange between the different roles. The VR system allows an
intuitive and immersive visualisation of the planned concepts and therefore
provides access to the displayed information for every role without the ne-
cessity to learn and understand special drawings or the symbolic language of
other roles.

Applications for this integrated solution with a robot-based motion sim-
ulator or a Stewart/Gough platform range from city visualizations including
virtual city tours and presentations including cars or helicopters to simula-
tions like the presented wood harvester and Virtual Testbeds in multiple areas
of engineering. With the 4D support, change visualisations of larger land-
scapes become possible.

R
IU

S 4: G
EO

-D
ESIG

N

42

ACKNOWLEDGEMENTS

Research project Virtual Forest: This project is co-financed by the Euro-
pean Union and the federal state of North Rhine-Westphalia, European Re-
gional Development Fund (ERDF). Europe – Investing in our future.

REFERENCES

DIN – German Institute for Standardization (2004). DIN EN 13814: Fairground and amusement park ma-

chinery and structures – Safety; German version EN 13814:2004. Beuth-Verlag.

Grant, P. R., & Reid, L. D. (1997). Motion washout filter tuning: Rules and requirements. Journal of Aircraft,

34(2), 145-151.

Hildebrand, D. (1992, April). An Architectural Overview of QNX. In USENIX Workshop on Microkernels and

Other Kernel Architectures (pp. 113-126).

Hoppen, M., Rossmann, J., Schluse, M., & Waspe, R. (2010). A New Method For Interfacing 3D Simulation

Systems And Object-Oriented Geo Data Sources. In T. Kolbe, G. König, & C. Nagel (Eds.), The 5th Inter-

national Conference on 3D Geoinformation ISPRS 2010 (pp. 51-56). Aachen, Germany: Shaker Verlag.

Hoppen, M., Schluse, M., Rossmann, J., & Weitzig, B. (2012). Database-Driven Distributed 3D Simulation.

Proceedings of the 2012 Winter Simulation Conference (pp. 1-12).

Hoppen, M., Waspe, R., Rast, M., & Rossmann, J. (2014). Distributed Information Processing and Render-

ing for 3D Simulation Applications. International Journal of Computer Theory and Engineering (IJCTE),

6(3), 247-253.

Jensen, C. S., Dyreson, C. E., Böhlen, M., Clifford, J., Elmasri, R., Gadia, S. K., et al. (1998). The consensus

glossary of temporal database concepts—february 1998 version. In Temporal Databases: Research

and Practice (pp. 367-405). Berlin-Heidelberg, Germany: Springer.

Jung, T. J., Rast, M., Kaigom, E. G., & Rossmann, J. (2011, January). Fast VR Application Development Based

on Versatile Rigid Multi-Body Dynamics Simulation. In ASME 2011 International Design Engineering

Technical Conferences and Computers and Information in Engineering Conference (pp. 1481-1490).

American Society of Mechanical Engineers.

Kolbe, T. H., Gröger, G., & Plümer, L. (2005). CityGML: Interoperable access to 3D city models. In Geo-in-

formation for disaster management (pp. 883-899). Berlin-Heidelberg: Springer.

Krämer, M. A. (2004). Universelle Fahrzeugsteuerung als integrativer Bestandteil einer VR-Simulations-

plattform. Shaker Publishing.

Rossmann, J., Jung, T. J., & Rast, M. (2010, October). Developing virtual testbeds for mobile robotic appli-

cations in the woods and on the moon. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ Inter-

national Conference on (pp. 4952-4957). IEEE.

Steinitz, C. (2012). A Framework for Geodesign – Changing Geography by Design. Redlands, CA: Esri Press.

Telban Robert, J., & Cardullo, F. M. (2005). Motion Cueing Algorithm Development: Human-Centered Lin-

ear and Nonlinear Approaches. NASA/CR-2005-213747.

Zacharias, G. L. (1978). Motion cue models for pilot-vehicle analysis. Bolt Beranek and Newman inc. Cam-

bridge MA Control Systems Dept.

