The Connected Vertex Strong Geodetic Number of a Graph

C. Saritha*
T. Muthu Nesa Beula ${ }^{\dagger}$

Abstract

In this paper we introduce the concept of connected vertex strong geodetic number $c g_{s x}(G)$ of a graph G at a vertex x and investigate its properties. We determinebounds for it and find the same for some special classes of graphs. We prove thats $g_{x}(G) \leq \operatorname{csg}_{x}(G)$ for any vertex x in G is connected graphs of order $n \geq 2$ with one are characterized for some vertex x in G. Necessary conditions fors $g_{x}(G)$ to be n or $n-1$ are given for some vertex x in G. It is shown for every pair of integers a and b with $2 \leq a \leq b$, there exists a connected graph G such that $s g_{x}(G)=a$ and $\operatorname{csg}_{x}(G)=b$ for some vertex x in G.

Keywords: strong geodetic number;vertex strong geodetic number; connected strong geodetic number.
2010 AMS subject classification: $05 \mathrm{C} 15^{\ddagger}$.

[^0]
1. Introduction

By a graph $G=(V, E)$, we mean a finite, undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and m respectively. For basic graph theoretic terminology, we refer to [1]. Two vertices u and v are said to be adjacent if $u v$ is an edge of G. Two edges of G are said to be adjacent if they have a common vertex. The distanced (u, v) between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G.
An $u-v$ path of length $d(u, v)$ is called an $u-v g e o d e s i c$.An $x-y$ path of length $d(x, y)$ is called geodesic. A vertex v is said to lie on a geodesic P if v is an internal vertex of P. The closed interval $I[x, y]$ consists of x, y and all vertices lying on some $x-y$ geodesic of G and for a non-empty set $S \subseteq V(G), I[S]=\cup_{x, y \in S} I[x, y]$. A set $S \subseteq V(G)$ in a connected graph G is a geodetic set of G if $I[S]=V(G)$. The geodetic number of G, denoted by $g(G)$, is the minimum cardinality of a geodetic set of G. The geodetic concept were studied in $[1,3,4]$. Let x be a vertex of G and $S \subseteq V-\{x\}$. Then for each vertex $y \in S, x \neq y$. Let $\tilde{g}_{x}[y]$ be a selected fixed shortest $x-y$ path. Then we set $\tilde{I}_{x}[S]=\left\{\tilde{g}_{x}(y): y \in S\right\}$ and let $V\left(\tilde{I}_{x}[S]\right)=\underset{p \in \tilde{I}_{x}[S]}{V}(P)$. If $V\left(\tilde{I}_{x}[S]\right)=V$ for some $\tilde{I}_{x}[S]$ then the set S is called a vertex strong geodetic set of G. The minimum cardinality of a vertex strong geodetic set of G is called the vertex strong geodetic number of G and is denoted by $s g_{x}(G)$.The following theorem is used in sequel.

Theorem 1.1[4] Each extreme vertex of a connected graph belong to every geodetic set of G.

2. The connected vertex strong geodetic number of a graph

Definition 2.1. Let x be a vertex of G and $S \subseteq V-\{x\}$. Then for each vertex $y \in S, x \neq$ y. Let $\tilde{g}_{x}[y]$ be a selected fixed shortest $x-y$ path. Then we set $\tilde{I}_{x}[S]=\left\{\tilde{g}_{x}(y): y \in S\right\}$ and let $V\left(\tilde{I}_{x}[S]\right)=\underset{p \in \tilde{I}_{x}[S]}{\bigcup}(P)$. If $V\left(\tilde{I}_{x}[S]\right)=V$ for some $\tilde{I}_{x}[S]$ then the set S is called a vertex strong geodetic set of G. A vertex strong geodetic set S of x of G is called a connected vertex strong geodetic set of G if $\mathrm{G}[\mathrm{S}]$ is connected. The minimum cardinality of a connected vertex strong geodetic set of G is called the connected vertex strong geodetic number of G and is denoted by $\operatorname{cs} g_{x}(G)$.

Example 2.2.For the graph G given in Figure 2.1, $\operatorname{csg_{x}}$-sets and $\operatorname{csg}_{x}(G)$ for each vertex x is given in the following Table 2.1.

Figure 2.1

Table 2.1

Vertex	$c s g_{x}$-sets	$\operatorname{csg}_{x}(G)$
v_{1}	$\left\{v_{3}, v_{4}\right\},\left\{v_{4}, v_{5}\right\}$	2
v_{2}	$\left\{v_{4}, v_{5}, v_{6}\right\}$	3
v_{3}	$\left\{v_{1}, v_{6}\right\},\left\{v_{5}, v_{6}\right\}$	2
v_{4}	$\left\{v_{1}, v_{6}\right\},\left\{v_{1}, v_{2}\right\}$	2
v_{5}	$\left\{v_{1}, v_{2}, v_{3}\right\}$	3
v_{6}	$\left\{v_{3}, v_{4}\right\},\left\{v_{2}, v_{3}\right\}$	2

Observation 2.3. Let x be any vertex of a connected graph G.
(i) If $y \neq x$ be a simplicial vertex of G, then y belongs to every connected x vertex strong geodetic set of G.
(ii) The eccentric vertices of x belong to every connected x-vertex strong geodetic set of G.

In the following we determine the connected vertex strong geodetic number of some standard graphs G for each vertex in G.

Theorem 2.4.For the path $G=P_{n}(n \geq 3)$,

$$
\operatorname{csg}_{x}(G)=\left\{\begin{array}{c}
1 \text { if } x \text { is an end vertex of } G \\
n \text { if } x \text { is a cut vertex of } G
\end{array}\right.
$$

Proof. Let P_{n} be $v_{1}, v_{2}, \ldots, v_{n}$.
If $x=v_{1}$, then $S=\left\{v_{n}\right\}$ is a $\operatorname{cs} g_{x}$-set of G so that $\operatorname{cs~}_{x}(G)=1$. Similarly if $x=v_{n}$, then $\operatorname{csg}_{x}(G)=1$. Let x be a cut vertex of G. Then by Observation 2.3 (i)

C. Saritha and T. Muthu Nesa Beula

$\left\{v_{1}, v_{n}\right\}$ is a subset of every $\operatorname{cs} g_{x}$-set of G. Let S be a $\operatorname{cs} g_{x}$-set of G. Since $G[S]$ is connected, it follows that $S=V(G)$ is the unique $\operatorname{cs} g_{x}$-set of G so that $\operatorname{cs} g_{x}(G)=n$.

Theorem 2.5.For the cycle $G=C_{n}(n \geq 4), \operatorname{csg}_{x}(G)=2$, for every $x \in G$.
Proof. Let $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Without loss of generality let us assume that $x=v_{1}$.

Case (i) Let n be even. Let $n=2 k(k \geq 2)$. Then v_{k+1} is the eccentric vertex of G. By Observation 2.3(ii) since $\left\{v_{k+1}\right\}$ is not a $s g_{x}$-set of G so that $c s g_{x}(G) \geq 2$. Let $S=\left\{v_{k+1}, v_{k+2}\right\}$. Then S is a $\operatorname{cs} g_{x}$-set of G so that $\operatorname{cs} g_{x}(G)=2$.

Case (ii) Let n be odd. Let $n=2 k+1(k \geq 2)$. Then $S=\left\{v_{k+1}, v_{k+2}\right\}$ is the eccentric vertices of G. By Observation 2.3 (ii) S is a subset of every $c s g_{x}$-set of G and so $c s g_{x}(G) \geq 2$. Since S is a $s g_{x}$-set of G and $G[S]$ is connected, S is a $c s g_{x}$-set of G sothat $\operatorname{csg}_{x}(G)=2$.

Theorem 2.6.For the complete graph $G=K_{n}(n \geq 4), \operatorname{csg}_{x}(G)=n-1$, for every $x \in G$.

Proof. Let x be a vertex of G. Let $S=V(G)-\{x\}$. Since every vertex of G is an extreme vertex of G, it follows from Observation 2.3(i), S is the unique $c s g_{x}$-set of G so thatcs $g_{x}(G) \geq n-1$ for every vertex x in G.

Theorem 2.7.For the fan graph $G=K_{1}+P_{n-1}(n \geq 5)$.
$\operatorname{csg}_{x}(G)=\left\{\begin{array}{c}n-1 \quad \text { if } x \in V\left(K_{1}\right) \\ n-3 \quad \text { if } x \text { is extreme vertex of } P_{n-1} \\ n-2 \quad \text { if } x \text { is internal vertex of } P_{n-1}\end{array}\right.$
Proof. Let $V\left(K_{1}\right)=y$ and $V\left(P_{n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$.
Case (i) Let $x=y$, Then $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a set of all eccentric vertices for x. By Observation 2.3 (ii) S is a subset of every $\operatorname{cs} g_{x}$-set of G and so $\operatorname{csg} g_{x}(G) \geq n-1$. Since $G[S]$ is connected, S is a $\operatorname{csg} g_{x}$-set of G so that $\operatorname{csg}_{x}(G)=n-1$. Let $x \in$ $V\left(P_{n-1}\right)$. Let $x=v_{1}$. Then $S=\left\{v_{3}, v_{4}, \ldots, v_{n-1}\right\}$ are eccentric vertices of G. By Observation 2.3 (ii) S is a subset of every $\operatorname{cs~}_{x}$-set of G and so $\operatorname{cs} g_{x}(G) \geq n-3$. Now S is a $s g_{x}$-set of G and $G[S]$ is connected. Therefore S is a $c s g_{x}$-set of G so that $\operatorname{csg}_{x}(G)=n-3$. If $x=v_{n-1}$, by the similar way we can prove that $\operatorname{csg}_{x}(G)=n-3$. Let $x \in\left\{v_{2}, v_{3}, \ldots, v_{n-2}\right\}$. Without loss of generality let us assume that $x=v_{2}$. Then $\left\{v_{1}, v_{n-1}\right\}$ is set of extreme vertices of G. By Observation 2.3 (i) $\left\{v_{1}, v_{n-1}\right\}$ is a subset of every $\operatorname{cs~} g_{x}$-set of $G .\left\{v_{4}, v_{5}, \ldots, v_{n-2}\right\}$ is the set of eccentric vertices of v_{2}. Then $\left\{v_{4}, v_{5}, \ldots, v_{n-2}\right\}$ is a subset of every csg_{x}-set of G. Let $S^{\prime}=\left\{v_{1}, v_{4}, v_{5}, \ldots, v_{n-2}, v_{n-1},\right\}$. Then S^{\prime} is a $s g_{x}$-set of G but $G\left[S^{\prime}\right]$ is not connected. Therefore $S^{\prime} \cup\{y\}$ is a $c s g_{x}$-set of G so that $\csc _{x}(G)=n-2$.

Theorem 2.8. For the wheel graph $G=K_{1}+C_{n-1}(n \geq 5)$.
$\operatorname{csg}_{x}(G)=\left\{\begin{array}{c}n-1 \quad \text { if } x \in v_{1} \\ n-3 \text { if } x \in V\left(C_{n-1}\right)\end{array}\right.$
Proof. Let $V\left(K_{1}\right)=y$ and $V\left(C_{n-1}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$.

Case(i) Let $x=y$, Then $S=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ is a set of all eccentric vertices for x. By Observation 2.3 (ii) S is a subset of every $\operatorname{csg} g_{x}$-set of G and so $\operatorname{csg} g_{x}(G) \geq n-1$. Since $G[S]$ is connected, S is a $\operatorname{cs} g_{x}$-set of G so that $\operatorname{cs} g_{x}(G)=n-1$.

Case (ii) Let $x \in V\left(C_{n-1}\right)$. Without loss of generality, let us assume that $x=$ v_{1}. Then $S=\left\{v_{3}, v_{4}, \ldots, v_{n-1}\right\}$ are eccentric vertices of G. By Observation 2.3 (ii) S is a subset of every $\operatorname{cs} g_{x}$-set of G and so $\operatorname{csg} g_{x}(G) \geq n-3$. Now S is a $s g_{x}$-set of G and

Theorem 2.9.For the star graph $G=K_{1, n-1}(n \geq 3), \operatorname{csg}_{x}(G)=n-1$ for every $x \in G$.

Proof. Lety be the cut vertex of G and $\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ is a set of all eccentric vertices of G.Let $x=y$, Then $S=\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ is a set of all eccentric vertices for x. By Observation 2.3 (ii) S is a subset of every $\operatorname{csg} g_{x}$-set of G and so $\operatorname{csg} g_{x}(G) \geq n-1$. Since $G[S]$ is connected, S is a $\operatorname{csg} g_{x}$-set of G so that $\operatorname{csg}_{x}(G)=n-1$. Let $x \in$ $\left\{v_{1}, v_{2}, \ldots, v_{n-1}\right\}$ Without loss of generality, let us assume that $x=v_{1}$. Then $S=$ $\left\{v_{2}, v_{3}, \ldots, v_{n-1}\right\}$ are set of eccentric vertices of v_{1}. By Observation 2.3 (ii) S is a subset of every $s g_{x}$-set of G and so $\operatorname{csg}_{x}(G) \geq n-2$. Now S is a $\operatorname{csg_{x}\text {-setof}G\text {but}G[S]\text {is}{}^{2}\text {.}}$ not a $\operatorname{cs} g_{x}$-set of G and so $\operatorname{csg_{x}}(G) \geq n-1$. Let $S^{\prime}=S \cup\{x\}$. Then S^{\prime} is a $c s g_{x}$-set of G so that $\operatorname{csg}_{x}(G)=n-1$.

Theorem 2.10. For the Peterson graph $G, c s g_{x}(G)=6$ for every $x \in G$.

Proof.

Case (i) Let $x \in\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}$. Without loss of generality let us assume that $x=v_{1}$. Then $S=\left\{v_{2}, v_{5}, v_{7}, v_{8}, v_{9}, v_{10}\right\}$ is the set of all eccentric vertices for x. By Observation 2.3 (ii) S is a subset of every $\operatorname{cs} g_{x}$-set of G and so $\operatorname{csg} g_{x}(G) \geq 6$. Since S is a $s g_{x}$-set of G and $G[S]$ is connected, S is a $c s g_{x}$-set of G so that $\operatorname{cs} g_{x}(G)=6$.

Case (ii) Let $x \in\left\{v_{6}, v_{7}, v_{8}, v_{9}, v_{10}\right\}$. Without loss of generality let us assume that $x=v_{6}$. Then $S=\left\{v_{2}, v_{3}, v_{4}, v_{5}, v_{8}, v_{9}\right\}$ is the set of all eccentric vertices for x. By Observation 2.3 (ii) S is a subset of every $\operatorname{cs} g_{x}$-set of G and so $\operatorname{csg} g_{x}(G) \geq 6$. Since S is a $s g_{x}$-set of G and $G[S]$ is connected, S is a $\operatorname{cs} g_{x}$-set of G so that $\operatorname{cs} g_{x}(G)=6$.

Figure 2.2
Theorem 2.11.Let G be a connected graph. Then $1 \leq s g_{x}(G) \leq c s g_{x}(G) \leq n$ for every
vertex x in G.
Proof. Let x be a vertex of G. Since every $s g_{x}$-set of G needs at least one vertex $s g_{x}(G) \geq 1$. Since every connected strong vertex geodetic set of G is a strong vertex geodetic set of $G, s g_{x}(G) \leq \operatorname{cs} g_{x}(G)$. Since $V(G)$ is a connected strong vertex geodetic set of $G, \operatorname{csg_{x}}(G) \leq n$. Therefore $1 \leq s g_{x}(G) \leq \operatorname{csg}_{x}(G) \leq n$.

Theorem 2.12.Let G be a connected graph. Then $\operatorname{cs~}_{x}(G)=1$ if and only if x is an end
vertex of $P_{n}(n \geq 2)$.
Proof. Let x be an end vertex of P_{n}. Then by Theorem 2.4, $\operatorname{csg}_{x}(G)=1$. Conversely let $\operatorname{cs} g_{x}(G)=1$. Let $S=\{y\}$ be the csg_{x}-set of x. We prove that x is an end vertex of P_{n}. On the contrary suppose that x is not an end vertex of P_{n}. Then there are at least two $x-y$ geodesics, which is a contradiction to S a $c s g_{x}$-set of G. Therefore x is an end vertex of P_{n}.

Theorem 2.13.Let G be a connected graph and $x \in G$. If x is a universal vertex of G. Then $\operatorname{csg}_{x}(G)=n-1$.

Proof. Let x be a universal vertex of G. Then $V(G)-\{x\}$ is set of all eccentric vertices for x. By Observation 2.3 (ii), S is a subset of every $\operatorname{cs} g_{x}$-set of G and so $\operatorname{csg}_{x}(G) \geq n-1$. Since $G[S]$ is connected, S is a csg_{x}-set of G so that $\operatorname{csg}_{x}(G)=n-$ 1.

Theorem 2.14.Let G be a connected graph and $x \in G$. If x is a cut vertex and universal vertex of G. Then $c s g_{x}(G)=n$.

Proof. Since x is a universal vertex of G, then $V(G)-\{x\}$ is set of all eccentric vertices for x. By Observation 2.3 (ii), S is a subset of every $\operatorname{cs} g_{x}$-set of G and so
$\operatorname{cs~}_{x}(G) \geq n-1$. Since $G[S]$ is not connected, S is not a $\operatorname{cs} g_{x}$-set of G. Therefore $S=$ $V(G)$ is the unique csg_{x}-set of G. Hence $\operatorname{csg}_{x}(G)=n$.

Theorem 2.15. For every pair of integers a and b with $2 \leq a \leq b$, there exists a connected graph G such that $s g_{x}(G)=a$ and $\operatorname{cs} g_{x}(G)=b$ for some vertex x in G.

Proof.For $a=b$, let $G=K_{a+1}$. Then by Theorem 2.11s $g_{x}(G)=c s g_{x}(G)=a$ for every vertex x in G. For $b=a+1$, let $G=K_{1, a}$. Let x be a universal vertex of G. Then by Theorem 2.14, $s g_{x}(G)=a$ and $\operatorname{csg}_{x}(G)=a+1$. So, let $b \geq a+2$. Let $P_{0}: u_{0}, u_{1}, u_{2}, \ldots, u_{b-a}, u_{b-a+1}$ be a path of order $b-a+2$. Let G be the graph obtained from P by adding the new vertices $z_{1}, z_{2}, \ldots, z_{a-1}$ and introducing the edges $z_{i} u(1 \leq i \leq b-a+1)$. The graph G is shown in Figure 2.3. Let $x=$ u_{b-a+1}.

First we prove that $s g_{x}(G)=a . \operatorname{Let} S=\left\{u_{0}, z_{1}, z_{2}, \ldots, z_{a-1}, u_{b-a+1}\right\}$ be the end vertices of G. By Observation 2.3(i), $S_{1}=S-\left\{u_{b-a+1}\right\}$ is a subset of every $s g_{x}$-set of G and so $s g_{x}(G) \geq a$. Since S_{1} is a $s g_{x}$-set of $G, s g_{x}(G)=a$.

Next we prove that $\operatorname{cs} g_{x}(G)=b$.By Observation, S_{1} is a subset of everycs g_{x}-set of G. Since $G\left[S_{1}\right]$ is not connected S_{1} is not a $c s g_{x}$-set of G. let $S_{2}=S_{1} \cup$ $\left\{u_{1}, u_{2}, \ldots, u_{b-a}\right\}$. Then S_{2} is a $\operatorname{cs} g_{x}$-set of G and $G\left[S_{2}\right]$ is connected. Therefore S_{2} is a $\operatorname{cs} g_{x}$-set of G so that, $\operatorname{csg} g_{x}(G)=b$.

Figure 2.3

3. Conclusions

In this article we explore the concept of the forcing strong geodetic number of a graph. We extend this concept to some other distance related parameters in graphs.

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
[2] L. G. Bino Infanta and D. Antony Xavier, Strong upper geodetic number of graphs, Communications in Mathematics and Applications 12(3), (2021)737-748.
[3]G. Chartrand and P. Zhang, The forcing geodetic number of a graph, Discuss. Math. Graph Theory, 19 (1999), 45-58.
[4]G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, Networks, 39(2002), 1-6.
[5] V. Gledel, V. Irsic, and S. Klavzar, Strong geodetic cores and Cartesian product graphs, arXiv: 1803.11423 [math.CO] (30 Mar 2018).
[6]Huifen Ge, Zao Wang-and Jinyu Zou Strong geodetic number in some networks, Journal of Mathematical Resarch-11(2), (2019), 20-29.
[7] V. Irsic, Strong geodetic number of complete bipartite graphs and of graphs with specified diameter, Graphs and Combin. 34 (2018) 443-456.
[8] V. Irsic, and S. Klavzar, Strong geodetic problem on Cartesian products of graphs, RAIRO Oper. Res. 52 (2018) 205-216.
[9] P. Manuel, S. Klavzar, A. Xavier, A. Arokiaraj, and E. Thomas, Strong edge geodetic problem in networks, Open Math. 15 (2017) 1225-1235.
[10] C. Saritha and T. Muthu Nesa Beula, The forcing strong geodetic number of a graph, proceedings of the International conference on Advances and Applications in Mathematical Sciences, 2022, 76-80.
[11] C. Saritha and T. Muthu Nesa Beula, The vertex strong geodetic number of a graph, (Communicated).

[^0]: *Register Number 20123182092003, Research Scholar, Department of Mathematics, Women's Christian College, Nagercoil629 001, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India. saritha.c2012@gmail.com.
 ${ }^{\dagger}$ Assistant Professor, Department of Mathematics, Women’s Christian College, Nagercoil - 629 001, Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627 012, Tamil Nadu, India.tmnbeula@gmail.com.
 ${ }^{*}$ Received on July 28, 2022. Accepted on October 15, 2022. Published on January 25, 2023. doi: $10.23755 / \mathrm{rm} . \mathrm{v} 45 \mathrm{i} 0.978$. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY license agreement.

