MIOCENE QUANTITATIVE CALCAREOUS NANNOFOSSIL BIOSTRATIGRAPHY FROM SOUTHERN APENNINES FOREDEEP DEPOSITS AND MEDITERRANEAN DSDP SITE 372

PATRIZIA MAIORANO

Received January 30, 1998; accepted April 25, 1998

Key-words: Miocene, Calcareous Nannofossils, Quantitative Analyses, Foredeep Deposits, Mediterranean Biostratigraphy.

Riassunto. Sui campioni raccolti in nove successioni mioceniche rappresentate prevalentemente da depositi calciclastici e silicoclastici, riferibili alle unità irpine esterne ed affioranti al margine esterno dell'Appennino meridionale (Italia meridionale), è stato condotto uno studio biostratigrafico quantitativo basato sulle associazioni a Nannofossili calcarei. Le analisi quantitative hanno permesso di riconoscere, anche in queste successioni, gran parte degli eventi biozonali noti per l'area mediterranea in accordo con gli schemi biostratigrafici di Fornaciari & Rio (1996) e Fornaciari et al. (1996) per il Miocene inferiore e medio, e di Theodoridis (1984) per il Miocene superiore.

Alcuni tra gli eventi biozonali utilizzati in letteratura, come ad esempio la "first common occurrence" di *Helicosphaera walbersdorfensis* o la "last common occurrence" di *Calcidiscus premacintyrei*, sono stati però di difficile definizione; nell'intervallo MNN6b/7 la "first common occurrence" di *Calcidiscus macintyrei* rappresenta invece, nelle successioni analizzate, un evento più significativo rispetto alla "last common occurrence" di *Calcidiscus premacintyrei*.

Sono stati inoltre identificati nuovi eventi biostratigrafici che migliorano la risoluzione degli schemi biozonali utilizzati: nelle Zone MNN4b e MNN5a è stato riconosciuto un significativo intervallo di paracme di "small" *Reticulofenestra pseudoumbilicus*; il "paracme beginning" ed il "paracme end" di questa specie sono eventi utili nella correlazione delle successioni studiate. Inoltre, la presenza di *Reticulofenestra pseudoumbilicus* è stata riconosciuta a partire dalla Zona MNN2b, in un intervallo quindi molto inferiore rispetto alla nota "first common occurrence" della specie, che definisce la base della Zona MNN6b.

Le distribuzioni osservate nelle successioni dell'Appennino meridionale sono state inoltre confrontate con i risultati ottenuti da uno studio quantitativo svolto sul Pozzo DSDP 372 ubicato nel Mediterraneo occidentale: ciò ha permesso di confermare il valore biostratigrafico di tali distribuzioni nell'area mediterranea.

Abstract. A quantitative biostratigraphic study based on calcareous nannofossil assemblages was carried out in nine Miocene calcareous and siliciclastic foredeep sections, cropping out in the outer part of the Southern Apennines and generally ascribed to the external Irpinian units. Several biozonal events were recognised by means of quantitative analyses, according to the biostratigraphic schemes of Fornaciari & Rio (1996) and Fornaciari et al. (1996) for the lower and middle Miocene and of Theodoridis (1984) for the upper Miocene. In the lower and middle Miocene interval some biohorizons such as the first common occurrence of *Helicosphaera walbersdorfensis* and last common occurrence of *Calcidiscus premacintyrei* are not always detectable in the studied sections and the first common occurrence of *Calcidiscus macintyrei* appears to be a better biohorizon in the MNN6b/7 than the last common occurrence of *C. premacintyrei*.

New data on abundance patterns of selected calcareous nannofossils have been collected, thus improving the biostratigraphic resolution of the zonal schemes: a paracme interval of small *Reticulofenestra pseudoumbilicus* was noted within Zone MNN4b and MNN5a; the beginning and the end of the paracme are useful events in the studied sections for stratigraphic correlations. Moreover the occurrence of *R. pseudoumbilicus* has been recorded from Zone MNN2b on upwards, fairly below the FCO of the species that defines the base of Zone MNN6b.

The distributions observed in the on-land sections are consistent with those recognised in DSDP Site 372 located in the western Mediterranean Sea, confirming their potential biostratigraphic utility within the Mediterranean region.

Introduction.

Recent studies have been focused on the improvement of the Miocene calcareous nannofossil biostratigraphy within the Mediterranean region (Theodoridis, 1984; Negri, 1989; Di Stefano, 1993; Fornaciari & Rio, 1996; Fornaciari et al., 1996). In particular, Fornaciari & Rio (1996) and Fornaciari et al. (1996) proposed new biostratigraphic schemes based on abundance fluctuations of selected calcareous nannofossil species and these schemes provide a higher biostratigraphic resolution in comparison with the standard zonations of Martini (1971) and Okada & Bukry (1980). In order to provide new data on the applicability of the recently proposed schemes in different areas, a biostratigraphic study based on calcareous nannofossils in Miocene foredeep deposits has been performed. Such deposits are widespread in the Southern Apennines and their biostratigraphic dating is also very useful for the understanding and modelling of

- Dipartimento di Geologia & Geofisica, Via E. Orabona, 4; I - 70125 Bari, Italy; e-mail: maiorano@teseo.it

several geological problems (Gallicchio, 1996; Gallicchio & Maiorano, 1997; Gallicchio, 1997).

The biostratigraphic data on the calcareous nannofossil assemblages have been collected by means of quantitative analyses; these are of great utility for the recognition of significant abundance patterns and provided accurate age determinations as well as detailed stratigraphic correlations among the studied sections (Maiorano, 1996).

The investigation was extended to DSDP Site 372, located in the western Mediterranean Sea and representing a reference deep-sea section for the Mediterranean middle Miocene biostratigraphy (Müller, 1978; Theodoridis, 1984; Negri, 1989; Fornaciari et al., 1996). The re-examination of DSDP Site 372 in this study was performed in order to attempt a comparison with the quantitative results obtained from the Southern Apennines sections and to provide useful information on the Miocene Mediterranean calcareous nannofossil biostratigraphy.

Geological framework.

The investigated Miocene carbonatic and siliciclastic turbidite sections crop out in the outer part of the Southern Apennines, between the Trigno river and the neighbourhood of Rotondella (Fig. 1); they are generally Fig. 1 - Location of the studied sections in Southern Apennines; geological map from Bonardi et al. (1988) and Bigi et al. (1989), modified.

ascribed to the outer Irpinian units (Pescatore, 1978; Dazzaro & Rapisardi, 1983; Pescatore, 1988).

The herein discussed calcareous sections (Tufillo, Monte Sidone, Monte Rotondo, Monte Armenia and Rotondella) are mostly referred to the Flysch di Faeto Formation (Crostella & Vezzani, 1964) and to the Tufillo Formation (Selli, 1962) and crop out mostly between the Trigno river and the Monte Vulture. The siliciclastic sections (Fosso Scannapapere, Torrente Vaggianello, Jazzo Porcellini, Valle Difesa) are ascribed to the Serra Palazzo Formation (Selli, 1962) and are widespread in the southern part of the studied area, between the Monte Vulture and Rotondella.

These units were deposited in a NW-SE foredeep domain whose western margin consists of deformed Apennine thrust belt, whereas the eastern one is represented by the undeformed Apulia Foreland (Fig. 1). The studied sections lie stratigraphically on the Oligocene-Miocene portion of the Lagonegro units (*sensu* Cocco et al., 1974) represented by the Numidian Flysch Formation (Ogniben, 1963) or by the Calcareniti, marne ed argille di M. Sidone Formation (Senatore, 1988). They are overlaid by the Marne argillose del Toppo Capuana Formation (Crostella & Vezzani, 1964).

Further lithostratigraphic and sedimentologic details on the Southern Apennines Miocene foredeep deposits are reported in many papers to which the reader is referred (Ippolito & Lucini, 1957; Palmentola, 1969, 1970; Palmentola et al., 1967, Pieri & Walsh, 1967; Boenzi et al., 1968; Ogniben, 1969; Centamore, 1969; Centamore et al., 1971; Rapisardi & Walsh, 1978; Pescatore, 1978, 1988; Ciaranfi et al., 1980; Mostardini & Merlini, 1986; Di Nocera & Torre, 1987; Bonardi et al., 1988; D'Argenio, 1988; Dazzaro et al., 1988; Sgrosso, 1988; Russo & Senatore, 1989; Patacca et al., 1990, 1992; Loiacono & Sbarra, 1991; Boiano et al., 1994; Sbarra, 1995; Gallicchio, 1996). In particular a detailed lithostratigraphic and structural framework of the studied sections is documented in Gallicchio (1996).

Materials and Methods.

Samples for calcareous nannofossil analyses were prepared from a suspension of unprocessed sediment and water. The solution was spread on a cover glass and dried, then mounted on a glass slide. Light microscope techniques were used at 1000X magnification.

Quantitative analyses were performed according to Rio et al. (1990b), in order to detect the abundance patterns of the marker species. These methods have been already tested in turbidite sediments (Fornaciari & Labaume, 1992; Fornaciari & Rio, 1996; Fornaciari et al., 1996).

Most of the quantitative data were collected by counting 500 specimens in the nannofossil population greater than 4 microns. A number of 30-100 taxonomically related specimens have also been counted in order to document the abundance fluctuations of helicoliths. Abundance patterns of *Discoaster variabilis-exilis* and *Discoaster deflandrei* were plotted as number of specimens/mm² and are relative to about 1500 specimens of the total nannofossil assemblage. A supplementary qualitative analysis on about 3000 specimens was performed Fig. 2 - Biostratigraphic scheme and distribution of some marker species proposed for the Mediterranean region and comparison with standard zonations. Undetectable biozonal boundaries are traced with dashed lines; * = new biostratigraphic events proposed in the present work. Chronostratigraphy is drawn according to Fornaciari and Rio (1996) and Fornaciari et al. (1996); buffer intervals indicate that at present no formal definition of the boundary stratotype sections is available.

in all the samples in order to recognise the presence of rare species. Moreover, in the upper Miocene interval, a number of about 10,000 specimens has been scanned in order to get significant abundance fluctuations of *Discoaster* spp. and *Amaurolithus* spp. and the abundance patterns have been plotted as number of specimens/mm². The diagrams of the quantitative distribution of the most significant species are shown for each section; distribution charts of the total assemblages are included.

Calcareous nannofossils in the studied material are often poorly preserved. The total abundance in the samples is generally no more than 7-10 specimens per field of view and it is often represented by 3-5 specimens only. Reworked Cretaceous and Cenozoic nannofossils are present. In the siliciclastic sections the number of reworked specimens on 500 nannofossils is generally greater than in the calcareous ones and may reach value up to 40% of the assemblage. However the reworked taxa did not prevent the recognition of the biozonal events; quantitative patterns are in fact comparable with those observed for most of the species in pelagic or hemipelagic sequences.

The following biometrical definitions have been adopted in this study:

small R. pseudoumbilicus: reticulofenestrids 5-7 micron in size;

R. pseudoumbilicus: reticulofenestrids >7 microns (Raffi & Rio, 1979);

large R. pseudoumbilicus reticulofenestrids >12 microns;

Calcidiscus macintyrei: circular Calcidiscus ≥11 microns (Rio et al., 1990a):

Coccolithus miopelagicus >13 microns (Perch-Nielsen, 1985).

Adopted zonal scheme.

In the past years various authors (Müller, 1978; Ellis, 1979; Ellis & Lohman, 1979) pointed out the limits of the standard biostratigraphic schemes of Martini (1971) and of Bukry (1973, 1975) within the Mediterranean region, due to the absence or the rarity of several

Fig. 3 - Abundance patterns of selected calcareous nannofossils at the Tufillo section. FO = First Occurrence; LO = Last Occurrence; FCO = First Common Occurrence; LCO = Last Common Occurrence; PB = Paracme Beginning; PE = Paracme End.

marker species such as *Discoaster druggii*, *Triquetrorhabdulus carinatus*, *Catinaster coalitus* and *Discoaster kugleri*. Some alternative biozonal schemes have been proposed for the Mediterranean region (Cati & Borsetti, 1970, Ellis, 1979; Ellis & Lohman, 1979; Theodoridis, 1984; Negri 1989; Di Stefano, 1993; Fornaciari & Rio, 1996; Fornaciari et al., 1996) in order to improve the low resolution of the standard schemes for regional correlations.

In this study the most recent biostratigraphic schemes (Fornaciari & Rio, 1996; Fornaciari et al., 1996) proposed for the lower and middle Miocene Mediterranean sediments are followed. They are based on quantitative analyses on calcareous nannofossil assemblages carried out on various Italian sections from different depositional settings, as well as on the Langhian and Serravallian stratotype sections. Some of the events are from the zonal schemes of Martini (1971) and Bukry (1973, 1975) and of Theodoridis (1984). The new proposed biohorizons are based not only on FO (first occurrence) and LO (last occurrence), but on significant abundance fluctuations of some species, which allow to recognise supplementary events such as FCO (first common occurrence), LCO (last common occurrence), PB (paracme beginning) and PE (paracme end).

In Fig. 2 a comparison between the standard zonations and the Mediterranean biostratigraphic scheme adopted in this work is shown. In the zonal schemes of Fornaciari & Rio (1996) and Fornaciari et al. (1996) a dashed line was used to indicate those biohorizons not always recognised in the studied material, such as the FCO of *H. walbersdorfensis* and the LCO of *C. premacintyrei*. Additional events as well as significant distributions of species recognised in this study have been included.

For the upper Miocene interval the biozonal scheme of Theodoridis (1984) was followed. The biozones of Theodoridis (1984) provide a better biostratigraphic resolution compared to the standard schemes and to what is known from the Tortonian-Messinian stratotype sections (Martini, 1975; Rio et al., 1976; Mazzei, 1977). Recent studies on the Falconara section (Sprovieri et al., 1996b) confirmed the applicability of the scheme of Theodoridis in the Tortonian-Messinian interval.

Although at present there is no general agreement on the formal definition of the Miocene boundary stratotype sections, the proposal discussed in Fornaciari et al. (1996) and Fornaciari et al. (1997) has been followed in this study in the lower and middle Miocene interval. The FO of *Reticulofenestra rotaria* has been considered for the recognition of the Tortonian/Messinian boundary, according to Langereis et al. (1984).

Biostratigraphic Results.

Tufillo section.

This section was sampled mostly along the Trigno river (154 IV SE, topographic map of Italy) and is referable to the Tufillo Formation. It mainly consists of calcarenites, calcilutites and marls which lie stratigraphical-

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Burdig.	Lan	ghian	Serravallian	Tortonian	Age	
Nume Tuttlo m. Manue sergions of 1 c. quantaria Formation Formation In a M with the M with th	MNN 3b	MNN 4b	MNN56 5a	MNN 7 MNN6b MNN6a	A primus * C. pelagic.	Fornaciari & Rio (1996) ZI Fornaciari et al. (1996) EO *Theodoridis (1984) EO	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Numidian Flysch Fm.		Tufillo Fm.		Marne argillose del T. Capuana Fm	Formation	
$\frac{1}{2} = \frac{1}{2} + \frac{1}$	- 10 4 4 4 0	112 112 12	19 18 16 13	24 22 22 23 22 21 21 21 21 21 21 21 21 21 21 21 21	41 42 39 38 37 36 37 36 37 37 36 37 37 36 37 37 37 37 37 37 37 37 37 37 37 37 37	Sample	
$ \begin{array}{c} 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 $	ר וד וד וד וד וד		סארארדרו	マドドドシッシン	*************	Total abundance	
$\begin{vmatrix} 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$				vp vp vp	, , , , , , , , , , , , , , , , , , ,	Preservation	-
$\begin{vmatrix} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $		1 6 2 2 2 2 2	2012/2012/2012	********		Amaurolithus primus	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $		a a a uno v	化电影影响电子	แน่และสาร	0.1	Amaurolithus spp.	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\ \end{array} \\$	*****	a a per e 2	0	7 2.6 F F 7 X	120 ⁰ 42. 11 120 ⁰ 42. 11 11 11 11 11 11 11 11 11 11 11 11 11	Calcidiscus leptoporus	
$ \begin{array}{c} \times & 2, 2, 5, 5, 2, 2 \neq 2 = 1 \\ \times & 3, 5, 5, 5, 2 \neq 2 = 1 \\ \times & 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$	222244	13.00 K K K		2 R F 4	2.2 R R R R R R R R R R R R R R R R R R R	C. macintyrei	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array} \\ \end{array} \\ \end{array}$	117 - 11 14 - 14 - 14 - 14 - 14 - 14 - 14 -	xcs		0.2 0.2 0.2	(新台市里市市区市路市省省市)100万平	C. premacintyrei	
$ \begin{array}{c} \hline & & & & & & & & & & & & & & & & & & $						Cryptococcolithus mediaperforatus	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array}$		00	32 R 2 . 0	8 8 15 · · · 6	C. C	Coccolithus miopelagicus	
Coronocyclus nitescens Cyclicargolithus floridanus Discoaster berggrenii D. berggrenii/Quinqueranus D. bouweri D. berggrenii/Quinqueranus D. bouweri D. berggrenii/Quinqueranus D. bergernii/Quinqueranus D. bergerni/Quinqueranus D. bergerni/Quinqueranus D. bergerni/Quinqueranus D. bergerni/Quinqueranus D. bergerni/Quinqueranus D. bergerni/Quinqueranus D. bergerni/Quinque		6 8 65 6 8 8 70 6 8 8 70	2 69 2 69 2 84 4 2 84 71 71	C 18.		C. pelagicus	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	00000	8 8 ° 4 N 0	ס נו נו ^{סי} ביא	4 404 4	4 % 4	Coronocyclus nitescens	
Discoater berggrenii Discoater sep. Discoater sep. Signal are bergerenii Discoater sep. Signal are bergereni	2	× × × × × × ×			0 0 X	Cyclicargolithus floridanus	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	07777	10400	2 ¹¹ 0 11 01 00 4	5 A 10	2 4 0 0	Discoaster berggrenii	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} $	a la lan more e				0 0	D berggrenii/quinqueramus	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array} \\ \end{array} \\ \end{array}$	1 AC 10 10 12 1	이번 신 일 방 방 영				D brouweri	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\$	00005	6 6 5 5 5 5 X X	्र त व दे दे 🗇 🕅			D deflandrei	
$\begin{array}{c} \underline{C} \\ $	म म म म म	H A NO KAR	a na a serie :	0.2		D intercelorie	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array}\end{array}$	2066 ff **		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			D. Intercataris	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	白白 化五万		i di se ner se se se	នេះ ពេលខេត្ត ខេត្ត ខ	e se se consec 🗒 je se	D. prepentaradiatus	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array}$	$E \to E + E$		220100	0.2		D. surculus	
$\frac{1}{2} - \frac{1}{2} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} \begin{bmatrix} 1 \\ $	ជតម្នេត	2 2 2 3 4 4 4 4 9	0.000 6 K 5 5		<u>e</u>	D. triradiatus	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $			化合金合金 化合金	<u>1</u> - <u>10</u> - <u>10</u>	4.5 2 2 0.3 0.7 0.2 0.2 3 0.2 2.5 2.5 2.5 2.5 2.5 0.6 0.6 0.6 0.6 0.6 0.5 1.1 7 1.1 7 1.1 7 1.5 7 7 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	℃D. variabilis-exilis	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $		2.2 2 5.2 1.8 0.4	2.8 1.4 3.4 3.4	0.6 F R R R R 1	0.4 F	Discoaster spp.	
x = x = x = x $x = 0$ $x = 1$ $x =$	र समय व		R 0.6 0.2 0.2	0.2 FF X	R R R R R R R R R R R R R R R R R R R	≂Geminilithella rotula	
$\begin{array}{c} \begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	~~~~~	R X S	9 (4 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5	ения на на за за за за в постав на на за за за за	×	Helicosphaera ampliaperta	
\mathcal{R} R	70007	14. 10 5 6	52 A 6 8	3.2 F = 7.6 R = 14.2	л. 	¬H. carteri	
$\begin{array}{c} \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		0 0 0			2 2 2 91 2 2 2 2 2 2 2 2 2 2 1 2 1 2 1 2 1 2	H. euphratis	
n = n = n = n = n = n = n = n = n = n =		224			R F R F	H. orientalis/pacifica	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				2	N N N N N N N N N N N N N N N N N N N	H. scissura	
$ \begin{array}{c} \blacksquare \\ \blacksquare \\ \square \\$	- 11 1 1	~			0. FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF	≂H. stalis	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \bigg \bigg \bigg $ \\ \end{array} \end{array} \\ \end{array} \bigg		a 17 00 % S S S		0 100	т ^о у д	H. walbersdorfensis	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\$	R	a 1901 KC KC KC KC		0 ~ 8 8 G G	~ ~ ~ .	Lithostromation perdurum	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						Scyphosphaera spp	
$\begin{array}{c} \begin{array}{c} & & & & & & & \\ & & & & & & \\ & & & & $	1999			N X X R	~~~	-Sphenolithus abies/neoabies	
$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	8 3 8 SUL	0.000,000	8839.55		6 T A T T X T	S hateromorphus	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0.000	9.4 7.2 0.2	F R R R R R R R R 6.4 6.4	0.2 2.4	× ××××	S. neteromorphus	
Sphenolithus spp. Reticulofenestra minuta 1 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 +	00 1 1 1	1.6 0.2 F	R 0.4 R 0.4 0.4 0.6 1.6	F 0.4	F		
Reticulofenestra minuta Reticulofenestra minuta Reticulofenestra minuta Reticulofenestra minuta R. minutula small R. pseudoumbilicus $1\frac{2}{2}$ $1\frac{2}{4}$ $1\frac{2}{7}$ $1\frac{2}{4}$ $1\frac{2}{7}$ $1\frac{2}{4}$ $1\frac{2}{7}$ $1\frac{2}{4}$ $1\frac{2}{7}$ $1\frac{2}{4}$ $1\frac{2}{7}$ $1\frac$	4.9.8 E E	0.6	1 = F 4 4 4 = 1	27 25 16 18 18 18 18 18 18 18 18 18 18 18 18 18	医生生体法 法保险的 化化物 化化物	Spnenolitnus spp.	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{}\\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array} \\ \end{array} \\ \end{array}$	****	5 2 2 5 5 5 5	8 3 8 8 8 8 8 8 8	********		Reticulofenestra minuta	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	च च च च च	3.2 7.4	F 2.4 F 2.2 41.2 6.4 0.8	23 C 6.8 4.8 F F 10	0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	R. minutula	
$\frac{1}{2} \begin{bmatrix} 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \end{bmatrix} > 2 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \end{bmatrix} > 2 \end{bmatrix} > 2 \begin{bmatrix} 2 & 2 & 2 \\ 8 & 4 \end{bmatrix} > 2 \end{bmatrix} > 2 \end{bmatrix} > 2 \begin{bmatrix} $	00000	0.2 · · · 0.4	0.	C C 26.6 28.4 20.6 F F	C C C C C C C C C C C C C C C C C C C	>small R. pseudoumbilicus	
"large" R. pseudoumbilicus א א א א א א א Rhabdosphaera spp. Triquetrorhabdulus milowii	Enth		a na sensar se se se	A A 31.4 1.2	F S164 S12 S12 S12 S12 S12 S12 S12 S12 S12 S12	R. pseudoumbilicus	
Rhabdosphaera spp. Triquetrorhabdulus milowii	1			ана на		"large" R. pseudoumbilicus	
Triquetrorhabdulus milowii	1 2 2 9 4		3.31.15.6.6.6.6.6		я	Rhabdosphaera spp.	
S S S S S S S S S S S S S S S S S S S	-		व संद १९ स. स. स. स		*************************************	Triquetrorhabdulus milowii	
	(A) (A)	00050	0000	0.02	10. 17 8 R 07 0000	REWORKING	

Tab. 1 - Calcareous nannofossil range chart of the Tufillo section. Abundances are tabulated as percentage relative to 500 specimens. Ceratoliths and discoasters are reported as N. of specimens/mm² relative to about 10,000 coccoliths. *Discoaster* spp. are relative to 500 specimens. X = occurrence recorded out of the counting method. Letters indicate semiquantitative estimate. Total Abundance: A = 20 specimens/field of view; C = 10-20 specimens/field of view; F = 2-10 specimens/field of view; R = 0.1-1 specimen/field of view; B = barren. Relative abundance: VA = 10 specimens/field of view; A = 2-10 specimens/field of view; C = 0.5-1 specimens/field of view; F = 0.02-0.5 specimens/field of view; R = 0.005-0.02. Preservation: VP = very poor; P = poor; M = moderate.

ly on the quartzarenites of the Numidian Flysch; in the upper part it is mainly represented by marly deposits (Marne argillose del Toppo Capuana Formation).

The calcareous nannofossil assemblage allow to recognise an interval between Zone MNN3b and *A. primus* Zone (Tab. 1); a covered interval occurs between MNN7 and the *C. pelagicus* Zone. Quantitative analyses were performed from sample 7 onwards and the abundance patterns of the most significant species allow the recognition of different biozonal events (Fig. 3).

In particular the PE of small *R. pseudoumbilicus*, which represents a new event recognised in this study, is visible between samples 17-19 and it is coincident, in this section, with the FCO of *H. walbersdorfensis*. A rise in abundance of *C. leptoporus* is observed at the MNN6b/7 zonal boundary. The LO of *H. walbersdorfensis*, which indicates the top of the middle Miocene Zone MNN7, was replaced by the LCO of the species since it has been recorded up to the *Amaurolithus primus* Zone; these occurrences might be considered due to reworking, but rare occurrences of *H. walbersdorfensis* can also be noted in the Monte dei Corvi and Contessa Entellina sections (Fornaciari et al., 1996, figs. 10-11) and in the Monte Cantigaglione section (Sprovieri et al., 1996a, fig. 6). This may suggest that the top of MNN7 Zone can be better recognised by the LCO of *H. walbersdorfensis* (Fig. 2). *Amaurolithus* spp. are extremely rare within *A. primus* Zone and were encounterd in a view of 10,000 specimens. The number of reworked specimens is often moderate (<1% on 500 nannofossils) and rarely reaches more than 10% of the assemblage.

Monte Sidone section.

This composite section was sampled near Castelluccio Valmaggiore from Serra Pizzuta to Monte Cornacchia (163 III SE, topographic map of Italy); it mainly consists of alternated calcilutites, calcarenites and marls referable to the Flysch di Faeto Formation, and in the upper part of marly deposits (Marne argillose del Toppo

Fig. 4 - Abundance patterns of selected calcareous nannofossils at the Monte Sidone section. See legend of Fig. 3.

Tab. 2 - Calcareous nannofossil range chart of the Monte Sidone section. Abundance are reported as percentage relative to 500 specimens. From sample 30 onwards the abundance of discoasterids and ceratolithids is tabulated as N° of specimens/mm² and relative to about 10,000 coccoliths. Letters indicate semiquantitative estimate. See legend of Tab. 1.

В	ur	d.	-					L	an	gł	nia	an				Ι	Se	err	av	.						T	01	to	ni	an	i					Age
4a	ATA TAS	MNN					46	MNN						<u>ہ</u>	MNN	Na	NIMIN	110	11/1	MNNA	8	-MNN-		9	MNN						primus	A				Fornaciari & Rio (1996) Fornaciari et al (1996) • Theodoridis (1984)
			-				20			I	Fly	/sc	h d	li F	ae	to I	m										-		M T.	ları Ca	ne a	arg. ana	de Fi	l n.		Formation SIDO
5		4	* *	- 10	=	13	5	Ŧ	2	5	17	x	19	20	2	3 5	1	13	26	27	28	29	30	3	31	1	2 2	30	17.	š	39	40	4	42	4	Sample Z
2 1	2			0	0	с. 	-	n	9	0	9	-	4	π. 	≠ ·	* *	1	n 4	0	1	N N	2	>	2				0	0	0	0	0	0	>	>	Preservation
			-	-		1	-	-	-	-	-	-	-	-							-		3					-	0.1				1			Amaurolithus primus
																												0.1	i.	0.1	ŝ			0.1		Amaurolithus spp.
×					82.4	١.,	1	1		2		0.4	0.6		÷			1		0																Calcidiscus fuscus
				0.2	0.6	2	04	0.2	×	0.6		0.2	i,	×	9.6	6		×	-	6	1 0	28 1	0	0	2	53			0	0	~ ~	1	2	A	A	C. leptoporus
0.1							~			×				×	0	P 1	.,	. ×	2	7	ia.	+	~			"	113		77		1.8			- 25		C. premacintyrei
0.2	02	2	40	0.6	1.6	-	24	-	12		1.6	0.2	×	2.2	-	5 1	3 5	. 15	1.6	0.2	1			×		2	1		7			×	2	20		Coccolithus miopelagicus
27.2	29	32.6	37.2	67.2	72.2	78.6	82	63.6	65.4	71.2	68.4	75	57.6	8	49.4	5	11.0	18.2	12.6	25	6.4	16.6	0	0	0	1.1	0.1	1.7	0	0	0	0	0	>	0	C. pelagicus
5.3									1					×	×	2																				Coronocyclus nitescens
12	-	+	Ξ	0	2 0	12	2 0	1.5	93	0 9.5	1.6	8	e 1	2 0	0.61	ñ.,						P.		w.	R :		2			×				- 11		Cryptococcolithus mediaperforatus
					14		1.4			2 1 8		6.8	2 0.6	2	12			1.10	-	0,4	12	2 3.2	>	0	>) T		-			C	>	D. perplexus
0	0	0		A	0	0	- 0							c	0	o .	n e	2	c	π	>	π	>	0	> :	× :		1.7	0	>	. >	>	>	A	>	D. productus
21.1										×																					÷					Discoaster adamanteus
																							1			 = : :			ŝ	1			ŝ		0	D bellus
																							54	0	æ .	+ 3	×	1.00				2	2			D. bellus/berggrenii
																										100	6		Ŷ.		1.	5		13	1.9	D. berggrenii/quinqueramus
																													100	0.0	2	0.2	1	0.6		D. berggrenii
1																							5		0 3	1000	-		1.1					0.6		D. brouweri Disconstar of D. shallangeri
		0									0																			0.0	2					D deflandrei
° .		2	•								2																a conse			2.11.2						D. exilis
- · ·																						ŝ			10		2 :	2				0.5				D. hamatus
÷																							1.	1	2 G			10.4	2							D. hamatus/berggrenii
· · ·																							2.1	2					3	.,) 612					Discoaster cir. D. namatus
1.														- 10 8				3												1 10.0	4 4	۰.		2		Discoaster neoerectus
														ł,							ł		1.0						1							Discoaster neohamatus
												1	1																-	3			ł			D. prepentaradiatus
÷													1														10	- 1 -	18	1		4 4		1	-	D. quinqueramus
																												-								D. tamalis
1.																				1								-		100		2		0.1		D. triradiatus
1																					0.6	2	8.0	0.2	8.0		1.0	0.0			1.1	2	1	3 4		D. variabilis
×	×		2	20	2. 2	< 1	5	2	×		X		X			×			X							•										D. variabilis/exilis
		-	•					G	-	2 2			4 2	3	2		2 0	•	2 X	0	0	0	-	-	~	19	n .									Geminilithella rotula
8 0.2	-	+ 0.8	2 02						2 X	×	1 0.8		6	÷	20					12		2	×	×							× ;	×				Helicosphaera ampliaperta
11	8	6.2	-	10.4	ŝ	10.0	116	5	5	8.4	16.6	8.6	Ŧ.	8.11	+	28.2	11.6	4.8	8.6	Ŧ	0.2	1	$\widehat{}$	n	2	0	0	2	7 ') (0 (n (1	2	5	H. carteri
L					2	1	3	×		×	2	×						2 >	0.2				R		R	R		π		2	æ					H. euphratis
Ε.																				0		0	R	22	72	R	72	70 3				. .				 ■ H. orientalis/pacifica
								0.2																												H. perch-nielseniae
	×	×								×																			3	R						H. scissura
													0				0			10	í.	0.2	-71	т	Ŧ	R	R	n .	п (0.1	0	0	2	2.0	5	H. stalis
													×			X 0.2	4	ia i	. 2	.8	Ľ			7	R	20	20	2			1				,	Helicosphaera spp.
														0		1							R							14	η.	ד :				Lithostromation perdurum
									0.4																			12					-			Pontosphaera spp.
0.2													1	2			n a	Ľ	0.2		X			1	1	N						æ		7		Pyrocyclus spp.
× ×	N S	+		1.8	> 1	9.1 9.3	9. 6 9. 9		ায	10	F 0		A 0.	V 0	0 +	0 10	0	>	A y		A N	EC	A A	C A	A C	× ×	AA	т С	>	>	0	Р (П. (а і О	e 9 > 1	• 0 • •	 Reticulofenestra minutula
2 37,0	2 44.6	4 16	9.6		2 0 2	1 16	4 4 0 0			8 14	4 1.0	5	2 52	4 26.4	8 22	6 9.4	6 38.8	50.2	2 122	4 122	6 74	36.6	A	N	C	N	>	0	n -	π	0	-	2	> r	7 1	small R. pseudoumbilicus
		0.2								0.2				Ĩ			4.2	12	1.14	0.01		28.6	n	77	93	TI.	Q	n	>	>	0	> :	>	> >	- :	R. pseudoumbilicus
			1																		ľ						2	-			2				2	"large" R. pseudoumbilicus
															× V	1.2		×	12	×	1	0		RR	RR		19	(H))	R		R			9.9	ν η -	Scyphosphaera spp.
									1	56	6.	v									-	2		55	5			R		TI.	R		æ		τ.	- Sphenolithus abies/neobies
3,6	5.4	18.8	=		0.2			2	× 2	×	2.0	-	52	0.6	6.6	8.0							х				×				×		×			S. heteromorphus
2.2	1.8	-53	20.8		0.6	2	0.2	5.0	x x			0 4	: :	1.6	2	3.2	+	1.6	1.0		b.	4.8	T	R	٣						R			n .	10	≈ S. moriformis
1									~	0																		R	72	72	RR	R	72		100	≈ Triquetrorhabdulus rugosus
																													R	25 						T. serratus
0.6	-	0.2		- 8	×	0.2	24	1.4	3	0.0	2	¢ ;	0.4	0.2	×	0.2	0.4	0.2	×		; >	0.0	R	0	Ŧ	Ц.	ł.	n			n	T	n		9	REWORKING

Capuana Formation). It lies stratigraphically on the Calcarenite, marne ed argille di Monte Sidone Formation (Senatore, 1988), Aquitanian-Burdigalian in age (Russo & Senatore, 1989).

Calcareous nannofossils observed in 38 samples (Tab. 2) were referred to an interval between MNN4a and the A. primus Zone; an unrecovered biozonal interval occurs between MNN9 and the A. primus Zone. In Fig. 4 the abundance fluctuations of the most significant species can be observed. The PB and PE of small R. pseudoumbilicus are detectable in this section; the PB is coincident with the PB of S. heteromorphus and the PE is located between the PE of S. heteromorphus and the LO of S. heteromorphus. On the other hand the FCO of H. walbersdorfensis is not identified since the species is not recorded in the interval just below the LO of S. heteromorphus. The PE of small R. pseudoumbilicus can be useful in this case to subdivide MNN5; the LCO of C. premacintyrei is not a significant event: the species is rare in the section and the last occurrences are recorded below the FCO of R. pseudoumbilicus. The FCO of C. macintyrei is an alternative event to the LCO of C. premacintyrei. As also remarked in the Tufillo section a rise in abundance of C. leptoporus occurs with the FCO of C. macintyrei and the LO of H. walbersdorfensis was replaced by the LCO of the species. Reworked specimens of Discoaster hamatus have been recorded within the A. primus Zone.

Monte Rotondo section.

The section was sampled in the neighbourhood of Bovino (174 I SE, topographic map of Italy), near Monte Rotondo and Monte Castro locality; it mainly consists of a lower and middle part of calcarenites, calcilutites and marls (Flysch di Faeto Formation) and of an upper marly interval (Marne argillose del Toppo Capuana Formation).

The total assemblage observed in the 18 collected samples is reported in Tab. 3; this allowed to refer the investigated section to an interval between MNN5 and C. pelagicus Zone; a stratigraphic discontinuity occurs between samples 12-13. The main quantitative results are reported in Fig. 5. The FCO of H. walbersdorfensis is not useful in this section to subdivide MNN5 since the species was observed from sample 12 onward only. Small specimens of Gephyrocapsa spp. (about 2 microns in size) have been observed within the M. convallis Zone (Tab. 3). It is noteworthy that specimens of small Gephyrocapsa have been previously recorded in the upper Miocene Mediterranean record by Bonci et al. (1991) within the Zones NN11-NN12 of Martini (1971), by Pujos (1987) in the equatorial Pacific Ocean and by Gartner (1992) in the North Atlantic within the range of M. convallis.

Rare and scattered reworked specimens have been recorded in this section.

Miocene nannofossil biostratigraphy

_	A range	-			USC .	-			- 2.4	-			_	:			_		-
	Age		ian	ton	Γor	5		İ	lia	ival	erra	Se			m	ghia	L		
M. ROT	Fornaciari et al. (1996) N *Theodoridis (1984) R	C	pelagicus	*	M	convallis	*			MNN	00		MNN6a				CNIMIM		
ONDO	Formation	el I	se de Fm.	gillo ana	e arį Capu	larn T. C	M	_			m.	to Fi	Fae	h di	lysc	1			
	Sample	18	17	16	15	14	13	12	=	10	9	00	ы	6	s	24	sa.	11	
	Total abundance	-11	τī	0	0	o.	a	τī.	শ্য	c.	* 1	73	0	>	-11	Ŧ	0	Ŧ	a
	Preservation	VP]	VP	Ð	M	X	×	M	P	X	N.	5	3	z	70	10	4	5	\$
	Brarudosphaera bigelowii	. 1	×	it.	×		90 - E	to .		÷	10				-				
	Calcidiscus fuscus	. (50	0.2	0.2	3	0.2	85	0 †	ж :	5	0.2	0.2	8		80	×.		
	C. leptoporus	3.2	3.4	1.6	2	2	44	2	0.2	0.4	0.2	0183 21	0.6	0.4	8	0.6	8.0	(t)	2
	C. macintyrei	0.2	0.2	0.2	×	0.6	1.2	Ξì.	9	•	ŝ.	3	0	2	1	ti	1000	(±)	
	C. premacintyrei	-	20 200			×	S. 1	0.2	1.6	0.4	8.0	0.6	1.6	0.2		51	22		
	Coccolithus miopelagicus	ω	0.4 3	در	2	0.2 2	0.4 4	2.8	0.6	1.6	8.0	8.0	2.8 9	2.2 4	8.0	1.4	22	0.4	2
	C. pelagicus	6.4 0	- co	5.4 0	7.6 0	8.4 0	1.2 0	31	42	55	5.8	49	1.8	10.6	38.2	5.4	41	39.8	5
	Cuplicargolithus floridanus	2	×	.4	.8	.4 0	22	0		0 26		0		-	6	10 2020	641 1124		
	Dictyococcites perplexus	0	51 13	0	10	4 0	X I	4	.6 3	00	2 38	6 24	6 10).6 2	-	4 9	5.6	8.3	-
	D. productus	4	сн 42	6	-	6 F	4		0	28 - I -	4	00	12	2	12	4	20	7.2	3
	Discoaster adamanteus	() (4	22	10	0.00 12	8359 M	105 N	12	3	in Ist	0	22 (4.)	1	20 • .		2		2	
	D. bellus	a -		0.1	х.	0,1		+	12		2		0	900 115	4	8		1	
	D. bergrrenii	0.1	0	×.		ж.		(a)			$\overline{\varphi}$	565	Sk.			-		12	
	D. brouweri	0.1	0.5	15	2	20	0.4		0.1	24	\odot			3	ū.			i.	
	D. challengeri	2	÷.	5	25	0.7	51	15				E.	25	30	33	۰	έ¢	Ξ.	
	D. deflandrei	8	(7)	5.5	3	0.1	- 11		21	22	0	12	18	0.2	0.4	$\langle T \rangle$	20	0	
	Discoaster cfr D. neohamatus	2		i.	ä.,	0.1		(T)	50	22		5	+	25	122	25	85	e.	
	D. prepentaradiatus		ି ଅନ୍ୟ	10	0.1	0.1	240 182	14		3		5	10	34.	120		2.1	2	
	Discoaster variabilis/exilis	0.4	2.6 0	8.4	5	2	2.4	14	\$2	0 ân	22	20	0.8	5		0.2		2	
	Discoaster ch D. quinquerantus		.1 0	*		0	0	0	*	-	14	*1.	_	÷.	0			-	
	Geminilithella rotula		i)	فعا	4	6 6	4	.2 0				0	6).4	3.	4	84	
	small Gephyrocapsa	73	1	2 R	2 R	4 C	A	2		2	4	2	2	~			÷.		
	Helicosphaera ampliaperta	22.)	24	# 0 0 0 0	2	3	tess.	a.				*		:*1		0	0		
	H. carteri	16.8	20.8	16.	20.4	14.	20.0	14	3.4	14	10.	13	0	1.0	9	4 10	8 9.2	0	4
	H. euphratis		0.4	2 0.6	×	4 0,4	5 0.2	2 0.2	2	2	8 0.2	-	-	0.2					~
	H. orientalis/pacifica	4	-4	-	2.4	2.8	2.8	-	+	21) #1	÷	G.	120	2	$\hat{\varphi}$		ŭ,		
	H. stalis	7.2	2.2	2.4	S	8.6	3.4	Ġ.	545	11	14	яř.	12	22	$\widetilde{k^{2}}$	24		25	
	H.walbersdorfensis	15	27	25	12	×	0.2	0.4	91	8	а. С.	141	65	ð.	85	24			
	Helicosphaera spp.	1	-		×	0.2	5	0.2	3	21	0.2		55	19		33			
	Lithostromation perdurum	8	×	ī.	X	×	0	(7)	8	1	27	(*)	÷.,	18	53		(9)	ŤÓ	
	Rentembaera spp	0	0	1	4 0).2	X		3		8	2	2	3			15	<u>*</u> 1	
	Pyrocyclus snn	8	4 0	0	2 3		6.3			0			1		2	100	10	8	
	Reticulofenestra minuta	0	2	6 F	P	773	r T			2	-	- 			-			**	
	R. minutula	0.4	-	s	ð.	2	0.0	12	LU CO	0	ω.	2	14	12	- 20	S.	5	-	-
	small R. pseudoumbilicus	5.8		5.4	3.2	2 8.4	5 H.4	815.	3 LS.	2 15	2 3.6	8 3.4	2 7.4	4.4	20	4 4.8	6 9.2	2.1	6 12
	R. pseudoumbilicus	15.8	26.4	23	19.4	16.2	6 8.2	613.4	6 1.2	2 1.8	2.2	3.4	- 5555 43	3	1				2
	Rhabdosphaera spp.	0.2	2	0.6	0.2	1.4	×	3			÷.	6	8					t	ec.
	Scapholithus fossilis	×.		24	4	0.2	14	¥		÷.	27	2	Ŷ.	\sim	ŝ	5	ŝ.	ŝ	2
	Scyphosphaera spp.	0.2	0.2	a.	×	0.6	0.2	81	24		11	57	φ.	1.41	G.		22	×.	
	Sphenolithus abies/neoabies	3	1.2	2.8	3.4	0.6	34 	36 	294 1.7~~~	9	\hat{x}^2	- 54 1 - 7	- 19 19		8	÷	а . С.	1	
	S. moriformis	1.6	*1	12	8	X	0.6	0.2	0.6	6.55	ŝ	1.2	0.2	0.2	0.4	1	3.6	0.2	5.4
	S. heteromorphus		8	220	1	×		18	0.2	2	5	12	ŀ	18.2	29	29.8	15.8	12.8	4.6
	Syracosphaera spp. Tetralithoides symeopidesii).2		X			0.2	2	0	18	<u>*:</u>	2	*			8		13	85
	Triquetrorhabdulus rugosus		-	14	746 7 10			14) (2)			5	2	8 8		đ.	0.2		1	1
	DEWORKING	0		0		×									14	1		Ľ.	-

Tab. 3 - Calcareous nannofossil range chart of the Monte Rotondo section. Abundances are reported as percentage relative to 500 specimens. From sample 13 onwards the abundance of discoasterids is tabulated as N° of specimens/mm² and relative to about 10,000 coccoliths. Letters indicate semiquantitative estimate. See legend of Tab. 1.

1	M. ARM	ENL	A																																
Age	Fornaciari et al. (1996) au	Formation	Sample	Total abundance	Preservation	Calcidiscus fuscus	C. leptoporus	C. macintyrei	C. premacintyrei	Coccolithus miopelagicus	C. pelagicus	Cryptococcolithus mediaperforatus	Coronocyclus nitescens	Cyclicargolithus floridanus	Dictyococcites perplexus	D. productus	Discoaster deflandrei	D. variabilis/exilis	Discoaster spp.	Geminilithella rotula	Helicosphaera ampliaperta	H. carteri	H. euphratis	H. walbersdorfensis	Pontosphaera spp.	Rhabdosphaera spp.	Reticulofenestra minuta	R. minutula	small R. pseudoumbilicus	R. pseudoumbilicus	Sphenolithus heteromorphus	S. moriformis	Sphenolithus spp.	Tetralithoides symeonidesii	REWORKING
Serrav.	MNN6a		12	F	VP	0.2	2	ŝ		0,4	с	3	5		F	F	20	a.	2			0.2	+	0.2			2		F	F	0	0.2			
			11	F	P	5		c.	0.2	2	67.6	в		0.2	0.4	ē	:(4)		0.2	0.6		20	a.	0.6		5	i.	3.2	0.2	λî.	1	0.6	2.8		0.4
			10	F	М	0.6	х	Ē.	х	1.8	59.8	0.2		7.8	4	ē.	24		1.2	5.4		5	21	0.2	0.2		12	5.4	0.6	х	6.6	0.2	0.8		0.2
	MNN	Ë	9	F	М	1.2		ē	0.6	3	64.6	0.2		1.8	2	с	24	54	0.8	4.6		3.8	n a	0.2	0.8		F	0.6	0.8	0.4	12.2	0.6	1.6		0.2
я	5b	acto I	8	F	М	0.6	х		0.2	3.4	65.2	х		2	1.4	С			1	3.8		7.4		x			F	1.6	1.8		9,6	0.2	1.4		0.4
ighia		di Fa	7	F	Р	0.2	1	127	0.2	4.6	61	x		0.2	0.6	С	0.2		0.4	3		7.4	Х	0.4		2	R		0.8	х	18.8		1.8		0,4
Lan		ysch	6	F	м	0.6		-	0.8	6.8	57.2	0.4	Х	0.2	3.4		2	0.2	2	1.6	х	5.8		0.2					8.8		11.¢	0.2		0.2	
	MNN	E	5	F	P	x		e.	0.8	1.4	34.6	2			36	С			1.2	1.2	÷	6.4			0.2	12	F		2.8		11.2	1.2	0.4		0.6
	5a		4	с	М	0.6	0.6	?	0.2	4.4	47	0.2		0.8	18	С	2		0,4	2		6.4		(A)	0.2	15	×		5		13.4	0.4		х	0.4
			3	F	М	0.6	e	a	х	2.8	55.8	0.6	R	6.2	2.6	С	х		0.2	0.2	×.	16	0.2	x	0.2	x	F	141		а,	14.2			0.2	0.2
	MNN		2	F	Р	1	0.4	9	x	3.2	63	0.2	÷	8.8		14		Si.		0.2	2	19,4	0.4	12	12	12		ž.		2		4.2		x	0.2
	4b		1	F	VP	-	0.6	14	0.4	1.2	64.8	1	N	8.2	0.4	24		54	0.2	0.2	0.4	20							0.8		0.2	2.6			

Tab. 4 - Calcareous nannofossils range chart of the Monte Armenia section. Abundance are reported as percentage relative to 500 specimens. Letters indicate semiquantitative evaluation. See legend of Tab. 1.

Monte Armenia section.

The section crops out near Forenza between Masseria Morlino and Monte Armenia (187 I SE, topographic map of Italy); it is represented by calcarenites and calcilutites with interbedded marly layers and is referable to the Flysch di Faeto Formation.

According to the total nannofossil assemblage recognised in 13 samples (Tab. 4) the section was referred to an interval between Zones MNN4b and MNN6a; the most relevant quantitative results are shown in Fig. 6.

Particularly it is visible that the PE of small *R. pseudoumbilicus* occurs between the PE of *S. heteromorphus* and the FCO of *H. walbersdorfensis*; the latter event is detectable between samples 5-6. Very rare reworked specimens occur in this section.

Fosso Scannapapere section.

The section was sampled southwest of the Forenza neighbourhood along the Fosso Scannapapere (187 I SE, topographic map of Italy).

It mainly consists of siliciclastic sandstones and marls; in the lower part of the section quartzarenite deposits, referable to the Numidian Flysch have been sampled. In the upper siliciclastic deposits (Serra Palazzo Formation) 18 samples have been considered for quantitative analyses; the complete section can be referred to an interval between Zones MNN3a and MNN5a. The total nannofossil assemblages can be found in Tab. 5 and the quantitative data of selected species are reported in Fig. 7. Common occurrences of R. pseudoumbilicus are observed within Zone MNN3a-3b, well below the FCO of the species which defines the top of Zone MNN6a. Moreover occurrences of *H. ampliaperta* as well as of *R*. pseudoumbilicus are recorded within the paracme interval of S. heteromorphus as also documented by Fornaciari et al. (1996). At the top of the section the PB of small R. pseudoumbilicus occurs between the PB and PE of S. heteromorphus. The high number of reworked specimens recorded in this section (Tab. 5) did not prevent the recognition of the biozonal events.

Fig. 7 - Abundance patterns of selected calcareous nannofossils at the Fosso Scannapapere section. See legend of Fig. 3.

Г				E	Bur	dig	gali	an									Ι	an	ghi	ian						Age	F.
3a	MNN	-411.0	3Ь	MNN									4a	MNN								8	4b	MNN	MNN5a	Fornaciari & Rio (1996) Cone Fornaciari et al. (1996) e	SCANN
	Num	idian	ı Flys	ch	İ								S	erra	a Pa	lazz	zo F	m.								Formation	JAP/
FNI	FN3	FN5	FN8	FNI	4	6	9		в	14	IS	17	61	22	23	24	28	30	33	35	36	37	38	45	46	Sample	PE
-	0	Ŧ	ч	Ŧ	V₽	Ŧ	π	ন	Ŧ	71	0	-71	-m	в	в	τī	না	-TI	0	0	-m	TT.	Ŧ	F	Ŧ	Total Abundance	RE
р	×	P	P	М	×	P	p	P	P	VP	P	Р	P			VP	P	P	P	р	P	p	р	р	p	Preservation	1
P.,		~	×.	~	R	ч.	×.	9	7		12	12		-		0.2		31	0.2	1.4	0.2		0.2		2	Calcidiscus fuscus	
2		0,2	0.2		1					R							0.4	×		×	0.2	0.8	×			C. leptoporus	
8										ii.							0.2		X	×				ŝ	0.2	C. premacintyrei	
51.6	49.4	61.2	61.2	50.4	11.6	16.2	13.4	28.4	16.4	>	35.8	57.6	47.2	1	2	33.6	42.6	49.8	38.2	29	39.6	49	61.2	76.6	73.6	Coccolithus pelagicus	
2.6	0.6	0.8			0,6	0.6	0.4	94 94	0.6	F	-	0.6	-			1.2	8.0	74	14	0.4	2.6	D.	0.4	E	(E)	C. miopelagicus	
				Q.			N.	2	n.	Ū.		0.2		5				×		0.6			2			Cryptococcolithus mediaperforatus	
0.4	×	2.8	1.2	1.8			0.4		15					2	10					ŝ,				11		Coronocyclus nitescens	
5.2	6.2	3,2	7.4	6.8	22.4	16.2	15.4	16.6	17.6	>	0.8	3.4	S			1.8	3.2	2.6	8.8	11.6	8.8	3.2	لما	1.4	-4	Cyclicargolithus floridanus	
9.4	1.6	90.8 [8]	3.2		×	2.6	0.4	17.6	0.4	Α	1.6	1.4	-			28.2			1.2	8.8		0.6	0.4	8	14	Dictyococcites perplexus	
		ų,		62	-11	т	R	-11	U.	22	2	R	R	Ωù.	6	-			ম	Ŧ	25	R	π	2	8	D. productus	
0.4	3.2	0.2	2	14		ы 4	0.2	0.2	0.6		0.2		×			x		0.4	0.4	0.2	×	×	0.2			Discoaster deflandrei	
1			7			a. A		1621 M	×		×	0.2	X				0.4	0.2	0.2	0.4	0.4	4	0.2			D. variabilis/exilis	
					0.4						5											11			(1)	D. woodringii	
ų.			- 8			8.0	12		0.2		0.4	0.4			÷,	0.2	34			0.4	0 4	8.0		-	0.8	Discoaster spp.	
0.6	-	-	-	-				12		R		0.2				0.2			0.6	7	0.6		0.2	0.2	0	Geminilithella rotula	
0	0	×	0.0	x	0.4	0.0		×	0.8	3	124	2								100			0	- 630) - 21	_	Helicosphaera ampliaperta	
3.8	-	9	4	4	3	2	1.0	u.	6.4	C	4	4	3.4			Si	Ţ	IS	15	10	20	Н	22	19	5	H. carteri	
		×		0	0	×		1	0		×	0	×				×	4 0.2	6	8 0.4	6 1.6	4 0.8	4	6	6	H. euphratis	
						×.						0				ē	ē.	57	0.2	1		1				H. obligua	
																			x	0.0	×	1				H. perch-nielseniae	
0.0	0.0	0.4	0.4	-	0.4	5		0	2.8			x	0.2		ē.	×	×			×			0.8			H. scissura	
				ŗ			2						2								×					H. walbersdorfensis	
0.5	0.4		×		×	1.0	0.0	5	0.0			0.2	×			×		ē.	0.4	-	0.4	×		1	94	Helicosphaera spp.	
	i.	5		5	i senti Na			19	3			19				10.		5	1	×	1		2	23		Pontosphaera spp.	
				0												×		=		×						Pyrocyclus orangensis	
				12	-73		11	>	0	140	T		0		2	R	- 40	-		9)	÷.		8	9 (Reticulofenestra minuta	
	N	6.	Ξ	=			0	0	0	R	0	0	0		2	0	0	0	0	12	0.	0	0			Reticulofenestra minutula	
Ξ	14	5 7.0	6 2	7	2 31	17	2 25	5 11	2 22	>	\$ 9.0	5 11	2 18			2 2	4 28	3	2 17	5 13	5 7.	8	3			small R. pseudoumbilicus	
2 1.	8 13	S	12	8 11	_	20	4 0	4	0 8	R	5	2	0 8			2	6 1.	0	2 1	6 0.	4	4 6	0			R nseudoumbilicus	
2		x	9	6			*		12	00		×	2				00	12	12	X	2	*	00			Rhabdosphaera spp	
	0			12	N	22	15	4	0	0		0	0				5.0	×	0.	13	0.	ŝ	ţ.	¢.		Sphenolithus abies/neobies	
10	-	0		0	00			1	12			6			1.	96	80	1			4		13			S belemnos	
4	0.	fin		12		<u>.</u>													-			0				S conicus	
0	2 0.	×																								S dissimilis	
00	÷	684) 12			1.5	5	12	14	-	\geq	39	00	=			2	-	24	0	ι.J	,v		0		10	S heteromorphus	
	0		0	0	1.5	. 00	00	2 0.	5 0.	1	2 4	6	0			×		4	0	0	12	ł.,	00	0	10	S moriformis	
	12		12	2 0	0		0	4	4		4 0		2 0.							12	-			6	сс 14	Sphenolithus spp	
	i.		14	12	00		6			13	12		4		*			×	2	×	2					Tetralithoides symeonidesii	
					4	0						i.						0		- 530) - 11	0					Thoracosphaera spp	
		0	×	0	1	12				ž	-				•		*1	13	- 61 - 81		12	- C- (4)	10	99 (4)		Triquetrorhabdulus milowii	
1.4	0.8	5 0.2	1,2	5 1.2	21.8	s	10,6	1.4	13.6	0	0.6	4.6	3.6	+	11		ы		7	10.6	8.8	8.2	1.6	0.6		REWORKING	

Tab. 5 - Calcareous nannofossils range chart of the Fosso Scannapapere section. Abundance are reported as percentage relative to 500 specimens. Letters indicate semiquantitative evaluation. See legend of Tab. 1. Torrente Vaggianello section.

The section was sampled southwest of Oppido lucano, along the Vaggianello stream (188 III SW, topographic map of Italy). It mainly consists of siliciclastic sandstones in the lower part and of alternating limestones, marls and silts in the upper part; it can be referred to the Serra Palazzo Formation.

The nannofossil assemblages observed in 16 samples is documented in Tab. 6; the most significant quantitative results are reported in Fig. 8. The section can be

Τ.	VAGGI	ANE	ELL	0	~																													
Age	Fornaciari et al. (1996) au	Formation	Sample	Total Abundance	Preservation	Calcidiscus leptoporus	C. macintyrei	C. premacintyrei	Coccolithus miopelagicus	C. pelagicus	Cryptococcolithus mediaperforatus	Cyclicargolithus floridanus	Dictycoccites perplexus	D: productus	Discoaster deflandrei	D. variabilis/exilis	Discoaster spp.	Geminilithella rotula	Helicosphaera ampliaperta	H. carteri	H. euphratis	H. walbersdorfensis	H. waltrans	Helicosphaera spp.	Reticulofenestra minutula	small R. pseudoumbilicus	R. pseudoumbilicus	Rhabdosphaera spp.	Scapholithus fossilis	Sphenolithus abies/neoabies	S. heteromorphus	Sphenolithus moriformis	Sphenolithus spp.	REWORKING
			16	R	VP	R			х	F						11	1		2	R		1	1			R	1		45		1	R		F
			15	F	VP	F	х		х	F			С							Х						R	х							F
			14	F	VP	1	х	0.2	0.8	F	0.2	0.2	F					0,2		0.4	17				F	R	1			0.2				5.8
			13	F	VP	3	0.2		1.4	С	Х	t,		A		0.4	÷			5.8	0.8	0.4	8	1.8	С	С	1.6	х		0.6				21,2
S	MNN	÷	12	F	VP		0.2	0.2	3.6	46	0.2	0.4	10.4					0.4		6.2	0.6		20	1	8.2	3.6	3		e	0.6	0.2			15.2
allis	7	o Fn	11	F	VP	2.2	0.2		0.6	53	0.2	0.2	18				0.2	0.2		11.8		0.6		1	5.4	2.2	1.4			0,4				2.6
rava		azzo	10	F	Р	2.6	0.2	0.4	0.2	С		0.2	С	C		0.2	10	0.2		13	0.2	0.2		0,2	C	F	1.2		0.2	1		\mathbb{S}_{2}		20
Ser		Pal	9	F	P	1			0.2	49,6	0,4		11.2			0,4		0.4		10.2		0.6			3,4	4	12.8	0.2			х			5.6
		erra	8	F	P	0.8			0.8	40.2	0.8	0.4	3.2	С		0.6	0.4	0,4		10.2	0.4	0.2		0.2	18.8	9.2	2.2			1	0.2			10
	MNN	S	7	F	Р	0.6		3	2	54			0.6			1				5,6					12.2	19.8								1.2
	6b		6	F	P	1.		0.8	0.8	С	13	\sim	F	F						5.8		0.2			С	F	6			1	ŵ.			3.8
			5	F	P	1		0.6	0.6	C	0.2		F	R		1.6		1	0.2	5.6	0.2		х	0.2	С	F	5.8			0.2	0.2	2	0.2	6.2
â			4	F	M	1.		0.2	0.2	37		1.2						0.2		11.2		2			3.8	5.2					40.8			0.2
La	MNN		3	F	Р					52,4	í e	1.6			5				0,4	14					4.6	15.2					11.2	0.2		0.4
ırd.	4a		2	F	VP					16,4		2,4			0.4	5.2	12		1.2	3.2					24.4	10.2	1.6			0.6	11.6	0,4		22.4
Bu			I.	F	VP	5	0	10	0.2	11.4	5.6	2.8	í a	5.4	1.2	3		10	1.6	1.6	-			0	26,2	19.6	3.6	1	10	1.4	11.6			15.8

Tab. 6 - Calcareous nannofossil range chart of the Torrente Vaggianello section. Abundance are reported as percentage relative to 500 specimens. Letters indicate semiquantitative estimate. See legend of Tab. 1.

Fig. 8 - Abundance patterns of selected calcareous nannofossils at the Torrente Vaggianello section. See legend of Fig. 3.

referred to an interval between MNN4a and MNN7 with a major stratigraphic discontinuity between samples 4-5. In the lower part of the section the presence of *S. heteromorphus*, *H. ampliaperta* and small *R. pseudoumbilicus* represent MNN4a; *R. pseudoumbilicus* is recorded from MNN4a upward. The LCO of *C. premacintyrei* as well as the FCO of *C. macintyrei* can be observed in this section. Reworked specimens were found with percentages that varie from 0.2 up to 20% of the assemblage.

Jazzo Porcellini section.

The section was sampled near Stigliano along the Vallone della Difesa, at the Jazzo Porcellini locality (200 II NW, topographic map of Italy). In the lower and middle part it is represented by silicilastic sandstones overlying the Numidian Flysch (Gallicchio, 1996) and by limestones, marls and silts referable to the Serra Palazzo Formation. In the upper part it mainly consists of marly deposits referable to the Marne argillose del Toppo Capuana Formation.

The nannofossil assemblages observed in 30 samples are reported in Tab. 7; the quantitative results of the significant species are shown in Fig. 9. The Jazzo Porcellini section has been referred to an interval between Zone MNN4a and Zone MNN8. In sample 9, within the paracme interval, an abundance peak of *S. heteromorphus*, probably due to reworking, is recorded. Several Cretaceous and Paleogene specimens occur in the same sample (Tab. 7). However, it is noteworthy that also Fornaciari et al. (1996) recorded a characteristic abundance peak of *S. heteromorphus* within the paracme interval of the species and correlatable among a few sections.

The FCO of *H. walbersdorfensis* as well as the LCO of *C. premacintyrei* were not detected in this section, probably due to stratigraphic discontinuities. The LCO of H. walbersdorfensis may be doubtfully placed at the top of the section, between samples 29-30. The number of reworked specimens is considerable in this section and reaches values up to 40% of the assemblage.

Valle Difesa section.

The section was sampled near Stigliano at the Piceca locality (200 II NW, topographic map of Italy); it mainly consists of siliciclastic sandstones and of alternating limestones, marls and silts in the uppermost part and is referable to the Serra Palazzo Formation. The biostratigraphic study performed on 21 samples allows to recognise an interval between Zones MNN4a and

Fig. 9 - Abundance patterns of selected calcareous nannofossils at the Jazzo Porcellini section. See legend of Fig. 3.

	Bu	urdigalian Langhia								n							Se	rra	ava	ılli	an					Torton.	Age	JA		
		4a	MNN	4			4b	MNN				S	MNN		Ud		MNN				66	/	7	MNN				MNN8	Fornaciari et al. (1996) One	ZO PO
									1	Ser	та	Pal	azz	o F	m.									100000	I T	M. a	ap. F	del 7m.	Formation	RCEL
-	Ν	3	4	6	7	~	9	10	Ξ	12	13	¥	15	16	17	81	19	20	21	22	23	24	25	26	27	28	29	30	Sample	È.
0	0	Ŧ	T	0	0	n	-	0	0	0	Ŧ	Ŧ	0	0	n	T	71	Ŧ	Ŧ	77	c	-	0	-TĴ	ъ	ч	71	C	Total Abundance	4
Z	Σ	P	VP	P	P	VP	VP	Y₽	Ψ	VP	Р	٩	Р	VP	₽	Ζ	R	P	Þ	VP	P	Χ	Ζ	Z	Σ	P	P	Μ	Preservation	_
0.2		2				4				9	N.		41	5	0.2		2		1		a) (2	11	Calcidiscus fuscus	
ŀ.						0.4		14	0.2	0.6		×			0.2	0.4	0.4	1.6	14	14	0.4	1.6	2.2	5.8	1.8	1.6	2.6	6.6	C. leptoporus	
												i,							0.2	0.6	0.2	0.2	0.4	0.4	0.8	0.4	0.8	8.0	C. macintyrei	
1	02 02 02 02 02 02 02 02 02 02 02 02 02 0														×	1	-	P .:		*	C. premacintyrei									
0	0.2 0.2 0.2 0.4																	0.2		0.6	×			Cryptococcolithus mediaperforatus	- 1					
0.6		0.2	0.2		0.8	2.4	×	0.6	3.4	2.2	0.6	-	N	14	0.2	0.6	2	2.4	0.6	1.2		0.4	-4	8.0	0.2	0.6		0.2	Coccolithus miopelagicus	
24.0	24.0	26	21.4	38.	43	70.4	38.	80.0	71.8	70.4	25	20	58.4	58.	22.1	21.4	14	41.0	33.8	37.8	28.4	17.5	21.8	21.8	24	28.2	28.	20.8	C. pelagicus	. 1
5.3.4	U.	3.6		0.2	1.2	9	0.8	5 0.8	7	1 2.2	1.6	3,8		0.4	0.2	0.6			0.4	0.6		0.2		3 0.2	0.2		0.4	0.4	Cyclycargolithus floridanus	
0	0	0						0	0	0,4	0.2	0.2	0.0	0.0	0	0	×		0		0		0	1.	-	0.8	0	_	Geminilithella rotula	
Ĩ			6					Ĵ		0	ĩ			č		0			15	4	54		-		0	0.	-		Dictvococcites perplexus	
Ľ.			12				2			80		~				12			4	2 0			> >	~	6	~	2 0	~	D productus	
12	0	_	1923	0		0	0	Ĵ.	0				0		5					0			1		0			10	Discoaster deflandrei	
44	N	N		00	19	0	2 1	î	12	^	0	0	~		2	0		0	^	13		0			N				D svilis	
ľ				č.			2	81		7	4 0	12	1			4	0	6				F.	15	2		55		2	D. exilis	
Ľ			29				×	×			2		×			2						10				<u>*</u> 1		×	D. moorei	
			а 				1				+		4		×							1				-			D. musicus	
0.2	2	8	1.8	0.6	0.2		5				1						ħ.		0,4		4						č.	8	D. variabilis/exilis	
2		5					5	25			8.0	0.2			81.3			0.4	8			0.2				<u>.</u>		0.2	D. variabilis	
4		(4)						N			÷?	9		4	0.4	÷.				8.0		Ē2		÷		<u>*</u>]	14	ž.	Discoaster spp.	
×	1.2	ы	0.6	5.6	1.6	9					2					1						22				1			Helicosphaera ampliaperta	
11.6	12	Ξ	2	15.4	7.8	10.4	8.6	8.6	13.2	7	12.8	18.4	16	21.2	11.4	11.4	12	6.8	12	18.6	9.6	9.6	9.4	14.8	8.4	5.6	3,4	12.2	H. carteri	
0.2	×	0.4		0.2					0.2		×	0.2			0.6	0.2			0.2	0.8	0.2			0.2	0.6	×			H. euphratis	
																							0.2					0.2	H. orientalis	
2		×									17		21		×														H. perch-nielseniae	
0.4	0.2	0.8	×								11				5		+						- 1						H. scissura	
	380 9				12										е :								æ	x.	0.8	0.2	5	-	H. stalis	
				(iii)	12				27		2		-	-	00	4.8	-		0.4	3	13	2.0	.00	10	0.8	2	0.8	1	H. walbersdorfensis	
					ŝ,						0.0	Π						ŝ.		1			1	6				1	H.waltrans	
1											0	0		<u>.</u>						0				*1	0	*2		0	Helicosphaera spp	
							×	×								×				12				×	2			13	Lithostromation perdurum	
L					22				11														0						Pyrocyclus inversus	
-	_	~			~				-			~					-		~		-		2 (0				~	Reticulofenestra minuta	
	-11	-	2	6	8	2	1	14 8	-	N		00	2		_	6	- 0	10	00	7	N	4	1.1	0	1	1	÷.,	10	P. minutula	
9 2	.6	6 2	.6 1	4	4 1	1	4 7	-	2	00	6	2 2	4	2	0 3	8 3	6 7		00	6 1	6 L	2 1	- 8	8 3	-71	Fi 33	F 12	2	K. minutula	- 8
7.2 0		5.6	4.2	.4	4	00	i.		12	-	15	2	0	6	2.8 (9.4 4	52	4	4	3.6	8.8	2.6 4	3.8 2	4 9	3 3	2.8 2	9.4 2	15 3	small R. pseudoumbilicus	
00	.6	2													2 0	12		.00	i.	8	4	6.4	6.8 0	8.6	5.4	1.8	6.6	6.8	R. pseudoumbilicus	
		2		1		17	55		0.4	j.		0.2		191	0.4	×	1		că Naci	0.2	3		0.2	0.2		0.2	0.6	21 1920	Rhabdosphaera spp.	
0.4		0,2		0.2	1		10	0 5		2 122		39 - 32	0.4		0.4	0.2		0.2	0.2		98 9320	3.2		0.2	12	4	0.6	0.4	Sphenolithus abies/neoabies	
4.4	3.8	1.2	8.1	Ξ	11.4		4.4			0.4	1.4	4.4	3.4	0.2	1			10 C			0.2	×			0.2	0.2		0.2	S. heteromorphus	
0.6	0.2			1.6	4.8	4	0.2	1.8	-	1.6		0.4		-		0.4	3.2				0.2		0.8					0.4	S. moriformis	
÷.	21							0.2		2												0.2			0.2				Sphenolithus spp.	
															×				×			×						Syracosphaera spp.		
																												Tetralithoides symeonidesii		
												t,		3		3	×	3		×	2	ŝ		0.2		Triquetrorhabdulus rugosus				
3.8	5.4	9.4	20	4.4	4	1	11.4	12	2.2	0.6	46.8	37.8	5,4	0.4	12	8.6	0.4	0.6	16.4	0.8	4	-	4	ω	8.6	N	2.6	2	REWORKING	

Tab. 7 - Calcareous nannofossil range chart of the Jazzo Porcellini section. Abundance are reported as percentage relative to 500 specimens. Letters indicate semiquantitative estimate, See legend of Tab. 1. MNN6b/7 (Tab. 8). The quantitative patterns of selected species are shown in Fig. 10.

The FCO of *H. walbersdorfensis* and the LCO of *C. premacintyrei* are not usable in this section to subdivide Zone MNN5 and MNN6b/7 respectively; on the other hand the FCO of *C. macintyrei* provides a useful event within the MNN6b/7 interval and is associated with an increase in abundance of *C. leptoporus*. Numerous reworked specimens were found in this section with percentages that may reach values up to 30%.

MLE MAX					L	ang	ghia	m							ŝ	Seri	rava	alli	an			Age	<
Image: Serie Palazo Fin. Formation Formation Image: Serie Palazo Fin. Formation Formation Formation Image: Serie Palazo Fin. Image: Serie Palazo Fin. Formation Formation Image: Serie Palazo Fin. Image: Serie Palazo Fin. Formation Formation Image: Serie Palazo Fin. Image: Serie Palazo Fin. Formation Formation Image: Serie Palazo Fin. Image: Serie Palazo Fin. Formation Calcidiscus fiscus Image: Serie Palazo Fin. Image: Serie Palazo Fin. Calcidiscus fiscus Calcidiscus fiscus Image: Serie Palazo Fin. Image: Serie Palazo Fin. Image: Serie Palazo Fin. Calcidiscus fiscus Image: Serie Palazo Fin. Image: Serie Palazo Fin. Image: Serie Palazo Fin. Calcidiscus fiscus Image: Serie Palazo Fin. Image: Serie Palazo Fin. Image: Serie Palazo Fin. Image: Serie Palazo Fin. Image: Serie Palazo Fin. Image: Serie Palazo Fin. Image: Serie Palazo Fin. Image: Serie Palazo Fin. Image: Serie Palazo Fin. Image: S		4a	MNN	46	MNN			,	5 NINIM				6a	MNN		00	64	- 7	MNN			Fornaciari et al. (1996) Zone	ALLE I
Image: Second state Image: Second state				-		-				Ser	та Р	alaz	zo F	m.	-							Formation	E
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	-	N	دري	4	Ś	ά,	-1	90	9	10	Ξ	12	13	74	IS	16	17	18	61	20	21	Sample	SE
k k	0	-75	Ŧ	T	0	*11	T	τı.	71	-75	-73	L.	'7 1	נד	0	C.	ίπ,	TT I	т	77	75	Total Abundance]^
x x	N	Μ	10	X	V₽	Μ	Μ	M	ъ.	VP	VP	V₽	VP	P	Χ	N	P	P	P	70	* U	Preservation	
x x z z z z z z z x x y z	8				25 10000			0,2	0.2	3	5	20	15	0	12	8	1	11		- 57 - 1743 P	11	Calcidiscus fuscus	
1 1	×		÷.,	0,4	0.2		£.3	0.2	0.2	0,2	Ē.	2	0.2	1	E0	×	0.6	0.6	3.4	0	0.8	C. leptoporus	
X 0 0 0 X		1	E.	81	18		10	۲			65			Дара	60	<u>9</u> (:		X	0.6	0.4	0.2	C. macintyrei	
1 1	×		0.6	0.2	*		0.6	×	0.2	54	еš 	×.	×	0.2	×	25	×	9	83	90 1000	94 - 1 	C. premacintyrei	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.4	0.8	0.4	2.2	1.2	-	1.4	2.2	0.2	5	8.0	0.4	3.4	1.2	1.2	1.2	0.6	14	0.4	3,8	4.2	Coccolithus miopelagicus	
1 1	36	34.6	61.4	72,4	84.6	63.6	41.8	44	59.2	82	45.8	44.8	61.6	33.2	25.8	20.6	32.8	42.6	35.8	43.4	44.4	C. pelagicus	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.2	64 ⁽	2	άř.	9	0.4	×	G.		24	2	9	4	0.4	0.2	×	×	0.4	0.2	0.2	0.2	Cryptococcolithus mediaperforatus	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.2	8,4	6.6	8.8	2.8	12	0.2	1.8	0	2.2	1.6	1.8	12	0.2	0.2	-	0.4		0.2	25	0.2	Cyclicargolithus floridanus	
1 - 0 0 - 0	12	0.4	0.2			0.4	0.2	0.2	8.0	×	-	0.4	6	×	0.2		12	×	0.4	0.6	0.2	Geminilithella rotula	
7 8 C C 6 8	-		5.6		2	0.2		1.2	0.4	-	ŝ	0.2	6.6	6.4	÷		0.6	24.2	17.6	4.2	9.2	Dictyococcites perplexus	
x x	2	*13		8	C	Ω	8	8		9		A	3	3	ē.	٨	Α	0		VA	VA	D. productus	
x x	×	0.4		0.4	×	×	×	0				×			×	×	×			×	5	Discoaster deflandrei	
1 1 1 0 1 0 2 2 1 1 0 2 2 1 1 1 0 2 2 1	×	12		0.4		×	1.8	×	X	×	1.2	0.4				12	0.2					D. exilis	
8 8 8 8 8 8 8 8 9			+1			1.	-	0.0					0.0	×	0							D. variabilis/exilis	
0 1		0				x					×		6		2	×	~					D variabilis	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	6 0	0				-	ž	0	0			<u></u>				<u> </u>	2		0	ĩ	Discoaster spn	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	4	4						12	4										2		D maaraai	
6D. signus00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>~ 1</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>D. mooreer</td> <td></td>							~ 1				•											D. mooreer	
D. musicus D. musicus Helicosphaera ampliaperta H. carteri H. carteri H. carteri H. carteri H. carteri H. carteri H. carteri H. carteri H. carteri H. cortentalis H. orientalis H. orientalis H. orientalis H. dobiqua H. orientalis H. dobiqua H. orientalis H. dobiqua H. orientalis H. dobiqua H. orientalis H. dobiqua H. orientalis H. dobiqua H. orientalis Helicosphaera stalis H. dobiqua H. orientalis Helicosphaera stalis H. walbersdorfensis H. walbersdorfens	1	6	85		28		6		2	- 4	*:			24				2.4	10 C			D. signus	
1/2 $1/2$ <t< td=""><td>1</td><td></td><td>÷.</td><td></td><td>-</td><td>.4</td><td>801</td><td></td><td>0</td><td>-</td><td>*0</td><td></td><td>0x</td><td>-0</td><td>+0</td><td>100</td><td>(#</td><td>0</td><td>*3</td><td></td><td>×</td><td>D. musicus</td><td></td></t<>	1		÷.		-	.4	801		0	-	*0		0x	-0	+0	100	(#	0	*3		×	D. musicus	
0 1	1	.4 1		2	.4).2	92	-	а 223	-04	X 1	×	-	24 24	1	ан. 1440	54	Helicosphaera ampliaperta	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	1.2	9.2	9.4	3.6	2.6	5.4	9.2	7.2	4.6	لى	0.6	4.8	7	1.6	8.8	1.2	4.8	5.6	3.6	IS	H. carteri	
xH. obliquaH. orientalisH. orientalisH. orientalisH. orientalisH. orientalisH. valbersdorfensisH. walbersdorfensisH. walbersdorfensis <td>Ť.</td> <td>0.2</td> <td>0.2</td> <td>×</td> <td>14</td> <td></td> <td>*</td> <td>+</td> <td>0.2</td> <td></td> <td>+-1</td> <td>-</td> <td></td> <td>0.2</td> <td>×</td> <td>×</td> <td>\times</td> <td>0.2</td> <td></td> <td>×</td> <td>0.4</td> <td>H. euphratis</td> <td></td>	Ť.	0.2	0.2	×	14		*	+	0.2		+-1	-		0.2	×	×	\times	0.2		×	0.4	H. euphratis	
H. orientalis H. orientalis Helicosphaera stalis H. walbersdorfensis H. walbersdorfensis S. heteromorphus S. heteromorphus S. heteromorphus S. heteromorphus S. heteromorphus S. heteromorphus S. heteromorphus S. heteromorphus S. moriformis Sphenolithus spp. Syracosphaera spp. Tetralithoides symeonidesii Triquetrorhabdulus rugosus DEWORPKINC	÷.	X		÷	11	20	÷	÷	14	540	+	-	1	14	10	(<u>2</u>)	2	84	12	ц <u>э</u> р	12	H. obliqua	
0_1^2 Helicosphaera stalis 1 1 2 1 2 1 1 1 2 1 2 1 1 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 1 2 1 2 1 1 1 1 2 1 2 1 1 1 2 1 2 1 2 1 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 2 1 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1 2	*		2		14	141	1	-	12	1.	20		12		17	4	1	12	0.2	121	12	H. orientalis	
1 33 4 33 4 33 4 4 33 4 4 33 4 4 4 4 33 4 <	1	22	î.		28		*	2	14				1	9	÷.		12	1	0.2		i.	Helicosphaera stalis	
X 0°_{2} 1°_{2} <th< td=""><td>÷ .</td><td></td><td>š.</td><td>2</td><td></td><td></td><td>3</td><td>-</td><td>(†</td><td></td><td>ž.</td><td>0.2</td><td>0.4</td><td>1.4</td><td>2.6</td><td>-</td><td>5.4</td><td>3.4</td><td>\times</td><td>Lu</td><td>3.8</td><td>H. walbersdorfensis</td><td></td></th<>	÷ .		š.	2			3	-	(†		ž.	0.2	0.4	1.4	2.6	-	5.4	3.4	\times	Lu	3.8	H. walbersdorfensis	
No. Helicosphaera spp. 01 02 02 02 03 04 05 05 Rhabdosphaera spp. 01 02 02 04 05 05 05 Reticulofenestra minuta 02 02 04 05 05 05 05 06 08 02 02 04 05 12 12 12 12 12 12 12 12 12 12 14 106 06 02 Small R. pseudoumbilicus 02 02 06 12 12 12 12 12 12 12 12 12 14 16 Sphenolithus abics/neoabies 02 10 10 12 12 14 14 16 S. heteromorphus 10 10 10 14 14 14 16 S. moriformis 10 10 10 14 14 14 16 S. moriformis 10 11 12 12 14 14 14 Sphenolithus	4	32	5		3	572	52	×	3	(C).	÷.		3	0.2	32	5	e.	3	52	•	37	H.waltrans	
0°_{0} 0°_{0}	- E	62.5	2	\sim	15		20		0.4	0.2	0.2	0.2	12	(\mathcal{P}_{i})	21		12	12	52		1	Helicosphaera spp.	
R F C C F 7 6 7 7 7 7 8 8 9 11 7 8 8 9 12 7	4		2		t.		17	(2)	1.2	12.5	$\overline{\mathcal{T}}$		1		15	$\langle \hat{\tau} \rangle$	1		0.6		0.8	Rhabdosphaera spp.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	R	23	-	-	0	1		C	0	12	>	-		A	\geq	A	C	-71	A	2	Reticulofenestra minuta	
11/4 $11/4$	0.2	6.2	2.2	N	0.2	5.8	8.2	24.4	4.8		11.2	N	7.6	25.2	5.6	6.4	6	\sim	2.8	S	4.4	R. minutula	
12 12	+	1	±1	0.6	0.2	0.2		+	11	52	1	0.6	0.2	×	17.	18	19.6	4	18	ين:	\$	R. pseudoumbilicus	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8.6	21.0	0.8	-	0.6	2.2	4	2.2	-	3.6	1.2	1.8	6	13.8	124.8	37	18.	4.6	10.0	12	0.4	small R. pseudoumbilicus	
30 7 96 \times 85 12 27 12	1.		- 225 32	0.2	1050	0.2	52	- 1976 - 191	(1 1	- 835 - 62	1 6220 93	0.2	.et	÷	8.0.8	0.4	19	0.2	5 0.6	(1)	18	Sphenolithus abies/neoabies	
4 5 7 7 7 7 7 7 7 8	30	7.6	9.0	L	X	1s	23	S	5	2.2	N	Ŧ	L.		- 570	×	×	040	0	0		S. heteromorphus	
S N	4 1.0		0.0	×	=	0	0	18				0	-	÷	12	0	-	0		-	T	S. moriformis	
Syracosphaera spp. Syracosphaera spp. Syraco	5 0.	15	2 2	0	2	2 0.	X		0		×	192	0		41			2 0	85	4	6	Sphenolithus spp.	
× Stateosphara spp. × Tetralithoides symeonidesii × Triquetrorhabdulus rugosus	1.0		22	2	14	2	0.000 Qa	12	24		- 835 - 93	74	4	22	\$2	4	14	2	21	0		Syracosphaera spp	
× × Triquetrorhabdulus rugosus	2		8				51		-					2	10			12	4	2 0.	~	Tetralithoides symeonidesii	
	Ĩ.					2	ů.						ā		20		6	2		2)	0	Triquetrorhabdulus maosus	
A REAL PROPERTY AND AND AND AND AND AND AND AND AND AND	0	143	0	N		Ch.	90	- and		ω.	LU.	N	4	0	10	-	-	N	N	~	5	DEWODVING	

Tab. 8 - Calcareous nannofossil range chart of the Valle Difesa section. Abundance are reported as percentage relative to 500 specimens. Letters indicate semiquantitative estimate. See legend of Tab. 1. Rotondella section.

The section was sampled in the neighbourhood of Rotondella and along the Canale Ruggero (212 III NW, topographic map of Italy); the section, referable to the Flysch di Faeto Formation, mainly consists of calcarenites, calcilutites and marls in the lower part and of limestones, marls and silts upwards.

Nannofossils are rare and poorly preserved in this section; quantitative distribution of 21 samples was collected by counting the most significant species in 300 fields of view. Results are reported in Tab. 9 and Fig. 11.

The LO of *S. heteromorphus* between samples 3-4 was recognised; the common occurrences of *R. pseudoumbilicus* and of *C. macintyrei* allow to recognise the MNN6b/7 interval. The abundance pattern of *C. premacintyrei* is not useful in this section.

DSDP Leg 42, Site 372 - western Mediterranean Sea.

Site 372, which represents a reference section for the lower and middle Miocene biostratigraphy in the Mediterranean region, is located on the Menorca Rise of the Balearic Basin (40°01.86' N, 04°47.79' E). The main quantitative results are shown in Fig. 12 and may be summarized as follows: a) The abundance pattern of small *R. pseudoumbilicus* shows a distinct paracme interval within Zones MNN4b and 5a; the PB occurs shortly above the PB of *S. heteromorphus* and the PE slightly below the FCO of *H. walbersdorfensis*. This is well comparable with results obtained in the on-land sections confirming the biostratigraphic value of the newly recognised events;

b) The distribution of *R. pseudoumbilicus* is similar to the one observed in the Fosso Scannapapere section: the species is recorded well below its FCO and was noted within Zones MNN 2b-3a-3b-4b.

Moreover, in the lower part of the section the FO of *H. mediterranea* was recorded below the FO of *H. ampliaperta*, within Zone MNN2a (core 39). On the contrary Fornaciari et al. (1996) documented the FO of *H. mediterranea* above the FO of *H. ampliaperta* in the Mediterranean region. It is possible that the presence of several unrecovered intervals at Site 372 prevented the recognition of *H. ampliaperta* below core 39. However, according to Theodoridis (1984) and Perch-Nielsen (1985) the occurrences of *H. mediterranea* precedes that of *H. ampliaperta*; moreover recently de Kaenel & Villa (1996) recorded at the Iberia Abissal Plain (ODP Leg 149) the FO of *H. mediterranea* below the FO of *H. ampliaperta*.

Fig. 10 - Abundance patterns of selected calcareous nannofossils at the Valle Difesa section. See legend of Fig. 3.

	ROTC	NDE	ELL	A																_												_
Age	Fomaciari et al. (1996)	Formation	Sample	Total abundance	Preservation	Calcidiscus fuscus	C. leptoporus	C. macintyrei	C. premacintyrei	Coccolithus miopelagicus	C. pelagicus	Cryptococcolithus mediaperforatus	Cyclicargolithus floridanus	Dictyococcites perplexus	D. productus	Discoaster deflandrei	Geminilithella rotula	Helicosphaera ampliaperta	H. carteri	H. euphratis	H. walbersdorfensis	H. waltrans	Helicosphaera spp.	Reticulofenestra minuta	R. minutula	small R. pseudoumbilicus	Reticulofenestra pseudoumbilicus	Sphenolithus abies/neoabies	5. heteromorphus	5. moriformis	Sphenolithus spp.	REWORKING
			19	F	VP		15	3.8		0.6	C			A	F				3.4	0.6		-			F	F	16		0.2	2.6	0.6	3.8
			18	F	VP	5	2.4	0.2		54	23.4	-	0.6	11.5	F		0.2	1	1.7		121	4	6	5	4.3	5.1	7.5	0.4		0.6	0.4	10.7
			17	F	Р		1,7	0.4	1.2	-	С	245	0.6	R	F	+0	*1		0.2		542		0.2		F	174	б.4	0.2		0.2	0.6	5.4
			16	F	VP		3,6	0,4		0.2	F		1985	R	R	1		12	0.6	1	-			R	F	11	14.5	in an		0.4	1.9	0.7
			15	F	p	τ,	2.1			2.4	27.2		0.4	9.2	F	+1	+		3.4				14		6,6	7.7	14.1	0.6	0.2	0.4	1.3	4.4
п			14	F	VP	14	1.1	0.4	54	0.2	22.5		0.2	1.6	10	22	22	48	1.7	16	4		1	1	-	4.3	23	0.2	USV.	0.2	25	2.1
lia	MNN	Fur	13	F	Р	÷.,	5	0,2		0.2	А		0.4	С	С	::	0.2	1.4	3.4		0.2	0.2	16	R	15	18.8	24	1.1	0.2	0.4	1.1	2
/al	7	eto	12	F	Р	4	5.8	1.5	54	0.2	A	0.2	0.4	F	F	40	- 21	ŝ	3	0.2	141		0.2		F	ΞĨ.	12.5	ł.	0.2	1.7	1.3	2.7
rav	/	Fac	11	F	R	1	8	0.8	cz.		41.2			A		10		- 2	1.6			:=:	141		4.8	3.6	8.4	24		0	1.2	1.2
er	6b	di	10	F	VP		15.5	0.7	32	0.9	С	Bail.		F	R	40	2	2	0.4	a:	1		ŝ.	22	F	5	27.3	8		1		1.1
S		sch	9	F	Р	1.	8.1	2.3		0,7	Α	0		A		(i)	20		1.5				14		1.5	3	9.5	22	- 201	1222	1.7	1.7
1 9		FIY	8	F	Р		7.1	0.2	÷.	0.7	С	0.2	120	A	1	2	2	27	0.4	2	2		4	2	11	6.9	0.4	ŝ.,	0.6	0.7		1.3
			7	F	VP	-	5	0.9		0.9	С	0	0.2	R			10	÷.	0.7	4			11	14	F	14	42		800- 54	7.1	- 21	0.7
			6	F	Р	1.	20.2	0.2	0.6	3	A	04	Ω.	С	F		1.1	25	14.3	0.4	5	÷.	Q.	1	25,3	41.3	28.6	1				1.3
			5	F	VP	121	11.4	1.3		2.3	С	24	0.6	F	F	10	20		2.3						F	F	10.3			0.7	1.5	0.4
			4	F	VP		2.6	0.2	8	2.8	C	25	0.6	C	C	2	\overline{M}	25	3.6	23					F	F	1.9	ä.,			0.9	2.1
áa	MNN		3	F	Р	0.4	0.4	\approx		33	С	2	17.4	R	20	1.2		0.2	14.6		10				F	18	2004) (H		11.9	0.2	- 20	6.1
an	5		2	F	VP	10.	1.9		14	$)\pm$	C	\overline{O}	3.6	61	50	2	48	$\frac{1}{2}$	6.8	23		(\bar{a})			R	14	-	1	40	64	10	0.6
Г			1	F	VP	4	1.1		2.9	14.2	A		R			1.1	t.		F	-			(*)	-	R			a 1	24.4	F	0	

Tab. 9 - Calcareous nannofossil range chart of the Rotondella section. Abundance are reported as N° of specimens/mm² and relative to 300 fields of view. Letters indicate semiquantitative estimate. See legend of Tab. 1.

Fig. 11 - Abundance patterns of selected calcareous nannofossils at the Rotondella section. See legend of Fig. 3.

11 54

Comparison with previous age assignements in the Southern Apennines sections.

The previous biostratigraphic data on the studied deposits (Serra Palazzo and Flysch di Faeto formations) are mostly based on planktonic foraminiferal assemblages; the comparison between the results obtained in this study and the previous ones thus is not simple, mainly because these latter refer to biostratigraphic and chronostratigraphic terminologies that can be considered out of use at present. Moreover, the correlation between the calcareous nannofossil scheme adopted in this study and the foraminiferal biostratigraphy is not completely established.

For these reasons a synthesis of the main foraminiferal biostratigraphic results obtained in the foredeep sections by previous authors is shown in Tab. 10. In Tab. 11 a tentative correlation between the past chronostratigraphic units adopted in the studied turbidite deposits and the chronostratigraphy used in this study is presented.

The obtained biostratigraphic results provide, for the Serra Palazzo and Flysch di Faeto formations, an age close to the Burdigalian/Langhian boundary (Zones MNN4a-4b) and the Serravallian-Tortonian (Zones MNN7-9) following the chronostratigraphy proposed by Fornaciari et al. (1996). In the upper marly portion of the studied sections (Marne argillose del Toppo Capuana Formation) the interval between MNN7 and *A. primus* Zone has been found.

Previous studies often referred the studied deposits to the upper Langhian - Tortonian (Tab. 10); the discrepancies with the present results mainly concern the age assigned to the lower part of the investigated deposits and this is mainly due to differences in the chronostratigraphic terminology (Tab. 11).

On the other hand, a slightly younger biozonal assignement was inferred by Palmentola (1970) that recognised the *O. suturalis* subzone since the lower part of Serra Palazzo Formation, as well as by Patacca et al. (1991) which recorded *O. suturalis* and *O. bilobata* from the lower part of the Tufillo and Flysch di Faeto formations. Patacca et al. (1992) also suggested a Langhian age for the "Apennine Numidian quartzarenites" (stratigraphically underlying the studied deposits); however they did not record the presence of *Praeorbulina glomerosa sicana* within the "Numidian interval" (tab. 3, p. 323) but referred to data from Carbone et al. (1987).

For the moment the conflicting data in the lower part of the studied sections cannot be interpreted sati-

Fig. 12 - Abundance patterns of selected calcareous nannofossils at DSDP Site 372. See legend of Fig. 3.

Author	Formation	Biostratigraphic reference	Biozone	Age
Selli (1962)	Serra Palazzo F.	Selli (1957)		late Langhian-early Helvetian
Selli (1962)	Tufillo F.	Selli (1957)		late Langhian - early Helvetian
Crostella & Vezzani (1964)	Flysch di Faeto F.			Helvetian-early Tortonian
Casnedi (1964)	Serra Palazzo F.	Selli (1957)	lower part of Orbulina universa Zone	early Helvetian
Wezel (1966)	Serra Palazzo F.	Wezel (1966)	Globorotalia fohsi Zone	early-middle Helvetian
Palmentola et al. (1967)	Stigliano F./Serra Palazzo F. boundary	Crescenti (1966)	Globigerinoides trilobus Zone	Langhian
Pieri & Radina (1967)	Stigliano F./ Serra Palazzo F. boundary	Crescenti (1966)	Globigerinoides trilobus Zone	Langhian
Boenzi et al. (1968)	lower part of Serra Palazzo F.	Crescenti (1966)	Globigerinoides trilobus Zone	Langhian
Palmentola (1970)	Serra Palazzo F.	Cati et al. (1968)	Orbulina s.l. Zone, <u>subzone</u> O. suturalis-Globoquadrina altispira/Globorotalia miozea	late Langhian-Serravallian
Palmentola (1970)	Flysch di Faeto F.	Cati et al. (1968)	Orbulina s.l Globorotalia menardii Zones, <u>subzone</u> Globorotalia ventriosa and Globorotalia nepenthes	middle-late Serravallian /early-middle(?)Tortonian
Ciaranfi et al. (1973)	Serra Palazzo F .	Cati et al. (1968)	Orbulina s.1. Zone, subzone (?) Globoquadrina altispira	Serravallian
Pieri & Walsh (1973)	Serra Palazzo F.	Cati et al. (1968)	Globigerinoides trilobus Zone, <u>subzone</u> Globigerinoides bisphericus and in the upper part Praeorbulina glomerosa s.l. Zone - Orbulina s.l Zone.	middle Langhian - early Serravallian
Rapisardi & Walsh (1978)	Flysch di Faeto F.		significant specimens: G. trilobus, G. altispira, G. dehiscens, O. suturalis, O.universa	Langhian - Serravallian
Di Nocera & Torre (1987)	Flysch di Faeto F.	8		late Langhian - Serravallian
Russo & Senatore (1989)	Flysch di Faeto F.	Iaccarino (1985)	Praeorbulina glomerosa s.l., - Globorotalia acostaensis Zones	carly Langhian - early Tortonian
Russo (1988) Russo & Senatore (1989)	Marne argillose del Toppo Capuana F.	Iaccarino (1985)	Globorotalia acostaensis - Globigerinoides extremus Zones	early-late Tortonian
Patacca et al. (1991)	Tufillo F. and Flysch di Faeto F.	ы	Orbulina is present in the lower part	Serravallian-Tortonian

Tab. 10 - Main previous biostratigraphic results in the investigated deposits (Flysch di Faeto Formation, Serra Palazzo Formation, Marne argillose del Toppo Capuana Formation).

sfyingly. Different intervals of sampling or slightly different ages in various sections can be invoked. It is unlikely that reworking phenomena prevented the recognition of "younger" assemblages in the studied sections and at the same time generated a sequence of biostratigraphic events comparable to those observed in pelagic and hemipelagic sediments by other authors, as well as in the DSDP Site 372 in this work.

Conclusions.

The quantitative calcareous nannofossil biostratigraphic study performed in nine Miocene Southern Apennines foredeep sections provided new information on the applicability of the recently proposed Mediterranean biozonal schemes. Several biozonal events proposed by Fornaciari & Rio (1996) and Fornaciari et al. (1996) in the lower and middle Miocene sections and by Theodoridis (1984) in the upper Miocene interval have been found. A Burdigalian-upper Tortonian interval between MNN3a and the *Amaurolithus primus* Zone was identified and new biostratigraphic events were proposed.

Within the lower and middle Miocene record the LCO of *H. ampliaperta*, the PB of *S. heteromorphus*, the PE of *S. heteromorphus*, the LO of *S. heteromorphus* and the FCO of *R. pseudoumbilicus*, provide a good biostratigraphic resolution of the studied sections and all furnished useful events for stratigraphic correlation.

On the other hand, some of the biohorizons of the above mentioned zonal schemes, such as the FCO of *H. walbersdorfensis* and the LCO of *C. premacintyrei*, were not always identified. *H. walbersdorfensis* is often not recorded in the interval just below the LO of *S. heteromorphus* and the rare occurrences of *C. premacinty-*

]	Foraminifera					Na	nnofossil
	Iac	carino 985)		Cati et al. (1968)	Wezel (1966)	Crescenti (1966)	Selli (1957)	1	2	Biozone *
ssin.	No di	stinctive Zone	1	Not defined					inian	C. leptoporus
Me	Gl.	conomiozea		Gl. miocenica					Mess	R. rotaria
u	Gl.oides	Gl. suturae			enardi	enardi		nian	ian	A. primus
ortonia	obliquus extremus	Gl.oides obliquus extremus/ Gl.oides bulloideus	nenardi	Gl. ventriosa	Gl. m	GI. mo		Torto	Torton	M. convallis
T	Gl.	acostaensis	Gl. I	G. nepenthes			rsa			MNN9 MNN8b MNN8a
	Gl.	menardii s.l.					nive		n	
n	61	Gl. siakensis-Gl.oides obliquus obliquus	_	Gl.oides obliquus			0.u		/allia	MNN7
vallia	GI. siakensis	Gl.oides subquadratus		Gl. lenguaensis		rsa		E	errav	MNN6b
errav	(p _)	G. altispira altispira	ia s.l.	G. altispira	fohsi	unive		vetia	S	MNN6a
S	ralis- orond	Gl. praemenardii - Gl. peripheroronda	rbulir	- Gl. miozea	GI.	Ö		Hel	1	MNN5b
	sutu Gl. pher	O. universa	0						hiaı	
Igh.	O. peri	O. suturalis		O. suturalis		\$ \$		4	ang	MNN5a
Lar	P.g	lomerosa s.l.	des	P. glomerosa s.l.		oide	ina	hia	-	MNN4b
lig.	Gl.o	oides trilobus	Gl.oi trilob	Gl.oides bisphericus G. dehiscens	.oides	E.	oquadi	Lang	dig.	MNN4a
Burd	G. dehiscens	Gl.oides altiaperturus - C. dissimilis	imilis	Gl.oides altiaperturus- Gl.oides trilobus	E E	G. dissimilis	Globo	Aquit.	Bur	MNN3a MNN2b MNN2a
Aquit.	dehiscens C. dissimilis	G. dehiscens dehiscens	G. diss	Gl.oides primordius		Not defin	ned		Aquit.	MNN1d MNN1c

Tab. 11 - Tentative correlations between the foraminifera biostratigraphic schemes and chronostratigraphy adopted in previous age assignements in the foredeep deposits and the biostratigraphic and chronostratigraphic scheme adopted in this work. In column 1 is reported the chronostratigraphy adopted in Selli (1957) and Crescenti (1966); in column 2 the one proposed in Fornaciari & Rio (1996) and Fornaciari et al. (1996) and adopted in this work; the Tortonian-Messinian boundary has been traced according to Langereis et al. (1984). *: Biozone of Fornaciari & Rio (1996) and Fornaciari et al. (1996) in the lower-middle Miocene and of Theodoridis (1984) in the upper Miocene.

rei prevented to obtain significant abundance patterns for the recognition of the LCO of this species.

This quantitative study provides new stratigraphic ranges and biostratigraphic events, which improve the lower and middle Miocene Mediterranean biostratigraphy:

- R. pseudoumbilicus has been recorded well below the FCO of the species, in the turbidite deposits as well as in DSDP Site 372. Discontinuous occurrences were noted within Zones MNN2b-3a-3b-4b. It is noteworthy that this is quite useful in the biostratigraphic analyses of the on-land deposits, since the presence of R. pseudoumbilicus may wrongly suggest a younger age of the section;

- a distinctive paracme interval of small *R. pseudoumbilicus* was identified within Zones MNN4b and MNN5a: the PB occurs slightly above the PB of *S. heteromorphus* and represents an additional event for the recognition of MNN4b. The PE occurs shortly below the FCO of *H. walbersdorfensis* and can be considered an alternative event to subdivide MNN5. The occurrence of the paracme interval in the same stratigraphic position at Site 372 confirms its potential value for stratigraphic correlation within the Mediterranean region;

- the FCO of *C. macintyrei* is well detectable in the studied sections and represents a more reliable event than the LCO of *C. premacintyrei* within the MNN6b/7 interval. An increase in abundance of *C. leptoporus* was also noted with the FCO of *C. macintyrei*; - the LCO of *H. walbesdorfensis* appears to be a better biohorizon than the LO of the species for the recognition of the top of Zone MNN7.

At Site 372 the FO of *H. mediterranea* precedes the FO of *H. ampliaperta*.

In the upper Miocene record the *M. convallis*, *C. pelagicus* and *A. primus* Zones of Theodoridis (1984) were recognised. In the upper part of the *M. convallis* Zone abundant specimens referable to *Gephyrocapsa* spp. (about 2 microns in size) were recorded.

The quantitative biostratigraphy was helpful in the stratigraphic reconstruction of the studied deposits, although these are often affected by stratigraphic discontinuities. The recognition of several new biozonal horizons improves the stratigraphic framework of the Miocene foredeep deposits in the Southern Apennines.

Acknowledgements.

I would like to thank Dr. S. Gallicchio for the lithostratigraphic interpretations of the sections and for helpful discussions on the geological framework. I am grateful to Prof. N. Ciaranfi and Dr. M. Marino for valuable suggestions on the initial version of the manuscript, to Prof. S. Monechi for useful discussions on the biostratigraphic results, to Dr. R. Sbarra for stratigraphical information and field assistance during the sampling of some sections and to the Ocean Drilling Program for providing samples of DSDP Site 372. Careful revision of the manuscript by Dr. E. Erba, Prof. M. Gaetani and Dr. K. Perch-Nielsen is greatly acknowledged.

This research was financially supported by the Ph.D Program of the University of Bari and by M.U.R.S.T. 60% Prof. N. Ciaranfi.

Appendix

List of calcareous nannofossils considered in this work.

- Amaurolithus primus (Bukry & Percival, 1971) Gartner & Bukry, 1975
- Braarudosphaera bigelowii (Gran & Braarud, 1935) Deflandre, 1947
- Calcidiscus leptoporus (Murray & Blackman, 1898) Loeblich & Tappan, 1978
- Calcidiscus fuscus (Backman, 1980) Janin, 1987
- Calcidiscus macintyrei (Bukry & Bramlette, 1969) Loeblich & Tappan, 1978

- Catinaster coalitus Martini & Bramlette, 1963
- Coccolithus miopelagicus Bukry, 1971
- Coccolithus pelagicus (Wallich, 1877) Schiller, 1930
- Coronocyclus nitescens (Kamptner, 1963) Bramlette & Wilcoxon, 1967
- Cryptococcolithus mediaperforatus (Gartner, 1992) de Kaenel & Villa, 1996
- Cyclicargolithus floridanus (Roth & Hay in Hay et al., 1967) Bukry, 1971
- Dictyococcites productus (Kamptner, 1963) Backman, 1980
- Dictyococcites perplexus Burns, 1975
- Discoaster adamanteus Bramlette & Wilcoxon, 1967
- Discoaster asymmetricus Gartner, 1967
- Discoaster bellus Bukry & Percival, 1971
- Discoaster berggrenii Bukry, 1971
- Discoaster brouweri (Tan, 1927) Bramlette & Riedel, 1954
- Discoaster challengeri Bramlette & Riedel, 1954

- Discoaster deflandrei Bramlette & Riedel, 1954
- Discoaster exilis Martini & Bramlette, 1963
- Discoaster hamatus Martini & Bramlette, 1963
 - Discoaster intercalaris Bukry, 1971
- Discoaster moorei Bukry, 1971
- Discoaster musicus Stradner, 1959
- Discoaster neohamatus Bukry & Bramlette, 1969
- Discoaster neoerectus Bukry, 1971
- Discoaster pentaradiatus (Tan, 1927) Bramlette & Riedel, 1954
- Discoaster prepentaradiatus Bukry & Percival, 1971
- Discoaster quinqueramus Gartner, 1969
- Discoaster signus Bukry, 1971
- Discoaster surculus Gartner, 1967
- Discoaster tamalis Kamptner, 1967
- Discoaster triradiatus Tan, 1927
- Discoaster tritadiatus Tall, 172
- Discoaster variabilis Martini & Bramlette, 1963
- Discoaster variabilis/exilis (sensu Rio et al. 1990a)
- Discoaster woodringii Bramlette & Riedel, 1954
- Geminilithella rotula (Kamptner, 1956) Backman, 1980
- Helicosphaera ampliaperta Bramlette & Wilcoxon, 1967
- Helicosphaera carteri (Wallich, 1877) Kamptner, 1954
- Helicosphaera euphratis Haq, 1966
- Helicosphaera mediterranea Müller, 1981
- Helicosphaera orientalis Black, 1971
- Helicosphaera pacifica Müller & Brönnimann, 1974
- Helicosphaera perch-nielseniae Haq, 1971

Helicosphaera scissura Miller, 1981

Calcidiscus premacintyrei Theodoridis, 1984

Helicosphaera stalis Theodoridis, 1984

- Helicosphaera vedderi Bukry, 1981
- Helicosphaera walbersdorfensis (Müller, 1978) Theodoridis, 1984 Helicosphaera waltrans Theodoridis, 1984

Lithostromation perdurum Deflandre, 1942

- Minylitha convallis Bukry, 1973
- Pyrocyclus inversus Hay & Towe, 1962

Pyrocyclus orangensis (Bukry, 1971) Backman, 1980

Reticulofenestra minuta Roth, 1970

Reticulofenestra minutula (Gartner, 1967) Haq & Berggren, 1978

Reticulofenestra pseudoumbilicus (Gartner, 1967) Gartner, 1969

small Reticulofenestra pseudoumbilicus (5-7 micron)

"large" Reticulofenestra pseudoumbilicus (>12 micron)

Scapholithus fossilis Deflandre in Deflandre & Fert, 1954 Sphenolithus abies Deflandre in Deflandre & Fert, 1954

- Sphenolithus abies/neoabies (sensu Rio et al., 1990b)
- Sphenolithus belemnos Bramlette & Wilcoxon, 1967
- Sphenolithus dissimilis Bukry & Percival, 1971
- Sphenolithus conicus Bukry, 1971
- Sphenolithus heteromorphus Deflandre, 1953
- Sphenolithus moriformis (Bronnimann & Stradner, 1960) Bramlette & Wilcoxon, 1967
- Sphenolithus neoabies Bukry & Bramlette, 1969

Tetralithoides symeonidesii (Theodoridis, 1984)

- Triquetrorhabdulus milowii Bukry, 1971
- Triquetrorhabdulus rugosus Bramlette & Wilcoxon, 1967
- Triquetrorhabdulus serratus (Bramlette & Wilcoxon, 1967) Olafsson, 1989
- Zygrhablithus bijugatus (Deflandre in Deflandre & Fert, 1954) Deflandre, 1959

REFERENCES

- Bigi G., Castellarin A., Catalano R., Coli M., Cosentino D., Dal Piaz G.V., Lentini F., Parotto M., Patacca E., Praturlon A., Salvini F., Sartori R., Scandone P. & Vai G.B. (1989) - Syntetic structural-kinematic map of Italy, scale 1:2.000.000. CNR, *Progetto Finalizzato Geodinamica*, Roma.
- Boenzi F., Ciaranfi N. & Pieri P. (1968) Osservazioni Geologiche nei dintorni di Accettura e di Oliveto lucano. Mem. Soc. Geol. It., v. 7, pp. 379-392, Pisa.
- Boiano U., Critelli S., Loiacono F., Pescatore T. & Sbarra R. (1994) - Le successioni terrigene esterne dell'Appennino lucano. Guida alle escursioni. Congresso. Soc. Geol. It., Bari, Quaderni Bibl. Prov. Matera, v. 15, pp. 157-201, Matera.
- Bonardi G., D'Argenio B., Perrone V., Scandone P., Di Nocera S., Marsella E., Pappone G., Pescatore T., Senatore M. R., Sgrosso I., Ciaranfi N., Pieri P., Ricchetti G., Brancaccio L., Cinque A., Digirolamo P., Morra V., Ortolani P., Torre M., Turco E., Amore F. O., Ciampo G., De Capoa P., Taddei E. (1988) - Carta geologica dell'Appennino meridionale. 74° Congr. Soc. Geol. It., Sorrento.
- Bonci M.C., Fanucci F., Raddrizzani C.P., Rizzi A. & Tedeschi D. (1991) - I livelli diatomitici della successione miocenica di Cappella Montei (area di Serravalle Scrivia, Bacino di Alessandria. *Boll. Soc. Paleont. It.*, v. 30, n. 3, pp. 281-301, Modena.
- Bukry D. (1973) Low-latitude coccolith biostratigraphic zonation. In Edgar N.T., Saunders J.B. et al. (Eds.) - *Initial Repts. DSDP*, v. 15, pp. 487-494, Washington.
- Bukry D. (1975) Coccolith and silicoflagellate stratigraphy, northwestern Pacific Ocean, Deep Sea Drilling Project Leg 32. In Larson R.L., Moberly R. et al. (Eds.) - *Initial Repts. DSDP*, v. 32, pp. 677-701, Washington.
- Carbone S., Lentini F., Sonnino M. & De Rosa R. (1987) Il flysch numidico di Valsinni (Appennino Lucano). *Boll. Soc. Geol. Ital.*, v. 106, n. 2, pp. 331-345, Roma.
- Casnedi R. (1964) Rapporti fra Flysch e Pliocene nella zona Fiume Basento - Stigliano. Atti Soc. It. Sc. Nat. Mus. Civ. Storia Nat., v. 103, n. 3, pp. 235-247, Milano.

- Cati F. & Borsetti A. M. (1970) I discoasteridi del Miocene delle Marche. *Giorn. di Geologia*, v. 2, pp. 617-652, Bologna.
- Cati F., Colalongo M.L., Crescenti U., D'Onofrio S., Follador U., Pirini Raddrizzani C., Pomesano Cherchi A., Salvatorini G., Sartoni S., Premoli Silva I., Wezel C.F., Bertolino V., Bizon G., Bolli H.M., Borsetti Cati A.M., Dondi L., Feinberg H., Jenkins D.G., Perconig E., Sampo' M. & Sprovieri R. (1968) - Biostratigrafia del Neogene mediterraneo basata sui foraminiferi planctonici. *Boll. Soc. Geol. It.*, v. 87, n. 3, pp. 491-503, Roma.
- Centamore E. (1969) Contributo alla geologia della Basilicata: la stratigrafia dei complessi in facies di flysch affioranti nel secondo quadrante del F. 187 Melfi (Lucania). *Boll. Serv. Geol. It.*, v. 91, pp. 113-148, Roma.
- Centamore E., Chiocchini U. & Moretti A. (1971) Geologia della zona tra Acerenza ed Avigliano (prov. di Potenza). *Studi Geologici Camerti*, v. I, pp. 97-122.
- Ciaranfi N., Dazzaro L., Pieri P. & Rapisardi L. (1980) I depositi del Miocene superiore al confine molisanoabruzzese. *Boll. Soc. Geol. It.*, v. 99, pp. 103-118, Roma.
- Ciaranfi N., Dazzaro L., Pieri P., Rapisardi L. & Sardella A. (1973) - Geologia della zona compresa fra Bisaccia (Avellino) ed il T. Olivento, presso Lavello (Potenza). *Mem. Soc. Geol. It.*, v. 12, pp. 279-315, Pisa.
- Cocco E., Cravero E., Ortolani F., Pescatore T., Russo M., Torre M. & Coppola L. (1974) - Le unità irpine nell'area a nord di Monte Marzano, Appennino meridionale. *Mem. Soc. Geol. It.*, v. 13, pp. 607-654, Pisa.
- Crescenti U. (1966) Sulla biostratigrafia del Miocene affiorante al confine marchigiano-abruzzese. *Geol. Rom.*, v. 5, pp. 1-54, Roma.
- Crostella A. & Vezzani L. (1964) La geologia dell'Appennino Foggiano. *Boll. Soc. Geol. It.*, v. 83, pp. 121-142, Roma.
- D'Argenio B. (1988) L'Appennino campano-lucano. Vecchi e nuovi modelli geologici tra gli anni sessanta e gli inizi degli anni ottanta. *Mem. Soc. Geol. It.*, v. 41, pp. 3-15, Roma.

- Dazzaro L. & Rapisardi L. (1983) Nuovi dati stratigrafici, tettonici paleogeografici della parte settentrionale dell'Appennino Dauno. *Boll. Soc. Geol. It.*, v. 103, pp. 51-58.
- Dazzaro L., Di Nocera S., Pescatore T., Rapisardi L., Romeo M., Russo B., Senatore M.R. & Torre M. (1988) - Geologia del margine della catena appenninica tra il Fiume Fortore ed il Torrente Calaggio (Monti della Daunia -Appennino meridionale). *Mem. Soc. Geol. It.*, v. 41, pp. 411-422, Roma.
- Di Nocera S. & Torre M. (1987) Geologia dell'area compresa tra Deliceto e Scampitella (Appennino foggiano). *Boll. Soc. Geol. It.*, v. 106, pp. 351-364, Roma.
- Di Stefano A. (1993) Contributo alla biostratigrafia a nannofossili calcarei del Miocene dell'area mediterranea - Ana-
- lisi di sequenze mioceniche attraverso l'orogene centromediterraneo. *Tesi di Dottorato, Università degli Studi di Catania*, 148 pp., Catania.
- Ellis C. H. (1979) Neogene nannoplankton zonation in eastern Mediterranean. Ann. Géol. des Pays Hellèn., Tome hors séries, fasc. 1, pp. 391-401, Athens.
- Ellis C. H. & Lohman W. H. (1979) Neogene Calcareous Nannoplankton Biostratigraphy in Eastern Mediterranean deep-sea sediments (DSDP Leg 42A, Sites 375 and 376). *Mar. Micropaleontol.*, v. 4, pp. 61-84, Amsterdam.
- Fornaciari E., Di Stefano A., Rio D. & Negri A. (1996) -Middle Miocene quantitative calcareous nannofossil biostratigraphy in the Mediterranean region. *Micropaleont.*, v. 42, n. 1, pp. 37-63, New York.
- Fornaciari E. & Labaume P. (1992) Calcareous nannofossil biostratigraphy of the Bobbio formation (NW Apennines, Italy). Memorie di Scienze Geologiche, già Memorie degli Istituti di Geologia e Mineralogia dell'Università di Padova, v. 44, pp. 109-126, Padova.
- Fornaciari E. & Rio D. (1996) Latest Oligocene to early middle Miocene quantitative calcareous nannofossil biostratigraphy in the Mediterranean region. *Micropaleont.*, v. 42, n. 1, pp. 1-36, New York.
- Fornaciari E., Rio D., Ghibaudo G., Massari F. & Iaccarino S. (1997) - Calcareous plankton biostratigraphy of the Serravallian (middle Miocene) stratotype section (Piedmont Tertiary Basin, NW Italy). *Memorie di Scienze Geologiche*, v. 49, pp. 127-144, Padova.
- Gallicchio S. (1996) Le successioni torbiditiche calciclastiche nell'evoluzione dell'avanfossa miocenica nell'Appennino meridionale. Considerazioni stratigrafiche e paleogeografiche sui flysch esterni. Tesi di Dottorato, Università di Bari, 162 pp., Bari.
- Gallicchio S. (1997) Caratteri evolutivi della sedimentazione torbiditica mediomiocenica nel settore lucano dell'avanfossa sudappenninica. Atti Riun. Scient. Ann. 1997, Gr. Inf. Sedimentologia - CNR, pp. 56-58, Università della Calabria.
- Gallicchio S. & Maiorano P. (1997) Stratigraphic data of Miocene foredeep turbidites in the Basilicata region (Southern Apennines). GEOITALIA, 1° Forum FIST, Riassunti, v. 2, pp. 101-103.
- Gartner S. (1992) Miocene nannofossil chronology in the North Atlantic DSDP Site 608. Mar. Micropaleont., v. 18, pp. 307-331, Amsterdam.

- Iaccarino S. (1985) Mediterranean Miocene and Pliocene planktic foraminifera. In Bolli H. M., Saunders J.B. and Perch-Nielsen K., (Eds.) - *Plankton Stratigraphy*, pp. 283-310, Cambridge University Press.
- Ippolito F. & Lucini (1957) Il Flysch dell'Appennino meridionale. Boll. Soc. Geol. It., v. 75, n. 3, pp. 139-167, Roma.
- Kaenel E. de & Villa G. (1996) Oligocene-Miocene calcareous nannofossil biostratigraphy and paleoecology from the Iberia abyssal plain. In Whitmarsh R. B., Sawyer D. S. et al. (Eds.) - Proc. of ODP, Sci. Res., v. 149, pp. 79-145, College Station, TX (Ocean Drilling Program).
- Langereis C. G., Zachariasse W. J. & Zijderveld J.D.A. (1984) - Late Miocene magnetostratigraphy of Crete. Mar. Micropaleont., v. 8, pp. 261-281, Amsterdam.
- Loiacono F. & Sbarra R. (1991) Caratteri sedimentologici della Formazione di Serra Palazzo nei dintorni di Tricarico (Basilicata). Mem. Soc. Geol. It., v. 47, pp. 157-166, Roma.
- Maiorano P. (1996) Biostratigrafia a nannofossili calcarei di successioni torbiditiche mioceniche nell'Appennino meridionale e di successioni pelagiche (DSDP e ODP) mediterranee ed extra-mediterranee. *Tesi di Dottorato, Università di Bari*, 177 pp., Bari.
- Martini E. (1971) Standard Tertiary and Quaternary calcareous nannoplnkton zonation. In Farinacci A. (Ed) -*Proc. II Planktonic Conference*, Roma, 1970, pp. 739-785, Roma.
- Martini E. (1975) Calcareous nannoplankton from the type Tortonian (Upper Miocene). VIth Congress Regional Committee on Mediterranean Neogene Stratigraphy, Bratislava, 1975, pp. 53-56, Bratislava.
- Mazzei R. (1977) Biostratigraphy of the Rio Mazzapiedi-Castellania Section (Type section of the Tortonian) based on calcareous nannoplankton. Atti Soc. Tosc. Sci. Nat., Mem., Serie A, v. 84, pp. 15-24, Pisa.
- Mostardini F. & Merlini S. (1986) Appennino centro-meridionale. Sezioni geologiche e proposta di modello strutturale. *Mem. Soc. Geol. It.*, v. 35, pp. 177-202, Roma.
- Müller C. (1978) Neogene calcareous nannoplankton from the Mediterranean Leg 42A of the DSDP. In Hsu K.J., Montadert L. et al. (Eds.) - *Initial Rep. DSDP*, v. 42, pp. 727-751, Washington.
- Negri A. (1989) Biostratigrafia a nannofossili calcarei del Miocene inferiore-medio italiano e mediterraneo. Tesi di Dottorato, Università consorziate di Modena, Bologna, Firenze e Roma, 289 pp.
- Ogniben L. (1963) Le formazioni tipo Wildflysch delle Madonie (Sicilia centro-settentrionale). Mem. Ist. Geol. Mineral. Univ. Padova, v. 24, 58 pp., Padova.
- Ogniben L. (1969) Schema introduttivo alla geologia del confine calabro-lucano. *Mem. Soc. Geol. It.*, v. 8, pp. 453-763, Roma.
- Okada H. & Bukry D. (1980) Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation (Bukry, 1973; 1975). *Mar. Micropaleontol.*, v. 5, pp. 321-325, Amsterdam.
- Palmentola G. (1969) Osservazioni stratigrafiche sulla Formazione di Serra Palazzo nei dintorni di Campomag-

giore (Potenza). Atti Acc. Gioenia Sc. Nat. S. 7, v. 1, pp. 41-48, Catania.

- Palmentola G. (1970) Nuovi dati e considerazioni sulla Formazione di Serra Palazzo in Lucania. Mem. Soc. Geol. It., v. 9, pp. 81-90, Pisa.
- Palmentola G., Scarsella F. & Radina R. (1967) Sui rapporti tra la Formazione di Stigliano e la Formazione di Serra Palazzo nei dintorni di Tolve (Potenza). Boll. Soc. Nat. Napoli, v. 96, pp. 291-297, Napoli.
- Patacca E., Sartoni R. & Scandone P. (1990) Tyrrhenian basin and apenninic arcs: Kinematic relations since late Tortonian times. *Mem. Soc. Geol. It.*, v. 45, pp. 425-452, Roma.
- Patacca E., Scandone P., Bellatalla M., Perilli N. & Santini U. (1991) - La zona di giunzione tra l'arco appenninico settentrionale e l'arco appenninico meridionale nell'Abruzzo e nel Molise. *Studi Geologici Camerti*, vol. spec., 2, CROP 11, pp. 417-441, Università di Camerino.
- Patacca E., Scandone P., Bellatalla M., Perilli N. & Santini U. (1992) - The Numidian- sand event in the southern Apennines. Memorie di Scienze Geologiche, già Memorie degli Istituti di Geologia e Mineralogia dell'Università di Padova, v. 43, pp. 297-337, Padova.
- Perch-Nielsen K. (1985) Cenozoic calcareous nannofossils. In: Bolli H.M., Saunders J.B. and Perch-Nielsen K. (Eds.) - *Plankton Stratigraphy*, pp. 427-554. Cambridge University Press.
- Pescatore T. (1978). Evoluzione tettonica del bacino irpino (Italia meridionale) durante il Miocene. Boll. Soc. Geol. It. v. 97, pp. 783-805, Roma.
- Pescatore T. (1988). La sedimentazione miocenica nell'Appennino campano-lucano. Mem. Soc. Geol. It., v. 41, pp. 431-438, Roma.
- Pieri P. & Radina B. (1967) Contributo alla conoscenza geologica all'alta valle del Fiume Bradano in relazione al progetto di un invaso artificiale. Atti Ist. Geol. e Paleont. Univ. Bari. Studi geologici e morfologici nella regione lucana, pp. 1-19, Bari.
- Pieri P. & Walsh N. (1973) Osservazioni stratigrafiche sulla Formazione di Serra Palazzo nell'ambito del Foglio 187 "Melfi". Boll. Soc. Nat. Napoli, v. 82, pp. 171-190, Napoli.
- Pujos A. (1987) Late Eocene to Holocene medium and small-sized "reticulofenestrids". In Stradner H. & Perch-Nielsen K. (Eds.) - Proc. Int. Nannoplankton Association, Abh. Geol. B-A, v. 39, pp. 239-277, Wien.
- Raffi I. & Rio D. (1979) Calcareous nannofossil biostratigraphy of DSDP Site 132-Leg 13 (Tyrrhenian Sea - Western Mediterranean). *Riv. Ital. Paleont. Strat.*, v. 85, pp. 127-172, Milano.
- Rapisardi L. & Walsh N. (1978) Caratteri di una successione esterna della geosinclinale appenninica nei dintorni di Rotondella (Matera). *Riv. Ital. Paleont. Strat.*, v. 84, pp. 279-296, Milano.
- Rio D., Mazzei R. & Palmieri G. (1976) The stratigraphic position of the mediterranean upper Miocene evapori-

tes, based on nannofossils. *Mem. Soc. Geol. It.*, v. 16, pp. 261-276, Roma.

- Rio D., Fornaciari E. & Raffi I. (1990a) Late Oligocene through early Pleistocene calcareous nannofossils from western equatorial Indian Ocean (Leg 115). In Duncan R. A., Backman, J., Peterson L. C. et al. (Eds.) - Proc. ODP, Sci. Results, v. 115, pp. 175-221, College Station, TX (Ocean Drilling Program).
- Rio D., Raffi I. & Villa G. (1990b) Pliocene-Pleistocene calcareous nannofossil distribution patterns in the Western Mediterranean. In Kastens K.A., Mascle J. et al. (Eds.) -*Proc. ODP, Sci. Results,* v. 107, pp. 513-533, College Station, TX (Ocean Drilling Program).
- Russo B. (1988) Le microfaune a foraminiferi della Formazione delle "Marne Argillose del Toppo Capuana" nella località tipo (Appennino Foggiano). Boll. Soc. Geol. It., v. 107, pp. 503-512, Roma.
- Russo B. & Senatore M. R. (1989) Ricerche sull'unità dauna: biostratigrafia e sedimentologia della successione di Monte Sidone nell'Appennino Dauno (Italia meridionale). Atti Acc. Peloritana dei Pericolanti, classe I di Sci. Fis. Mat. e Nat., v. 67, suppl. 1, pp. 79-97, Messina.
- Sbarra R. (1995) La sedimentazione torbiditica nella avanfossa medio-miocenica dell'Appennino Meridionale. Tesi di Dottorato, Università di Bari, 175 pp., Bari.
- Selli R. (1957) Sulla trasgressione del Miocene nell'Italia meridionale. Gior. di Geol., v. 26, pp. 1-72, Bologna.
- Selli R. (1962) Il Paleogene nel quadro della Geologia dell'Italia meridionale. Mem. Soc. Geol. It., v. 3, pp. 737-790, Pavia.
- Senatore M. R. (1988) Comparazione tra i depositi Plio-Pleistocenici del Bacino di Gallipoli (Golfo di Taranto) e la successione miocenica del Flysch di Faeto (unità Irpine, Monti della daunia): confronto tra l'avanfossa attuale e quella miocenica dell'Appennino meridionale (Italia). Tesi di Dottorato. Università di Napoli e Palermo, 317 pp.
- Sgrosso I. (1988) Nuovi elementi per un più articolato modello paleogeografico nell'Appennino centro-meridionale. Mem. Soc. Geol. It., v. 41, pp. 225-239, Roma.
- Sprovieri R., Di Stefano E., Becquey S., Bonomo S. & Caravà N. (1996a) - Calcareous plankton biostratigraphy and cyclostratigraphy at the Serravallian-Tortonian boundary. *Palaeopelagos*, v. 6, pp. 437-453, Roma.
- Sprovieri R., Di Stefano E. & Sprovieri M. (1996b) High resolution chronolgy for late Miocene Mediterranean stratigraphic events. *Riv. It. Paleont. Strat.*, v. 102, pp. 77-104, Milano.
- Theodoridis S. (1984) Calcareous nannofossil biozonation of the Miocene and revision of the Helicoliths and Discoasters. Utrecht Micropaleont. Bull., v. 32, 271 pp., Utrecht.
- Wezel F. C. (1966) La Cenozona a "Globorotalia fohsi" nel flysch esterno della Lucania. Riv. It. Paleont. Strat, v. 72, pp. 1269-1296, Milano.