The Connected Vertex Strong Geodetic Number of a Graph

C. Saritha^{*} T. Muthu Nesa Beula[†]

Abstract

In this paper we introduce the concept of connected vertex strong geodetic number $cg_{sx}(G)$ of a graph G at a vertex x and investigate its properties. We determine bounds for it and find the same for some special classes of graphs. We prove that $sg_x(G) \leq csg_x(G)$ for any vertex x in G is connected graphs of order $n \geq 2$ with one are characterized for some vertex x in G. Necessary conditions for $sg_x(G)$ to be n or n-1 are given for some vertex x in G. It is shown for every pair of integers a and b with $2 \leq a \leq b$, there exists a connected graph G such that $sg_x(G) = a$ and $csg_x(G) = b$ for some vertex x in G.

Keywords: strong geodetic number; vertex strong geodetic number; connected strong geodetic number.

2010 AMS subject classification: 05C15[‡].

^{*}Register Number 20123182092003, Research Scholar, Department of Mathematics, Women's Christian College, Nagercoil629 001, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India. saritha.c2012@gmail.com.

[†]Assistant Professor, Department of Mathematics, Women's Christian College, Nagercoil - 629 001, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India.tmnbeula@gmail.com.

[‡]Received on July 28, 2022. Accepted on October 15, 2022. Published on January 25, 2023. doi: 10.23755/rm.v45i0.978. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY license agreement.

1. Introduction

By a graph G = (V, E), we mean a finite, undirected connected graph without loops or multiple edges. The *order* and *size* of G are denoted by n and m respectively. For basic graph theoretic terminology, we refer to [1]. Two vertices u and v are said to be *adjacent* if uv is an edge of G. Two edges of G are said to be adjacent if they have a common vertex. The *distanced*(u, v) between two vertices u and v in a connected graph G is the length of a shortest u-v path in G.

An u-v path of length d(u, v) is called an u-vgeodesic. An x - y path of length d(x, y) is called geodesic. A vertex v is said to lie on a geodesic P if v is an internal vertex of P. The closed interval I[x, y] consists of x, y and all vertices lying on some x - y geodesic of G and for a non-empty set $S \subseteq V(G)$, $I[S] = \bigcup_{x,y \in S} I[x, y]$. A set $S \subseteq V(G)$ in a connected graph G is a geodetic set of G if I[S] = V(G). The geodetic number of G, denoted by g(G), is the minimum cardinality of a geodetic set of G. The geodetic concept were studied in [1, 3, 4]. Let x be a vertex of G and $S \subseteq V - \{x\}$. Then for each vertex $y \in S, x \neq y$. Let $\tilde{g}_x[y]$ be a selected fixed shortest x-y path. Then we set $\tilde{I}_x[S] = \{\tilde{g}_x(y): y \in S\}$ and let $V(\tilde{I}_x[S]) = \bigcup V(P)$. If $V(\tilde{I}_x[S]) = V$ for some

 $\tilde{I}_{x}[S]$ then the set S is called a vertex strong geodetic set of G. The minimum cardinality of a vertex strong geodetic set of G is called the vertex strong geodetic number of G and is denoted by $sg_{x}(G)$. The following theorem is used in sequel.

Theorem 1.1[4] Each extreme vertex of a connected graph belong to every geodetic set of *G*.

2. The connected vertex strong geodetic number of a graph

Definition 2.1. Let *x* be a vertex of *G* and $S \subseteq V - \{x\}$. Then for each vertex $y \in S, x \neq y$. Let $\tilde{g}_x[y]$ be a selected fixed shortest *x*-*y* path. Then we set $\tilde{I}_x[S] = \{\tilde{g}_x(y): y \in S\}$ and let $V(\tilde{I}_x[S]) = \bigcup V(P)$. If $V(\tilde{I}_x[S]) = V$ for some $\tilde{I}_x[S]$ then the set *S* is called a vertex strong geodetic set of *G*. A vertex strong geodetic set *S* of *x* of *G* is called a

connected vertex strong geodetic set of G. A vertex strong geodetic set S of X of G is called a connected vertex strong geodetic set of G if G[S] is connected. The minimum cardinality of a connected vertex strong geodetic set of G is called the connected vertex strong geodetic number of G and is denoted by $csg_x(G)$.

Example 2.2. For the graph G given in Figure 2.1, csg_x -sets and $csg_x(G)$ for each vertex x is given in the following Table 2.1.

Table 2.1

Vertex	csg_x -sets	$csg_x(G)$
<i>v</i> ₁	$\{v_3, v_4\}, \{v_4, v_5\}$	2
<i>v</i> ₂	$\{v_4, v_5, v_6\}$	3
v ₃	$\{v_1, v_6\}, \{v_5, v_6\}$	2
v_4	$\{v_1, v_6\}, \{v_1, v_2\}$	2
v_5	$\{v_1, v_2, v_3\}$	3
v ₆	$\{v_3, v_4\}, \{v_2, v_3\}$	2

Observation 2.3. Let *x* be any vertex of a connected graph*G*.

(i) If $y \neq x$ be a simplicial vertex of G, then y belongs to every connected x-vertex strong geodetic set of G.

(ii) The eccentric vertices of x belong to every connected x-vertex strong geodetic set of G.

In the following we determine the connected vertex strong geodetic number of some standard graphs G for each vertex in G.

Theorem 2.4. For the path $G = P_n (n \ge 3)$, $csg_x(G) = \begin{cases} 1 & if x & is an end vertex of G \\ n & if x & is a cut vertex of G \end{cases}$

Proof. Let P_n be v_1, v_2, \ldots, v_n .

If $x = v_1$, then $S = \{v_n\}$ is a csg_x -set of G so that $csg_x(G) = 1$. Similarly if $x = v_n$, then $csg_x(G) = 1$. Let x be a cut vertex of G. Then by Observation 2.3 (i)

 $\{v_1, v_n\}$ is a subset of every csg_x -set of G. Let S be a csg_x -set of G. Since G[S] is connected, it follows that S = V(G) is the unique csg_x -set of G so that $csg_x(G) = n$.

Theorem 2.5. For the cycle $G = C_n (n \ge 4)$, $csg_x(G) = 2$, for every $x \in G$.

Proof. Let $V(C_n) = \{v_1, v_2, ..., v_n\}$. Without loss of generality let us assume that $x = v_1$.

Case (i) Let *n* be even. Let n = 2k ($k \ge 2$). Then v_{k+1} is the eccentric vertex of *G*. By Observation 2.3(ii) since $\{v_{k+1}\}$ is not a sg_x -set of *G* so that $csg_x(G) \ge 2$. Let $S = \{v_{k+1}, v_{k+2}\}$. Then *S* is a csg_x -set of *G* so that $csg_x(G) = 2$.

Case (ii) Let *n* be odd. Let n = 2k + 1 ($k \ge 2$). Then $S = \{v_{k+1}, v_{k+2}\}$ is the eccentric vertices of *G*. By Observation 2.3 (ii) *S* is a subset of every csg_x -set of *G* and so $csg_x(G) \ge 2$. Since *S* is a sg_x -set of *G* and G[S] is connected, *S* is a csg_x -set of *G* so that $csg_x(G) = 2$.

Theorem 2.6. For the complete graph $G = K_n (n \ge 4)$, $csg_x(G) = n - 1$, for every $x \in G$.

Proof. Let *x* be a vertex of *G*. Let $S = V(G) - \{x\}$. Since every vertex of *G* is an extreme vertex of *G*, it follows from Observation 2.3(i), *S* is the unique csg_x -set of *G* so that $csg_x(G) \ge n - 1$ for every vertex *x* in *G*.

Theorem 2.7.For the fan graph $G = K_1 + P_{n-1}$ $(n \ge 5)$. $csg_x(G) = \begin{cases} n-1 & if \ x \in V(K_1) \\ n-3 & if \ x \ is \ extreme \ vertex \ of \ P_{n-1} \\ n-2 & if \ x \ is \ internal \ vertex \ of \ P_{n-1} \end{cases}$ **Proof.** Let $V(K_1) = y$ and $V(P_{n-1}) = \{v_1, v_2, \dots, v_{n-1}\}$.

Case (i) Let x = y, Then $S = \{v_1, v_2, ..., v_n\}$ is a set of all eccentric vertices for x. By Observation 2.3 (ii) S is a subset of every csg_x -set of G and so $csg_x(G) \ge n - 1$. Since G[S] is connected, S is a csg_x -set of G so that $csg_x(G) = n - 1$. Let $x \in V(P_{n-1})$. Let $x = v_1$. Then $S = \{v_3, v_4, ..., v_{n-1}\}$ are eccentric vertices of G. By Observation 2.3 (ii) S is a subset of every csg_x -set of G and so $csg_x(G) \ge n - 3$. Now S is a sg_x -set of G and G[S] is connected. Therefore S is a csg_x -set of G so that $csg_x(G) = n - 3$. If $x = v_{n-1}$, by the similar way we can prove that $csg_x(G) = n - 3$. Let $x \in \{v_2, v_3, ..., v_{n-2}\}$. Without loss of generality let us assume that $x = v_2$. Then $\{v_1, v_{n-1}\}$ is set of extreme vertices of G. By Observation 2.3 (i) $\{v_1, v_{n-1}\}$ is a subset of every csg_x -set of G. Let $S' = \{v_1, v_4, v_5, ..., v_{n-2}, v_{n-1}\}$. Then S' is a sg_x -set of G but G[S'] is not connected. Therefore $S' \cup \{y\}$ is a csg_x -set of G so that $csg_x(G) = n - 2$.

Theorem 2.8. For the wheel graph $G = K_1 + C_{n-1}$ $(n \ge 5)$.

 $csg_{x}(G) = \begin{cases} n-1 & if \ x \in v_{1} \\ n-3 & if \ x \in V(C_{n-1}) \end{cases}$ **Proof.** Let $V(K_{1}) = y$ and $V(C_{n-1}) = \{v_{1}, v_{2}, ..., v_{n-1}\}.$ **Case(i)** Let x = y, Then $S = \{v_1, v_2, ..., v_{n-1}\}$ is a set of all eccentric vertices for x. By Observation 2.3 (ii) S is a subset of every csg_x -set of G and so $csg_x(G) \ge n-1$. Since G[S] is connected, S is a csg_x -set of G so that $csg_x(G) = n-1$.

Case (ii) Let $x \in V(C_{n-1})$. Without loss of generality, let us assume that $x = v_1$. Then $S = \{v_3, v_4, ..., v_{n-1}\}$ are eccentric vertices of *G*. By Observation 2.3 (ii) *S* is a subset of every csg_x -set of *G* and so $csg_x(G) \ge n-3$. Now *S* is a sg_x -set of *G* and G[S] is connected. Therefore *S* is a csg_x -set of *G* so that $csg_x(G) = n-3$.

Theorem 2.9. For the star graph $G = K_{1,n-1}$ $(n \ge 3)$, $csg_x(G) = n-1$ for every $x \in G$.

Proof. Lety be the cut vertex of G and $\{v_1, v_2, ..., v_{n-1}\}$ is a set of all eccentric vertices of G.Letx = y, Then $S = \{v_1, v_2, ..., v_{n-1}\}$ is a set of all eccentric vertices for x. By Observation 2.3 (ii) S is a subset of every csg_x -set of G and so $csg_x(G) \ge n-1$. Since G[S] is connected, S is a csg_x -set of G so that $csg_x(G) = n-1$. Let $x \in \{v_1, v_2, ..., v_{n-1}\}$ Without loss of generality, let us assume that $x = v_1$. Then $S = \{v_2, v_3, ..., v_{n-1}\}$ are set of eccentric vertices of v_1 . By Observation 2.3 (ii) S is a subset of every sg_x -set of G and so $csg_x(G) \ge n-2$. Now S is a csg_x -set of G but G[S] is not a csg_x -set of G and so $csg_x(G) \ge n-1$. Let $S' = S \cup \{x\}$. Then S' is a csg_x -set of G so that $csg_x(G) = n-1$.

Theorem 2.10. For the Peterson graph G, $csg_x(G) = 6$ for every $x \in G$.

Proof.

Case (i) Let $x \in \{v_1, v_2, v_3, v_4, v_5\}$. Without loss of generality let us assume that $x = v_1$. Then $S = \{v_2, v_5, v_7, v_8, v_9, v_{10}\}$ is the set of all eccentric vertices for x. By Observation 2.3 (ii) S is a subset of every csg_x -set of G and so $csg_x(G) \ge 6$. Since S is a sg_x -set of G and G[S] is connected, S is a csg_x -set of G so that $csg_x(G) = 6$.

Case (ii) Let $x \in \{v_6, v_7, v_8, v_9, v_{10}\}$. Without loss of generality let us assume that $x = v_6$. Then $S = \{v_2, v_3, v_4, v_5, v_8, v_9\}$ is the set of all eccentric vertices for x. By Observation 2.3 (ii) S is a subset of every csg_x -set of G and so $csg_x(G) \ge 6$. Since S is a sg_x -set of G and G[S] is connected, S is a csg_x -set of G so that $csg_x(G) = 6$.

C. Saritha and T. Muthu Nesa Beula

Theorem 2.11.Let G be a connected graph. Then $1 \le sg_x(G) \le csg_x(G) \le n$ for every

vertex x in G.

Proof. Let x be a vertex of G. Since every sg_x -set of G needs at least one vertex $sg_x(G) \ge 1$. Since every connected strong vertex geodetic set of G is a strong vertex geodetic set of G, $sg_x(G) \le csg_x(G)$. Since V(G) is a connected strong vertex geodetic set of G, $csg_x(G) \le n$. Therefore $1 \le sg_x(G) \le csg_x(G) \le n$.

Theorem 2.12.Let *G* be a connected graph. Then $csg_x(G) = 1$ if and only if *x* is an end

vertex of $P_n (n \ge 2)$.

Proof. Let x be an end vertex of P_n . Then by Theorem 2.4, $csg_x(G) = 1$. Conversely let $csg_x(G) = 1$. Let $S = \{y\}$ be the csg_x -set of x. We prove that x is an end vertex of P_n . On the contrary suppose that x is not an end vertex of P_n . Then there are at least two x - y geodesics, which is a contradiction to S a csg_x -set of G. Therefore x is an end vertex of P_n .

Theorem 2.13.Let G be a connected graph and $x \in G$. If x is a universal vertex of G. Then $csg_x(G) = n - 1$.

Proof. Let x be a universal vertex of G. Then $V(G) - \{x\}$ is set of all eccentric vertices for x. By Observation 2.3 (ii), S is a subset of every csg_x -set of G and so $csg_x(G) \ge n - 1$. Since G[S] is connected, S is a csg_x -set of G so that $csg_x(G) = n - 1$.

Theorem 2.14.Let *G* be a connected graph and $x \in G$. If *x* is a cut vertex and universal vertex of *G*. Then $csg_x(G) = n$.

Proof. Since x is a universal vertex of G, then $V(G) - \{x\}$ is set of all eccentric vertices for x. By Observation 2.3 (ii), S is a subset of every csg_x -set of G and so

 $csg_x(G) \ge n-1$. Since G[S] is not connected, S is not a csg_x -set of G. Therefore S = V(G) is the unique csg_x -set of G. Hence $csg_x(G) = n$.

Theorem 2.15. For every pair of integers *a* and *b* with $2 \le a \le b$, there exists a connected graph *G* such that $sg_x(G) = a$ and $csg_x(G) = b$ for some vertex *x* in *G*.

Proof. For a = b, let $G = K_{a+1}$. Then by Theorem $2.11sg_x(G) = csg_x(G) = a$ for every vertex x in G. For b = a + 1, let $G = K_{1,a}$. Let x be a universal vertex of G. Then by Theorem $2.14, sg_x(G) = a$ and $csg_x(G) = a + 1$. So, let $b \ge a + 2$. Let $P_0: u_0, u_1, u_2, \dots, u_{b-a}, u_{b-a+1}$ be a path of order b - a + 2. Let G be the graph obtained from P by adding the new vertices z_1, z_2, \dots, z_{a-1} and introducing the edges $z_i u$ $(1 \le i \le b - a + 1)$. The graph G is shown in Figure 2.3. Let $x = u_{b-a+1}$.

First we prove that $sg_x(G) = a.\text{Let}S = \{u_0, z_1, z_2, ..., z_{a-1}, u_{b-a+1}\}$ be the end vertices of G. By Observation 2.3(i), $S_1 = S - \{u_{b-a+1}\}$ is a subset of every sg_x -set of G and so $sg_x(G) \ge a$. Since S_1 is a sg_x -set of G, $sg_x(G) = a$.

Next we prove that $csg_x(G) = b$.By Observation, S_1 is a subset of every csg_x -set of G. Since $G[S_1]$ is not connected S_1 is not a csg_x -set of G. let $S_2 = S_1 \cup \{u_1, u_2, \dots, u_{b-a}\}$. Then S_2 is a csg_x -set of G and $G[S_2]$ is connected. Therefore S_2 is a csg_x -set of G so that , $csg_x(G) = b$.

3. Conclusions

In this article we explore the concept of the forcing strong geodetic number of a graph. We extend this concept to some other distance related parameters in graphs. C. Saritha and T. Muthu Nesa Beula

References

[1] F. Buckley and F. Harary, Distance *in Graphs*, Addison-Wesley, Redwood City, CA, 1990.

[2] L. G. Bino Infanta and D. Antony Xavier, Strong upper geodetic number of graphs, *Communications in Mathematics and Applications* 12(3), (2021)737–748.

[3]G. Chartrand and P. Zhang, The forcing geodetic number of a graph, *Discuss. Math. Graph Theory*, 19 (1999), 45-58.

[4]G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, *Networks*, 39(2002), 1-6.

[5] V. Gledel, V. Irsic, and S. Klavzar, Strong geodetic cores and Cartesian product graphs, arXiv: 1803. 11423 [math.CO] (30 Mar 2018).

[6]Huifen Ge, Zao Wang-and Jinyu Zou Strong geodetic number in some networks, *Journal of Mathematical Resarch*-11(2), (2019), 20-29.

[7] V. Irsic, Strong geodetic number of complete bipartite graphs and of graphs with specified diameter, *Graphs and Combin.* 34 (2018) 443–456.

[8] V. Irsic, and S. Klavzar, Strong geodetic problem on Cartesian products of graphs, *RAIRO Oper. Res.* 52 (2018) 205–216.

[9] P. Manuel, S. Klavzar, A. Xavier, A. Arokiaraj, and E. Thomas, Strong edge geodetic problem in networks, *Open Math.* 15 (2017) 1225–1235.

[10] C. Saritha and T. Muthu Nesa Beula, The forcing strong geodetic number of a graph, proceedings of the International conference on Advances and Applications in Mathematical Sciences, 2022, 76-80.

[11] C. Saritha and T. Muthu Nesa Beula, The vertex strong geodetic number of a graph, (Communicated).