The Extension Of Generalized Intuitionistic Topological Spaces

Mathan Kumar GK*
G. Hari Siva Annam ${ }^{\dagger}$

Abstract

In this paper, irresolute functions in generalized intuitionistic topological spaces were introduced. Regarding these functions, we attempted to unveil the notions of some minimal and maximal irresolute functions. In addition, the generalized intuitionistic topological spaces were extended by using their open sets which are finer than of it and their basic characterizations were investigated. Some continuous functions in the extension of generalized intuitionistic topological spaces are also been discussed in this paper.

Keywords: mn- μ_{I}-ops, $\mathrm{mx}-\mu_{I}$-ops, $\mathrm{P} \mu_{I^{\prime}}$-ops, $\mathrm{S} \mu_{I}$-ops, $\mathrm{mn}-\mu_{I}$-cts, $\mathrm{mx}-\mu_{I}$-cts, $\mathrm{mn}-\mu_{I}$-irresolute, $\mathrm{mx}-\mu_{I}$ irresolute.
2020 AMS subject classifications: 54A05, 54C08, 54C10. ${ }^{1}$

[^0]Mathan Kumar GK, G. Hari Siva Annam

1 Introduction

The concept of an intuitionistic set which is a generalization of an ordinary set and the specialization of an intuitionistic fuzzy set was given by Coker[2]. After that time, intuitionistic topological spaces were introduced [3]. A.Csaszar[1] introduced many closed sets in generalized topological spaces based on their basics. In 2019 [9], some new generalized closed sets in ideal nano topological spaces were developed. In 2022 [6], we have introduced a new type of topology called generalized intuitionistic topological spaces with the help of intuitionistic closed sets. After that time we introduced and studied μ_{I}-maps in generalized intuitionistic topological spaces. In addition we have introduced and defined a new structure of minimal and maximal μ_{I}-open sets in generalized intuitionistic topological spaces. In 2011 [10], the subject like minimal and maximal continuous, minimal and maximal irresolute, T-min space etc. were investigated on basic topological spaces.
In 2022 [7], the characterizations of $\mathrm{nI} \alpha \mathrm{g}$-closed sets are proved. In that paper authors has been used Kuratowski's closure operator. Taking it as an inspiration we introduce μ_{I}-irresolute functions in generalized intuitionistic topological spaces throughout this paper. Also, some minimal and maximal μ_{I}-irresolute functions were introduced and studied in detail.
The aim of this paper is, to introduce the $\mu_{I}(\mathrm{~A})$-topology which is finer than $\mu_{I^{-}}$ topology by using the formula $U \cup(V \cap A)$, where U and V are μ_{I}-open. In addition, some important and interesting results were discussed by using $\mu_{I^{-}}$ continuous maps on the extension of μ_{I}-topology. Also, some counterexamples are given to support this work.

2 Preliminaries

Definition 2.1 (6). A μ_{I} topology on a non-empty set X is a family of intuitionistic subsets of X satisfying the following axioms:

$$
\text { 1. } \emptyset \in \mu_{I}
$$

2. Arbitrary union of elements of μ_{I} belongs to μ_{I}.

For a GITS (X, μ_{I}), the elements of μ_{I} are called μ_{I}-open sets(briefly μ_{I}-ops) and the complement of μ_{I}-open sets are called μ_{I}-closed sets(briefly μ_{I}-cds).

Note: $[6] C_{\mu_{I}}(\emptyset) \neq \emptyset, C_{\mu_{I}}(X)=X, I_{\mu_{I}}(\emptyset)=\emptyset$ and $I_{\mu_{I}}(X) \neq X$.

Definition 2.2 (6). Let $\left(X, \mu_{I}\right)$ be a GITS.

1. A proper non-null $\mu_{I^{-}}$ops G of $\left(X, \mu_{I}\right)$ is said to be a $m n-\mu_{I^{-}}$ops if any $\mu_{I^{-}}$ ops which is contained in G is \emptyset or G.
2. A proper non-null μ_{I}-ops $G\left(\neq M_{\mu_{I}}\right)$ of $\left(X, \mu_{I}\right)$ is said to be a $m x-\mu_{I}$-ops set if any μ_{I}-ops which contains G is $M_{\mu_{I}}$ or G.

Definition 2.3 (6). Let $\left(X, \mu_{I}\right)$ and $\left(Y, \sigma_{I}\right)$ be the topological spaces. A map f : $\left(X, \mu_{I}\right) \rightarrow\left(Y, \sigma_{I}\right)$ is called,

1. mn- μ_{I}-cts if $f^{-1}(G)$ is a μ_{I}-ops in $\left(X, \mu_{I}\right)$ for every $m n-\mu_{I}$-ops G in $\left(Y, \sigma_{I}\right)$.
2. $m x-\mu_{I}$-cts if $f^{-1}(G)$ is a μ_{I}-ops in $\left(X, \mu_{I}\right)$ for every $m x-\mu_{I}$-ops set G in $\left(Y, \sigma_{I}\right)$.

Results: [6]

1. Every μ_{I}-cts map is mn- μ_{I}-cts.
2. Every μ_{I}-cts map is $\mathrm{mx}-\mu_{I}$-cts.
3. $\mathrm{Mn}-\mu_{I}$-cts and $\mathrm{mx}-\mu_{I}$-cts maps are independent of each other.
4. If $\mathrm{f}:\left(\mathrm{X}, \mu_{I}\right) \rightarrow\left(\mathrm{Y}, \sigma_{I}\right)$ is μ_{I}-cts and $\mathrm{g}:\left(\mathrm{Y}, \sigma_{I}\right) \rightarrow\left(\mathrm{Z}, \rho_{I}\right)$ is mn- μ_{I}-cts then gof: $\left(\mathrm{X}, \mu_{I}\right) \rightarrow\left(\mathrm{Z}, \rho_{I}\right)$ is mn- μ_{I}-cts.
5. f: $\left(\mathrm{X}, \mu_{I}\right) \rightarrow\left(\mathrm{Y}, \sigma_{I}\right)$ is μ_{I}-cts and $\mathrm{g}:\left(\mathrm{Y}, \sigma_{I}\right) \rightarrow\left(\mathrm{Z}, \rho_{I}\right)$ is $\mathrm{mx}-\mu_{I}$-cts then $\mathrm{g} \circ \mathrm{f}:$ $\left(\mathrm{X}, \mu_{I}\right) \rightarrow\left(\mathrm{Z}, \rho_{I}\right)$ is $\mathrm{mx}-\mu_{I}$-ops.

Definition 2.4 (4). Let X be a μ_{I}-topological spaces. A subset A of X is said to be μ_{I}-dense if $C_{\mu_{I}}(A)=X$. Clearly, X is the only μ_{I}-closed set dense in $\left(X, \mu_{I}\right)$.

Theorem 2.1. Let $\left(X, \mu_{I}\right)$ be a GITS with closed under intersection property. Then $C_{\mu_{I}}(A \cup B)=C_{\mu_{I}}(A) \cup C_{\mu_{I}}(B)$.
Proof: Since $A \subset A \cup B$ and $B \subset A \cup B, C_{\mu_{I}}(A) \subset C_{\mu_{I}}(A \cup B)$ and $C_{\mu_{I}}(B) \subset$ $C_{\mu_{I}}(A \cup B)$. Now we have to prove the second part, Since $A \subseteq C_{\mu_{I}}(A)$ and $B \subseteq C_{\mu_{I}}(B), A \cup B \subseteq C_{\mu_{I}}(A) \cup C_{\mu_{I}}(B)$ which is μ_{I}-closed. Then $C_{\mu_{I}}(A \cup B) \subseteq$ $C_{\mu_{I}}(A) \cup C_{\mu_{I}}(B)$. Hence the theorem.

$3 \mu_{I}$-irresolute in GITS

Definition 3.1. A mapping $\mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Y, \sigma_{I}\right)$ is said to be a

1. semi μ_{I}-irresolute function(briefly $S \mu_{I}$-irresolute) if the inverse image of semi μ_{I}-open sets(briefly $S \mu_{I}$-ops) in (Y, σ_{I}) is $S \mu_{I}$-op in (X, μ_{I}).
2. pre μ_{I}-irresolute function(briefly $P \mu_{I}$-irresolute) if the inverse image of pre μ_{I}-open sets(briefly $P \mu_{I}$-ops) in $\left(Y, \sigma_{I}\right)$ is $P \mu_{I}$-op in $\left(X, \mu_{I}\right)$.
3. $\alpha \mu_{I}$-irresolute function if the inverse image of $\alpha \mu_{I^{-o p s}}$ in $\left(Y, \sigma_{I}\right)$ is $\alpha \mu_{I^{-}}$ open in $\left(X, \mu_{I}\right)$.
4. $\beta \mu_{I}$-irresolute function if the inverse image of $\beta \mu_{I}$-ops in $\left(Y, \sigma_{I}\right)$ is $\beta \mu_{I}$-open in $\left(X, \mu_{I}\right)$.

Theorem 3.1. Let $\mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Y, \sigma_{I}\right)$ be a semi μ_{I}-irresolute function if and only if the inverse image of semi μ_{I}-cds in $\left(Y, \sigma_{I}\right)$ is semi μ_{I}-closed in $\left(X, \mu_{I}\right)$.
Proof:
Necessary part: Let $\mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Y, \sigma_{I}\right)$ be a semi μ_{I}-irresolute function and A be a semi μ_{I}-cds in $\left(Y, \sigma_{I}\right)$. Since f is $S \mu_{I}$-irresolute, $\mathbb{k}^{-1}(Y-A)=X-\mathbb{k}^{-1}(A)$ is $S \mu_{I}$-open in $\left(X, \mu_{I}\right)$. Hence $\mathbb{k}^{-1}(A)$ is $S \mu_{I}$-closed in $\left(X, \mu_{I}\right)$.
Sufficient part: Assume that $\mathbb{k}^{-1}(A)$ is $S \mu_{I}$-closed in $\left(X, \mu_{I}\right)$ for each $S \mu_{I}$-closed set in $\left(Y, \sigma_{I}\right)$. Let V be a $S \mu_{I}$-ops in $\left(Y, \sigma_{I}\right)$ which yields that $Y-V$ is $S \mu_{I}$-cds in $\left(Y, \sigma_{I}\right)$. Then we get $\mathbb{k}^{(-1)}(Y-V)=X-\mathbb{k}^{(-1)}(V)$ is $S \mu_{I}$-closed in $\left(X, \mu_{I}\right)$ this implies $\mathbb{k}^{-1}(V)$ is $S \mu_{I}$-open in $\left(X, \mu_{I}\right)$. Hence \mathbb{k} is $S \mu_{I}$-irresolute.

Theorem 3.2. If \mathbb{k} is $S \mu_{I}$-irresolute then \mathbb{k} is $S \mu_{I}$-cts.
Proof: Suppose \mathbb{k} is $S \mu_{I}$-irresolute. Let A be any $S \mu_{I}$-ops in $\left(Y, \sigma_{I}\right)$. Since every μ_{I}-ops is $S \mu_{I}$-open and since A is $S \mu_{I}$-open, $\mathbb{k}^{-1}(A)$ is $S \mu_{I}$-open in $\left(X, \mu_{I}\right)$. Hence \mathbb{k} is $S \mu_{I}$-cts.

Remark 3.1. Since every $S \mu_{I}$-ops need not be μ_{I}-open, we cannot deduce the reversal concept of the above statement.

Theorem 3.3. Let $\left(X, \mu_{I}\right),\left(Y, \sigma_{I}\right)$ and $\left(Z, \rho_{I}\right)$ be three μ_{I}-topological spaces. For any $S \mu_{I}$-irresolute map $\mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Y, \sigma_{I}\right)$ and any $S \mu_{I}$-cts $\hbar:\left(Y, \sigma_{I}\right) \rightarrow\left(Z, \rho_{I}\right)$ the composition $\hbar \circ \mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Z, \rho_{I}\right)$ is $S \mu_{I}$-cts.
Proof: Let A be any $\mu_{I^{-}}$ops in $\left(Z, \rho_{I}\right)$. Since \hbar is $S \mu_{I}$-cts, $\hbar^{-1}(A)$ is $S \mu_{I^{-}}$open in $\left(Y, \sigma_{I}\right)$. By using \mathbb{k} is semi μ_{I}-irresolute, we get $\mathbb{k}^{-1}\left[\hbar^{-1}(A)\right]$ is $S \mu_{I}$-open in $\left(X, \mu_{I}\right)$.

But $\mathbb{k}^{-1}\left[\hbar^{-1}(A)\right]=(\hbar \circ \mathbb{k})^{-1}(A)$. Therefore, inverse image of μ_{I}-ops in $\left(Z, \rho_{I}\right)$ is S μ_{I}-open in $\left(X, \mu_{I}\right)$. Hence $\hbar \circ \mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Z, \rho_{I}\right)$ is $S \mu_{I}$-cts.

Theorem 3.4. If $\mathfrak{k}:\left(X, \mu_{I}\right) \rightarrow\left(Y, \sigma_{I}\right)$ and $\hbar:\left(Y, \sigma_{I}\right) \rightarrow\left(Z, \rho_{I}\right)$ are both $S \mu_{I}$-irresolute then $\hbar \circ \mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Z, \rho_{I}\right)$ is also $S \mu_{I}$-irresolute.
Proof: Let A be any $S \mu_{I^{-}}$ops in $\left(Z, \rho_{I}\right)$. Since \mathbb{k} and \hbar are $S \mu_{I^{-}}$-irresolute, $\hbar^{-1}(A)$ is $S \mu_{I}$-open in $\left(Y, \sigma_{I}\right)$ and $\mathbb{k}^{-1}\left[\hbar^{-1}(A)\right]$ is $S \mu_{I}$-open in $\left(X, \mu_{I}\right)$. Hence $(\hbar \circ \mathbb{k})^{-1}(A)$ $=\mathbb{k}^{-1}\left[\hbar^{-1}(A)\right]$ is $S \mu_{I}$-open and so $\hbar \circ \mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Z, \rho_{I}\right)$ is $S \mu_{I}$-irresolute.

Theorem 3.5. Let $\mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Y, \sigma_{I}\right)$ be a $P \mu_{I}$-irresolute(resp. $\alpha \mu_{I}$-irresolute and $\beta \mu_{I}$-irresolute) function if and only if the inverse image of $P \mu_{I}$-closed(resp. $\alpha \mu_{I}$-closed and $\beta \mu_{I}$-closed) sets in $\left(Y, \sigma_{I}\right)$ is $P \mu_{I}$-closed(resp. $\alpha \mu_{I}$-closed and $\beta \mu_{I}$-closed) in (X, μ_{I}).
Proof: We can prove this theorem as we have done in the theorem 3.2.
Theorem 3.6. If is $P \mu_{I}$-irresolute(resp. $\alpha \mu_{I}$-irresolute and $\beta \mu_{I}$-irresolute) then fis $P \mu_{I}$-continuous(resp. $\alpha \mu_{I}$-cts and $\beta \mu_{I}$-cts).
Proof: We can prove this theorem as we have done in the theorem 3.3.
Remark 3.2. Since every $P \mu_{I}$-open(resp. $\alpha \mu_{I}$-open and $\beta \mu_{I}$-open) set need not be μ_{I}-open, we cannot deduce the reversal concept of the above statement.

Theorem 3.7. Let $\left(X, \mu_{I}\right),\left(Y, \sigma_{I}\right)$ and $\left(Z, \rho_{I}\right)$ be three μ_{I}-topological spaces. For any $P \mu_{I}$-irresolute(resp. $\alpha \mu_{I}$-irresolute and $\beta \mu_{I}$-irresolute) map $\mathbb{k}:\left(X, \mu_{I}\right) \rightarrow$ $\left(Y, \sigma_{I}\right)$ and any $P \mu_{I}$-cts(resp. $\alpha \mu_{I}-c t s$ and $\beta \mu_{I^{-}}$cts) $\hbar:\left(Y, \sigma_{I}\right) \rightarrow\left(Z, \rho_{I}\right)$ the composition $\hbar \circ \mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Z, \rho_{I}\right)$ is $P \mu_{I}-c t s\left(r e s p . \alpha \mu_{I}\right.$-cts and $\left.\beta \mu_{I}-c t s\right)$.
Proof: We can prove this theorem as we have done in the theorem 3.5.
Theorem 3.8. If $\mathfrak{k}:\left(X, \mu_{I}\right) \rightarrow\left(Y, \sigma_{I}\right)$ and $\hbar:\left(Y, \sigma_{I}\right) \rightarrow\left(Z, \rho_{I}\right)$ are both $P \mu_{I^{-}}$ irresolute (resp. $\alpha \mu_{I}$-irresolute and $\beta \mu_{I}$-irresolute) then $\hbar \circ \mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Z, \rho_{I}\right)$ is also $P \mu_{I}$-irresolute(resp. $\alpha \mu_{I}$-irresolute and $\beta \mu_{I}$-irresolute).
Proof: We can prove this theorem as we have done in the theorem 3.6

4 Minimal and Maximal μ_{I}-irresolute

Definition 4.1. Let $\left(X, \mu_{I}\right)$ and $\left(Y, \sigma_{I}\right)$ be the topological spaces. A map $\mathbb{k}:\left(X, \mu_{I}\right)$ $\rightarrow\left(Y, \sigma_{I}\right)$ is called,

1. $m n-\mu_{I}$-irresolute if the inverse image of every $m n-\mu_{I^{-}}$ops in $\left(Y, \sigma_{I}\right)$ is $m n-\mu_{I^{-}}$ open in $\left(X, \mu_{I}\right)$.
2. $m x-\mu_{I}$-irresolute if the inverse image of every $m x-\mu_{I^{-}}$ops in $\left(Y, \sigma_{I}\right)$ is $m x-\mu_{I^{-}}$ open in $\left(X, \mu_{I}\right)$.
Example 4.1. Let $X=\{a, b, c, d\}$ and $Y=\{t, u, v, w\}$ with $\mu_{I}=\{\emptyset,<X, \emptyset,\{b\}>$, $<X, \emptyset,\{d\}>,<X,\{a, d\}, \emptyset>,<X,\{a\}, \emptyset>,\langle X, \emptyset, \emptyset\rangle,<X, \emptyset,\{c, d\}>$, $<X, \emptyset,\{c\}>,<X,\{d\}, \emptyset>,<X,\{d\},\{b\}>\}$ and $\sigma_{I}=\{\emptyset,<X, \emptyset,\{v\}>,<$ $X, \emptyset,\{w\}>,<X, \emptyset,\{u, v\}>,<X, \emptyset, \emptyset>,<X,\{v\}, \emptyset>,<X,\{v\},\{w\}>\}$. Define $\mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Y, \sigma_{I}\right)$ by $\mathbb{k}(a)=t, \mathbb{k}(b)=w, \mathbb{k}(c)=u$ and $\mathbb{k}(d)=v$. Hence \mathbb{k} is a $m n$ - μ_{I}-irresolute map.
Theorem 4.1. Every mn- μ_{I}-irresolute map is mn- μ_{I}-cts.
Proof: Let $\mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Y, \sigma_{I}\right)$ be a mn- $\mu_{I^{-}}$-irresolute map. Let G be any mn- $\mu_{I^{-}}$ ops in $\left(Y, \sigma_{I}\right)$. Since \mathbb{k} is mn- μ_{I}-irresolute, $\mathbb{k}^{-1}(A)$ is a mn- μ_{I}-ops in $\left(X, \mu_{I}\right)$. That is $\mathbb{k}^{-1}(A)$ is a μ_{I}-ops in $\left(X, \mu_{I}\right)$ Hence \mathbb{k} is $m n-\mu_{I}$-cts.

Remark 4.1. The reversal statement of the above theorem is not necessarily true. In example 4.3, \mathbb{k} is $m n-\mu_{I}$-cts but not mn- μ_{I}-irresolute. Since $\mathbb{k}^{-1}\left(; X, w, \emptyset_{i}\right)=$ $; X, b, \emptyset_{G}$ which is not minimal μ_{I}-open in $\left(X, \mu_{I}\right)$.
Theorem 4.2. Every $m x-\mu_{I}$-irresolute map is $m x-\mu_{I}$-cts.
Proof: We can prove this theorem as we have done in the theorem 4.4.
Remark 4.2. The reversal statement of the above theorem is not necessarily true. In example $4.2, \mathbb{k}$ is $m x-\mu_{I}$-cts but not $m x$ - μ_{I}-irresolute. Since $\mathbb{k}^{-1}\left(; X, v, w_{i}=\right.$ i X, d, b_{i} which is not $m x-\mu_{I}$-open in $\left(X, \mu_{I}\right)$.

Remark 4.3. In example 4.2, \mathbb{k} is a mn- μ_{I}-irresolute map but not $m x-\mu_{I}$-irresolute. In example 4.3, \mathbb{k} is a $m x$ - μ_{I}-irresolute map but not mn- μ_{I}-irresolute. That is mn-μ_{I}-irresolute maps and $m x-\mu_{I}$-irresolute maps are independent of each other.
Remark 4.4. Since $m n-\mu_{I}$-ops and $m x-\mu_{I}$-ops are independent of each other,

1. $m n-\mu_{I}$-irresolute and $m x-\mu_{I}$-cts are independent of each other.
2. $m x-\mu_{I}$-irresolute and $m n-\mu_{I}$-cts are independent of each other.

Theorem 4.3. Let $\mathfrak{k}:\left(X, \mu_{I}\right) \rightarrow\left(Y, \sigma_{I}\right)$ be a $m n-\mu_{I}$-irresolute map if and only if the inverse image of each $m x-\mu_{I}$-closed in $\left(Y, \sigma_{I}\right)$ is a $m x$ - μ_{I}-closed in $\left(X, \mu_{I}\right)$.
Proof: We can prove this theorem by using the result, if G is a $m n-\mu_{I}$-ops if and only if G^{c} is a $m x-\mu_{I}$-closed set.
Theorem 4.4. If $\mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Y, \sigma_{I}\right)$ and $\hbar:\left(Y, \sigma_{I}\right) \rightarrow\left(Z, \rho_{I}\right)$ are mn- μ_{I}-irresolute then $\hbar \circ \mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Z, \rho_{I}\right)$ is a mn- μ_{I}-irresolute map.
Proof: Let G be any mn- μ_{I}-ops in $\left(Z, \rho_{I}\right)$. Since \hbar is mn- μ_{I}-irresolute, $\hbar^{-1}(G)$ is a $m n-\mu_{I}$-ops in $\left(Y, \sigma_{I}\right)$. Also since \mathbb{k} is mn- μ_{I}-irresolute, $\mathbb{k}^{-1}\left[\hbar^{-1}(G)\right]=(\hbar \circ \mathbb{k})^{-1}(G)$ is a $m n-\mu_{I}$-ops in $\left(X, \mu_{I}\right)$. Hence $\hbar \circ \mathbb{k}$ is $m n-\mu_{I}$-irresolute.

Theorem 4.5. Let $\mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Y, \sigma_{I}\right)$ be a $m x$ - μ_{I}-irresolute map if and only if the inverse image of each $m n-\mu_{I}$-closed in $\left(Y, \sigma_{I}\right)$ is a mn- μ_{I}-closed in $\left(X, \mu_{I}\right)$.
Proof: We can prove this theorem by using the result, if G is a $m x-\mu_{I}$-ops if and only if G^{c} is a $m n-\mu_{I}-c d s$.

Theorem 4.6. If $\mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Y, \sigma_{I}\right)$ and $\hbar:\left(Y, \sigma_{I}\right) \rightarrow\left(Z, \rho_{I}\right)$ are $m x-\mu_{I}$-irresolute then $\hbar \circ \mathbb{k}:\left(X, \mu_{I}\right) \rightarrow\left(Z, \rho_{I}\right)$ is a $m x-\mu_{I}$-irresolute map.
Proof: Similar to that of theorem 4.11.

5 The Simple Extension of μ_{I}-topology over a μ_{I}-set

In $\left(\mathrm{X}, \mu_{I}\right)$ a subset A of X , we denote by $\mu_{I}(A)$ the simple extension of μ_{I} over A , that is the collection of sets $\mathrm{U} \cup(\mathrm{V} \cap \mathrm{A})$, where $\mathrm{U}, \mathrm{V} \in \mu_{I}$. Note that $\mu_{I}(A)$ is finer than μ_{I}.

Theorem 5.1. If A is μ_{I}-dense subset of the space $\left(X, \mu_{I}\right)$, then A is also μ_{I}-dense in ($X, \mu_{I}(A)$).
Proof: Since $\mu_{I}(A)$ is finer than $\mu_{I}, \mu_{I} \subset \mu_{I}(A)$. This gives $C_{\mu_{I}(A)}(A) \subset C_{\mu_{I}}(A)$. To prove $C_{\mu_{I}}(A) \subset C_{\mu_{I}(A)}(A)$. Let $x \in C_{\mu_{I}}(A)$ and let G be a μ_{I}-ops of x in $\mu_{I}(A)$. Then $x \in G=H \cup(J \cap A)$ where $H, J \in \mu_{I}$. If $x \in H$ then $H \cap A \neq \emptyset$ and $G \cap A$ $\neq \emptyset$. If $x \in J \cap A$ then $J \cap A \neq \emptyset$ and $G \cap A \neq \emptyset$. Hence $x \in C_{\mu_{I}(A)}(A)$. Therefore $C_{\mu_{I}(A)}(A)=C_{\mu_{I}}(A)$.

Theorem 5.2. Let $\left(X, \mu_{I}\right)$ be a μ_{I}-topological space with closed under intersection property. Let A be a μ_{I}-dense subset of the space $\left(X, \mu_{I}\right)$. Then for every μ_{I}-open subset G of the space $\left(X, \mu_{I}(A)\right)$ we have $C_{\mu_{I}}(G)=C_{\mu_{I}(A)}(G)$ and for every $\mu_{I^{-}}$ closed subset F of the space $\left(X, \mu_{I}(A)\right)$ we have $I_{\mu_{I}}(F)=I_{\mu_{I}(A)}(F)$.
Proof: Let $V \in \mu_{I}$. Since $\mu_{I}(A)$ is finer than $\mu_{I}, C_{\mu_{I}(A)}(V) \subset C_{\mu_{I}}(V)$. Now to prove, $C_{\mu_{I}}(V) \subset C_{\mu_{I}(A)}(V)$. Let $x \in C_{\mu_{I}}(V)$ and let G be a μ_{I}-open neighborhood of x in $\left(X, \mu_{I}(A)\right.$). Then $x \in G=H \cup(J \cap A)$ where $H, J \in \mu_{I}$. If $x \in H$ then $H \cap V \neq \emptyset$. Again if $x \in J \cap A \subset J$ then $J \cap V \neq \emptyset$ and hence $J \cap V \cap A \neq \emptyset$, since $J \cap V \in \mu_{I}$ and since A is μ_{I}-dense. Thus also in this case $G \cap V \neq \emptyset$ and hence $x \in C_{\mu_{I}(A)}(V)$. This implies $C_{\mu_{I}}(V) \subset C_{\mu_{I}(A)}(V)$. Henceforth $C_{\mu_{I}}(V)=C_{\mu_{I}(A)}(V)$ for each $V \in \mu_{I}$. Let $G \in \mu_{I}(A)$ then $G=H \cup(J \cap A)$ where $H, J \in \mu_{I}$. Clearly $C_{\mu_{I}}(H)$ $=C_{\mu_{I}(A)}(H)$. Since $J \in \mu_{I}(A)$ and since A is a μ_{I}-dense subset of $\left(X, \mu_{I}(A)\right)$, $C_{\mu_{I}(A)}(J \cap A)=C_{\mu_{I}(A)}(J)=C_{\mu_{I}}(J)=C_{\mu_{I}}(J \cap A)$. Thus $C_{\mu_{I}(A)}(G)=C_{\mu_{I}}(H) \cup$ $C_{\mu_{I}}(J \cap A)=C_{\mu_{I}}(H \cup(J \cap A))=C_{\mu_{I}}(G)$. Proceeding like this we can prove $I_{\mu_{I}}(F)$ $=I_{\mu_{I}(A)}(F)$.

Corolary 5.1. Let $\left(X, \mu_{I}\right)$ be a GITS with closed under intersection property. If A is a μ_{I}-dense subset of the space $\left(X, \mu_{I}\right)$. Then for every $V \in \mu_{I}(A)$ we have $I_{\mu_{I}}\left(C_{\mu_{I}}(V)\right)=I_{\mu_{I}(A)}\left(C_{\mu_{I}(A)}(V)\right)$. Hence the set V is a regular μ_{I}-open subset of
$\left(X, \mu_{I}\right)$ if and only if it is regular μ_{I}-open in $\left(X, \mu_{I}(A)\right)$.
Proof: From the previous theorem we have $I_{\mu_{I}}\left(C_{\mu_{I}}(V)\right)=I_{\mu_{I}}\left(C_{\mu_{I}(A)}(V)\right)=$ $I_{\mu_{I}(A)}\left(C_{\mu_{I}(A)}(V)\right)$.

6 The characterization of extension on μ_{I}-topology

Remark 6.1. If $\mathbb{k}:\left(X, \mu_{I}(A)\right) \rightarrow\left(Y, \sigma_{I}\right)$ is μ_{I}-cts. Then the restriction of \mathbb{k} on $\left(X, \mu_{I}\right)\left[\right.$ Shortly, $\left.\mathbb{k}_{\mid}\left(X, \mu_{I}\right)\right]$ need not be μ_{I}-cts.

Example 6.1. Let $X=\{a, b, c\}$ and $Y=\{u, v, w\}$ with $\mu_{I}=\{\emptyset,<X, \emptyset,\{a\}>$, $<X, \emptyset,\{b\}>,<X, \emptyset, \emptyset>,<X, \emptyset,\{a, b\}>,<X,\{a, b\}, \emptyset>\}, \mu_{I}(A)=\{\emptyset$, $<X, \emptyset,\{a\}>,<X, \emptyset,\{b\}>,<X, \emptyset, \emptyset>,<X, \emptyset,\{a, b\}>,<X,\{a, b\}, \emptyset>$, $<X,\{b\}, \emptyset>\}$ and $\sigma_{I}=\{\emptyset,<X, \emptyset,\{u\}>,<X, \emptyset,\{v\}>,<X, \emptyset, \emptyset>$, $<X,\{v\}, \emptyset>\}$. Define $\mathbb{k}:\left(X, \mu_{I}(A)\right) \rightarrow\left(Y, \sigma_{I}\right)$ by $\mathbb{k}(a)=u, \mathbb{k}(b)=v$ and $\mathbb{k}(c)=$ w. Hence \mathbb{k} is $\mu_{I}(A)$-cts. But $\mathbb{k}_{\mid}\left(X, \mu_{I}(A)\right)$ is not μ_{I}-cts, since $\left.\mathbb{k}^{-1}(<X,\{v\}, \emptyset\rangle\right)$ $=<X,\{b\}, \emptyset>\notin \mu_{I}$.

Remark 6.2. Since $\mu_{I}(A)$ is finer than μ_{I}, some elements of $\mu_{I}(A)$ does not belongs to μ_{I} and the elements of $\mu_{I}(A)$ which is not in μ_{I} need not be mn- μ_{I}-open in $\left(X, \mu_{I}\right)$. For, $U \subset U \cup(V \cap A) \notin \mu_{I}$ and $U \in \mu_{I}(A), U \cup(V \cap A)$ should not be $m n-\mu_{I}$-open in $\left(X, \mu_{I}(A)\right)$. By the previous example, we may conclude that every $m x-\mu_{I}$-ops in $\left(X, \mu_{I}(A)\right)$ need not be μ_{I}-open in $\left(X, \mu_{I}\right)$.

Remark 6.3. A function \mathbb{k} is mn- $\mu_{I}(A)$-cts in $\left(X, \mu_{I}(A)\right)$ then $\mathbb{k}_{\mid}\left(X, \mu_{I}\right)$ is mn- $\mu_{I^{-}}$ cts. In example 6.2, A function f is $m x-\mu_{I}(A)$-cts in $\left(X, \mu_{I}(A)\right)$ then $f_{\mid}\left(X, \mu_{I}\right)$ need not be $m x-\mu_{I}$-cts.

7 Conclusions

In example 4.2, k is a $\mathrm{mn}-\mu_{I}$-irresolute map but not $\mathrm{mx}-\mu_{I}$-irresolute and in example 4.3, k is a $\mathrm{mx}-\mu_{I}$-irresolute map but not $\mathrm{mn}-\mu_{I}$-irresolute. This examples evinces $\mathrm{mn}-\mu_{I}$-irresolute maps and $\mathrm{mx}-\mu_{I}$-irresolute maps are independent of each other. Remark 6.1 propounded the restriction of the function K on (X, μ_{I}) need not be a μ_{I}-continuous function. In remark 6.3, we discussed the connections between minimal μ_{I}-open sets in (X, μ_{I}) and in ($\mathrm{X}, \mu_{I}(A)$). We hope that we improved some results concerning $\mu_{I}(A)$-topological spaces. We will extend our research in kernel and contra continuous of μ_{I}-topological spaces.

Acknowledgements

My completion of this paper could not have been accomplished without the support of my guide and I cannot express enough thanks to my guide for the continued support and encouragement

References

[1] A.Csaszar, Generalized topology, generalized continuity, Acta Mathematics, Hungar, 96(2002).
[2] Dogan Coker, A note on intuitionistic sets and intuitionistic points, Tr.J. of Mathematics, 20(1996), 343-351.
[3] J.H.Kim, P.K.Lim, J.G.Lee, K.Hur, Intuitionistic topological spaces, Annals of Fuzzy Mathematics and Informations, 14 December 2017.
[4] Julian Dontchev, On Submaximal Spaces, Tamking Journal of Mathematics, Volume 26, Number 3, Autumn 1995.
[5] Karthika M, Parimala M, Jafari S, Smarandache F, Alshumrani M, Ozel C, and Udhayakumar R (2019), "Neutrosophic complex ?? connectedness in neutrosophic complex topological spaces", Neutrosophic Sets and Systems, 29, 158-164.
[6] Mathan Kumar GK and G.Hari Siva Annam, Minimal and Maximal μ_{I}-Open Sets In GITS, Advances and Applications in Mathematical Sciences, Mili Publications, Volume 21, Issue 7, May 2022, Pages 4097-4109.
[7] M.Parimala, D.Arivuoli and R. Udhayakumar, nI α g-closed sets and Normality via nI α g-closed sets in Nano Ideal Topological Spaces, Punjab University Journal of Mathematics, Vol. 52(4)(2020) pp. 41-51.
[8] Mani, P, Muthusamy K, Jafari S, Smarandache F and Ramalingam U. Decision-Making via Neutrosophic Support Soft Topological Spaces. Symmetry 2018, 10, 217. https://doi.org/10.3390/sym10060217.
[9] Raghavan Asokan, Ochanan Nethaji and Ilangovan Rajasekaran, New Generalized Closed sets in Ideal Nano Topological Spaces, Bulletin of The International Mathematical Virtual Institute, Vol. 9(2019), 535-542, www.imvibl.org /JOURNALS / BULLETIN, http://dx.doi.org/10.7251/BIMVI1903535A
[10] S.S.Benchalli, Basavaraj M. Ittanagi and R.S.Wali, On Minimal Open Sets and Maps in Topological Spaces, J. Comp. and Math. Sci. Vol. 2 (2), 208-220 (2011).

[^0]: *Research Scholar [19212102091012], PG and Research Department of Mathematics, Kamaraj College, Thoothukudi-628003, Tamil Nadu, India. mathangk96@ gmail.com. Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012, Tamil Nadu, India.
 ${ }^{\dagger}$ Assistant Professor, PG and Research Department of Mathematics, Kamaraj College, Thoothukudi-628003, Tamil Nadu, India. hsannam84@gmail.com. Affiliated to Manonmaniam Sundaranar University, Tirunelveli-627012, Tamil Nadu, India.
 ${ }^{1}$ Received on November 1st, 2022. Accepted on December 29th, 2022. Published on December 30th, 2022. doi: $10.23755 / \mathrm{rm} . v 41 \mathrm{i} 0.949$. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

