Bi-amalgamated algebra with (n, p)-weakly clean like properties

Aruldoss Antonysamy*
Selvaraj Chelliah ${ }^{\dagger}$

Abstract

Let $f: A \longrightarrow B$ and $g: A \longrightarrow C$ be two ring homomorphisms and let K and K^{\prime} be two ideals of B and C, respectively such that $f^{-1}(K)=g^{-1}\left(K^{\prime}\right)$. In this paper, we give a characterization for the bi-amalgamation of A with (B, C) along $\left(K, K^{\prime}\right)$ with respect to (f, g) (denoted by $A \bowtie^{f, g}\left(K, K^{\prime}\right)$) to be a (n, p)-weakly clean ring. Keywords: (n, p)-clean ring ; (n, p) - weakly clean ring; bi-amalgamation algebra along ideals. 2020 AMS subject classifications: $16 \mathrm{~N} 40,16 \mathrm{U} 40,16 \mathrm{~S} 99,16 \mathrm{U} 60 .{ }^{1}$

[^0]
A. Aruldoss and C. Selvaraj

1 Introduction

Throughout this paper all rings are commutative with identity elements. Let A and B be two rings with unity, let K be an ideal of B and let $f: A \rightarrow B$ be a ring homomorphism. In D'Anna et al. [2009], the authors introduced and studied the new ring structure the following subring of $A \times B$:

$$
A \bowtie^{f} K:=\{(a, f(a)+k) \mid a \in A, k \in K\}
$$

called the amalgamation of A with B along K with respect to f. This new ring structure construction is a generalization of the amalgamated duplication of a ring along an ideal. The amalgamated duplication of a ring along an ideal was introduced and studied in (D'Anna [2006], D'Anna and Fontana [2007]). In [D'Anna et al., 2009, Section 4], the authors studied the amalgamation can be in the frame of pullback constructions and also the basic properties of this construction (e.g., characterizations for $A \bowtie^{f} K$ to be a Noetherian ring, an integral domain, a reduced ring) and they characterized those distinguished pullbacks that can be expressed as an amalgamation.

Let $\alpha: A \longrightarrow C, \beta: A \longrightarrow C$ and $f: A \longrightarrow B$ be ring homomorphisms. In D'Anna et al. [2009], the authors studied amalgamated algebras within the frame of pullback $\alpha \times \beta$ such that $\alpha=\beta \circ f$ [D'Anna et al., 2009, Proposition 4.2 and 4.4]. In this motivation, the authors created the new constructions, called bi-amalgamated algebras which arise as pullbacks $\alpha \times \beta$ such that the following diagram of ring homomorphims

is commutative with $\alpha \circ \pi_{B}(\alpha \times \beta)=\alpha \circ f(A)$, where π_{B} denotes the canonical projection of $B \times C$ over B. Namely, let $f: A \longrightarrow B$ and $g: A \longrightarrow C$ be two ring homomorphisms and let K and K^{\prime} be two ideals of B and C, respectively, such that $f^{-1}(K)=g^{-1}\left(K^{\prime}\right)$. The bi-amalgamation of A with (B, C) along $\left(K, K^{\prime}\right)$ with respect to (f, g) is the subring of $B \times C$ given by

$$
A \bowtie^{f, g}\left(K, K^{\prime}\right):=\left\{\left(f(a)+k, g(a)+k^{\prime}\right) \mid a \in A,\left(k, k^{\prime}\right) \in K \times K^{\prime}\right\}
$$

Following Kabbaj et al. [2013], the above definition was introduced by and studied by Kabbaj, Louartiti and Tamekkante.

Following Nicholson [1977], an element a in a ring A is called a clean if a is a sum of a unit and an idempotent in A. A ring is clean if all its elements are clean.

Clean rings were initially developed by Nicholson [1977], as a natural class of rings which have the exchange property.

This paper aims at studying the transfer of the notion of n-clean rings, (n, p) weakly clean rings to bi-amalgamation of algebra along ideals.

We denote by $U(A)$, set of all unit elements of A.

$2(n, p)$-clean ring

We start with definition of (n, p)-clean rings.
Definition 2.1. (Chen and Qua [2014]) An element $a \in A$ is said to be (n, p)clean if $a=u_{1}+\ldots+u_{n}+x$ for some unit $u_{i} \in A(i=1, \ldots, n)$ and $x^{p}=x$, where x is called p-potent element. The ring A is said to be (n, p)-clean if all of its elements are (n, p)-clean.
Remark 2.1. Every clean rings are (1,2)-clean rings and n-clean rings are ($n, 2$)clean rings.

Following Chhiti [2018], the above definition is studied the authors in 2018. Now, we start with following example of (2,2)-clean ring.
Example 2.1. Let $A:=\mathbb{Z}_{4}, B:=\mathbb{Z}_{4} \times \mathbb{Z}_{4}$ and $C:=\mathbb{Z}_{2}$ and let $J:=0 \times \mathbb{Z}_{4}$ and $J^{\prime}:=\mathbb{Z}_{2}$ are ideals of B and C respectively. Consider the map $f: A \longrightarrow$ B is defined by $f(a)=(a, 0)$ for all $a \in A$ and the map $g: A \longrightarrow C$ is defined by $g(0)=g(2)=0$ and $g(1)=g(3)=1$. Hence, $A \bowtie^{f, g}\left(J, J^{\prime}\right)=$ $\{((0,0), 0),((0,1), 0),((0,2), 0),((0,3), 0),((2,0), 0),((2,1), 0)$,
$((2,2), 0),((2,3), 0),((1,0), 1),((1,1), 1),((1,2), 1),((1,3), 1),((3,0), 1)$, $((3,1), 1),((3,2), 1),((3,3), 1)\}$ is a 2 -clean ring. Therefore, by the remark 2.1 $A \bowtie^{f, g}\left(J, J^{\prime}\right)$ is $(2,2)$-clean ring.
Proposition 2.1. The class of (n, p)-clean ring is closed under homomorphic images.

Proof. The proof is straightforward.
Proposition 2.2. If $A \bowtie^{f, g}\left(K, K^{\prime}\right)$ is a (n, p)-clean ring then $f(A)+K$ and $g(A)+K^{\prime}$ are (n, p-clean rings.

Proof. Clearly, by Proposition $2.1(n, p)$-clean ring is a (n, p)-clean ring. Thus, in view of Kabbaj et al. [2013] [Proposition 4.1], we have the following isomorphism of rings $\frac{A \bowtie^{f, g}\left(K, K^{\prime}\right)}{0 \times K^{\prime}} \cong f(A)+K$ and $\frac{A \bowtie^{f, g}\left(K, K^{\prime}\right)}{K \times 0} \cong g(A)+K^{\prime}$. Hence, $f(A)+K$ and $g(A)+K^{\prime}$ are (n, p)-clean rings. \square

Definition 2.2. A ring is called uniquely (n, p)-clean ring if each element in A can be written as unique way.
Theorem 2.1. Assume that A is (n, p)-clean ring and $\frac{f(A)+K}{K}$ and $\frac{g(A)+K^{\prime}}{K^{\prime}}$ are uniquely n-clean rings. Then $A \bowtie^{f, g}\left(K, K^{\prime}\right)$ is (n, p)-clean ring if and only if $f(A)+K$ and $g(A)+K^{\prime}$ are (n, p)-clean rings.

Proof. If $A \bowtie^{f, g}\left(K, K^{\prime}\right)$ is a (n, p)-clean ring, then so $f(A)+K$ and $g(A)+K^{\prime}$ by Proposition 2.1. Conversely, assume that $f(A)+K$ and $g(A)+K^{\prime}$ are (n, p)-clean rings. Since A is a (n, p)-clean ring, we can write $a=u_{1}+\ldots+u_{n}+x$ for some unit $u_{i} \in A(i=1, \ldots, n)$ and $x^{p}=x$. On the other hand, since $f(A)+K$ is a (n, p)-clean ring, $f(a)+k=\left(f\left(x_{1}\right)+k_{1}\right)+\ldots+\left(f\left(x_{n}\right)+k_{n}\right)+f(p)+k^{*}$ with $f\left(x_{i}\right)+k_{i}(i=1, \ldots, n)$ and $f(y)+k^{*}$ are respectively units and $\left(f(p)+k^{*}\right)^{p}=$ $f(p)+k^{*}$ element of $f(A)+K$. It is clear that $\overline{f\left(x_{1}\right)}=\overline{f\left(x_{1}\right)+k_{1}}$ (resp., $\left.\overline{f\left(u_{1}\right)}\right), \ldots, \overline{f\left(x_{n}\right)}=\overline{f\left(x_{n}\right)+k_{n}}$ (resp., $\overline{f\left(u_{n}\right)}$) and $\overline{f(p)}=\overline{f(p)+k^{*}}$ (resp., $\overline{f(x)}$), are respectively units and an p-potent element of $\frac{f(A)+K}{K}$, and we have $\overline{f(a)}=$ $\overline{f\left(u_{1}\right)}+\ldots+\overline{f\left(u_{n}\right)}+\overline{f(p)}=\overline{f\left(x_{1}\right)}+\ldots+\overline{f\left(x_{n}\right)}+\overline{f(x)}$. Thus, $\overline{f\left(u_{1}\right)}=\overline{f\left(x_{1}\right)}, \ldots$, $\overline{f\left(u_{n}\right)}=\overline{f\left(x_{n}\right)}$ and $\overline{f(p)}=\overline{f(x)}$ since $\frac{f(A)+K}{K}$ is an uniquely (n, p)-clean ring. Consider $k_{1}^{*}, \ldots, k_{n}^{*}, k_{l}^{*} \in K$ such that $f\left(x_{1}\right)=f\left(u_{1}\right)+k_{1}^{*}, \ldots, f\left(x_{n}\right)=f\left(u_{n}\right)+k_{n}^{*}$ and $f(x)=f(p)+k_{l}^{*}$ and also since $g(A)+K^{\prime}$ is a (n, p)-clean ring, $g(a)+k^{\prime}=$ $\left(g\left(x_{1}^{\prime}\right)+k_{1}^{\prime}\right)+\ldots+\left(g\left(x_{n}^{\prime}\right)+k_{n}^{\prime}\right)+g\left(p^{\prime}\right)+k^{\prime *}$ with $g\left(x_{i}^{\prime}\right)+k_{i}^{\prime}(i=1, \ldots, n)$ and $g\left(p^{\prime}\right)+k^{* *}$ are respectively units and p-potent element of $g(A)+K^{\prime}$. It is clear that $\overline{g\left(x_{1}^{\prime}\right)}=\overline{g\left(x_{1}^{\prime}\right)+k_{1}^{\prime}}\left(\right.$ resp., $\left.\overline{g\left(u_{1}\right)}\right), \ldots, \overline{g\left(x_{n}^{\prime}\right)}=\overline{g\left(x_{n}^{\prime}\right)+k_{n}^{\prime}}\left(\right.$ resp., $\left.\overline{g\left(u_{n}\right)}\right)$ and $\overline{g\left(p^{\prime}\right)}=\overline{g\left(p^{\prime}\right)+k^{\prime *}}$ (resp., $\left.\overline{g(x)}\right)$, are respectively units and an p-potent element of $\frac{g(A)+K^{\prime}}{K^{\prime}}$, and we have $\overline{g(a)}=\overline{g\left(u_{1}\right)}+\ldots+\overline{g\left(u_{n}\right)}+\overline{g(p)}=\overline{g\left(x_{1}^{\prime}\right)}+\ldots+$ $\overline{g\left(x_{n}^{\prime}\right)}+\overline{g\left(p^{\prime}\right)}$. Thus, $\overline{g\left(u_{1}\right)}=\overline{g\left(x_{1}^{\prime}\right)}, \ldots, \overline{g\left(u_{n}\right)}=\overline{g\left(x_{n}^{\prime}\right)}$ and $\overline{g(x)}=\overline{g\left(p^{\prime}\right)}$ since $\frac{g(A)+K^{\prime}}{K^{\prime}}$ is an uniquely (n, p)-clean ring. Consider $k_{1}^{\prime *}, \ldots, k_{n}^{\prime *}, k_{l}^{\prime *} \in K$ such that $g\left(x_{1}^{\prime}\right)=g\left(u_{1}\right)+k_{1}^{\prime *}, \ldots, g\left(x_{n}^{\prime}\right)=g\left(u_{n}\right)+k_{n}^{* *}$ and $g\left(y^{\prime}\right)=g(p)+k_{l}^{* *}$. We have $\left(f(a)+k, g(a)+k^{\prime}\right)=\left\{\left(f\left(u_{1}\right)+k_{1}^{*}+k_{1}\right)+\ldots+\left(f\left(u_{n}\right)+k_{n}^{*}+k_{n}\right)+\left(f(p)+k_{l}^{*}+\right.\right.$ $\left.\left.k^{*}\right),\left(g\left(u_{1}\right)+k_{1}^{\prime *}+k_{1}^{\prime}\right)+\ldots+\left(g\left(u_{n}\right)+k_{n}^{\prime *}+k_{n}^{\prime}\right)+\left(g\left(p^{\prime}\right)+k_{l}^{* *}+k^{\prime *}\right)\right\}=\left(f\left(u_{1}\right)+k_{1}^{*}+\right.$ $\left.k_{1}, g\left(u_{1}\right)+k_{1}^{\prime *}+k_{1}^{\prime}\right)+\ldots+\left(f\left(u_{n}\right)+k_{n}^{*}+k_{n}, g\left(u_{n}\right)+k_{n}^{* *}+k_{n}^{\prime}\right)+\left(f(p)+k_{l}^{*}+k^{*}, g\left(p^{\prime}\right)+\right.$ $\left.k_{l}^{* *}+k^{\prime *}\right)$. It is clear that $\left(f(p)+k_{l}^{*}+k^{*}, g\left(p^{\prime}\right)+k_{l}^{\prime *}+k^{\prime *}\right)$ is an p-potent in $A \bowtie^{f, g}$ $\left(K, K^{\prime}\right)$. Hence, we have only to prove that $\left(f\left(u_{1}\right)+k_{1}^{*}+k_{1}, g\left(u_{1}\right)+k_{1}^{* *}+k_{1}^{\prime}\right)$ is invertible in $A \bowtie^{f, g}\left(K, K^{\prime}\right)$. Since $f\left(u_{1}\right)+k_{1}^{*}+k_{1}$ is invertible in $f(A)+K$, there exists an element $f(\beta)+k_{0}$ such that $\left(f\left(u_{1}\right)+k_{1}^{*}+k_{1}\right)\left(f(\beta)+k_{0}\right)=1$. Thus $\overline{f\left(u_{1}\right) f(\beta)}=\overline{1}$. Then $\overline{f(\beta)}=\overline{f\left(u_{1}^{-1}\right)}$. So there exists $k_{0}^{*} \in K$ such that $f(\beta)=f\left(u_{1}^{-1}\right)+k_{0}^{*}$. Similarly, $g\left(u_{1}\right)+k_{1}^{\prime *}+k_{1}^{\prime}$ is invertible in $g(A)+K^{\prime}$. Hence, $\left(f\left(u_{1}\right)+k_{1}^{*}+k_{1}, g\left(u_{1}\right)+k_{1}^{\prime *}+k_{1}^{\prime}\right)\left(f\left(u_{1}^{-1}\right)+k_{0}^{*}+k_{0}, g\left(u_{1}^{-1}\right)+k_{0}^{* *}+k_{0}^{\prime}\right)=$
$\left(f\left(u_{1}\right)+k_{1}^{*}+k_{1}, g\left(u_{1}\right)+k_{1}^{* *}+k_{1}^{\prime}\right)\left(f(\beta)+k_{0}, g(\gamma)+k_{0}^{\prime}\right)=(1,1)$. Therefore, $\left(f\left(u_{1}\right)+k_{1}^{*}+k_{1}, g\left(u_{1}\right)+k_{1}^{* *}+k_{1}^{\prime}\right)$ is invertible in $A \bowtie^{f, g}\left(K, K^{\prime}\right)$. Similarly, each term are invertible. This completes the proof.

Proposition 2.3. Let $f: A \rightarrow B$ and $g: A \rightarrow C$ be two surjective ring homomorphisms, let K and K^{\prime} be two ideals of B and C respectively such that $f^{-1}(K)=g^{-1}\left(K^{\prime}\right)=I_{0}$ and let A is a (n, p)-clean ring and A / I_{0} is an uniquely (n, p)-clean ring. Then $A \bowtie^{f, g}\left(K, K^{\prime}\right)$ is a (n, p)-clean ring.

Proof. It is clear that B and C are (n, p)-clean rings. So, since $f(A)+K=B$ and $g(A)+K^{\prime}=C$, we conclude that $A \bowtie^{f, g}\left(K, K^{\prime}\right)$ is a (n, p)-clean ring by Theorem 2.1.

Let A be a commutative ring with identity and let M be a unitary A-module. The idealization of M in A (or trivial extension of A by M) is the commutative ring $A \propto M=\{(a, m) \mid a \in R, m \in M\}$ under the usual addition and the multiplication defined as $\left(a_{1} m_{1}\right)\left(a_{2} m_{2}\right)=\left(a_{1} a_{2}, a_{1} m_{2}+a_{2} m_{1}\right)$ for all $\left(a_{1}, m_{1}\right),\left(a_{2}, m_{2}\right) \in$ $A \propto M$.

Theorem 2.2. Consider n and p two positive integers $(p \geq 2)$. Let $f: A \longrightarrow C$, $g: A \longrightarrow C$ be two ring homomorphisms. Assume that A is (n, p)-clean ring. Let K be an ideal of B such that $f(u)+k$ is invertible (in B) for each $u \in U(A)$ and $k \in K$ and K^{\prime} be an ideal of C such that $g(u)+k^{\prime}$ is invertible (in C) for each $u \in U(A)$ and $k^{\prime} \in K^{\prime}$. Then $A \bowtie^{f, g}\left(K, K^{\prime}\right)$ is a (n, p)-clean ring if and only if $f(A)+K$ and $g(A)+K^{\prime}$ are (n,p)-clean ring.

Proof. In light of Proposition 2.1, homomorphic image of (n, p)-clean ring is (n, p)-clean ring. Thus, in view of Kabbaj et al. [2013] [Proposition 4.1], we have the following isomorphism of rings $\frac{A \bowtie^{f, g}\left(K, K^{\prime}\right)}{0 \times K^{\prime}} \cong f(A)+K$ and $\frac{A \bowtie^{f, g}\left(K, K^{\prime}\right)}{K \times 0} \cong$ $g(A)+K^{\prime}$. Hence, $f(A)+K$ and $g(A)+K^{\prime}$ are ($\left.n, p\right)$-rings. Conversely, we assume that A is (n, p)-clean and K be an ideal of B such that $f(u)+k$ is invertible (in B) and K^{\prime} be an ideal of C such that $g(u)+k^{\prime}$ is invertible (in C). Then there exist $v_{1} \in B$ such that $\left(f\left(u_{1}+k\right) v_{1}\right)=1$ and there exist $v_{2} \in C$ such that $\left(g\left(u_{1}+k^{\prime}\right) v_{2}\right)=1$. Hence, $\left(f\left(u_{1}\right)+k\right)\left(f\left(u_{1}^{-1}\right)-v_{1} f\left(u_{1}^{-1}\right) k\right)=f\left(u_{1}\right) f\left(u_{1}^{-1}\right)+$ $\left.k f\left(u_{1}^{-1}\right)-\left(f\left(u_{1}\right)+k\right) v_{1} f\left(u_{1}^{-1}\right) k\right)=1+k f\left(u_{1}^{-1}\right)-f\left(u_{1}^{-1}\right) k=1$ and $\left(g\left(u_{1}\right)+\right.$ $\left.\left.k^{\prime}\right)\left(g\left(u_{1}^{-1}\right)-v_{2} g\left(u_{1}^{-1}\right) k^{\prime}\right)=g\left(u_{1}\right) g\left(u_{1}^{-1}\right)+k^{\prime} g\left(u_{1}^{-1}\right)-\left(g\left(u_{1}\right)+k^{\prime}\right) v_{2} g\left(u_{1}^{-1}\right) k^{\prime}\right)=$ $1+k^{\prime} g\left(u_{1}^{-1}\right)-g\left(u_{1}^{-1}\right) k^{\prime}=1$. Thus, $\left(f\left(u_{1}\right)+k, g\left(u_{1}\right)+k^{\prime}\right)$ is invertible in $A \bowtie^{f, g}\left(K, K^{\prime}\right)$. Hence, $\left(f(a)+k, g(a)+k^{\prime}\right)=\left(f\left(u_{1}+u_{2}+\ldots+u_{n}+x\right)+\right.$ $\left.k, g\left(u_{1}+u_{2}+\ldots+u_{n}+x\right)+k^{\prime}\right)=\left(f\left(u_{1}\right)+k, g\left(u_{1}\right)+k^{\prime}\right)+\left(f\left(u_{2}\right), g\left(u_{2}\right)\right)+$ $\ldots+\left(f\left(u_{n}\right), g\left(u_{n}\right)\right)+(f(x), g(x))$, where $\left(f\left(u_{1}\right)+k, g\left(u_{1}\right)+k^{\prime}\right) \in U(A \propto$ $M),\left(f\left(u_{i}\right), g\left(u_{i}\right) \in U(A \propto M)(i=2,3, \ldots, n)\right.$ and $\left(f(x), g(x)^{p}=(f(x), g(x))\right.$. Consequently, $A \bowtie^{f, g}\left(K, K^{\prime}\right)$ is (n, p)-clean ring.

A. Aruldoss and C. Selvaraj

$3(n, p)$-weakly clean ring

Now we introduce the new class of ring.
Definition 3.1. A ring A is called (n, p)-weakly clean ring if $a=u_{1}+\ldots+u_{n}+x$ or $a=u_{1}+\ldots+u_{n}-x$ for some unit $u_{i} \in A(i=1, \ldots, n)$ and $x^{p}=x$, where x is p-potent element.

If the above representation is unique, we say that A is uniquely (n, p)-weakly clean ring.

Note that (n, p)-clean ring is weakly (n, p)-clean ring. In this section we study the tranfer of (n, p)-weakly clean ring property to the ring $A \bowtie^{f, g}\left(K, K^{\prime}\right)$ is defined above. We establishes necessary and sufficient conditions for $A \bowtie^{f, g}$ (K, K^{\prime}) to be (n, p)-weakly clean.

Proposition 3.1. The class of (n, p)-weakly clean is closed under homomorphic images.

Proof. The proof is straightforward.
Proposition 3.2. A ring A is called uniquely (n, p)-weakly clean ring if the representation of a (n, p)-weakly clean element in a unique way.

Our first main result gives a necessary and sufficient conditions for $A \bowtie^{f, g}$ (K, K^{\prime}) to be (n, p)-weakly clean ring.

Theorem 3.1. Let $f: A \rightarrow B$ and $g: A \rightarrow C$ be two ring homomorphisms, let K and K^{\prime} be two ideals of B and C respectively such that $f^{-1}(K)=g^{-1}\left(K^{\prime}\right)=I_{0}$. Assume that the following conditions hold:
a) A is a (n, p)-weakly clean ring and A / I_{0} is an uniquely (n, p)-weakly clean ring.
b) $f(A)+K$ and $g(A)+K^{\prime}$ are (n, p)-weakly clean rings and atmost one of them is not a (n, p)-clean ring. Then $A \bowtie^{f, g}\left(K, K^{\prime}\right)$ is a (n, p)-weakly clean ring.

Proof. Without loss of generality, we assume that $f(A)+K$ is a n-weakly clean ring and $g(A)+K^{\prime}$ is a n-clean ring. Let $a \in A$. Then a can be written as $a=u_{1}+\ldots+u_{n}+x$ or $a=u_{1}+\ldots+u_{n}-x$ for some $u_{i} \in A(i=1, \ldots, n)$ and p-potent $x \in A$. Since A is (n, p)-weakly clean ring and since $f(A)+K$ is a (n, p)-weakly clean ring, $f(a)+k=\left(f\left(x_{1}\right)+k_{1}\right)+\ldots+\left(f\left(x_{n}\right)+k_{n}\right)+\left(f(p)+k^{*}\right)$ or $f(a)+k=\left(f\left(x_{1}\right)+k_{1}\right)+\ldots+\left(f\left(x_{n}\right)+k_{n}\right)-\left(f(p)+k^{*}\right)$ with $f\left(x_{i}\right)+k_{i}(i=$ $1, \ldots, n)$ and $f(p)+k^{*}$ are respectively units and p-potent element of $f(A)+K$. Therefore, $f(a)=f\left(u_{1}\right)+\ldots+f\left(u_{n}\right)+f(x)$ or $f(a)=f\left(u_{1}\right)+\ldots+f\left(u_{n}\right)-$ $f(x)$. Then, in $f(A)+K / K$ we have: $\overline{f(a)}=\overline{f\left(u_{1}\right)}+\ldots+\overline{f\left(u_{n}\right)}+\overline{f(x)}$
or $\overline{f(a)}=\overline{f\left(u_{1}\right)}+\ldots+\overline{f\left(u_{n}\right)}-\overline{f(x)}$. It is clear that $\overline{f\left(x_{1}\right)}=\overline{f\left(x_{1}\right)+k_{1}}$ (resp., $\left.\overline{f\left(u_{1}\right)}\right), \ldots, \overline{f\left(x_{n}\right)}=\overline{f\left(x_{n}\right)+k_{n}}$ (resp., $\overline{f\left(u_{n}\right)}$) and $\overline{f(p)}=\overline{f(p)+k^{*}}$ (resp., $\overline{f(x)}$), are respectively units and p-potent element of $\frac{f(A)+K}{K}$, and we have $\overline{f(a)}=\overline{f\left(u_{1}\right)}+\ldots+\overline{f\left(u_{n}\right)}+\overline{f(x)}=\overline{f\left(x_{1}\right)}+\ldots+\overline{f\left(x_{n}\right)}+\overline{f(p)}$ or $\overline{f(a)}=$ $\overline{f\left(u_{1}\right)}+\ldots+\overline{f\left(u_{n}\right)}-\overline{f(x)}=\overline{f\left(x_{1}\right)}+\ldots+\overline{f\left(x_{n}\right)}-\overline{f(p)}$. Thus, $\overline{f\left(u_{1}\right)}=\overline{f\left(x_{1}\right)}, \ldots$, $\overline{f\left(u_{n}\right)}=\overline{f\left(x_{n}\right)}$ and $\overline{f(x)}=\overline{f(p)}$ since $\frac{f(A)+K}{K}$ is an uniquely (n, p)-weakly clean ring. Consider $k_{1}^{*}, \ldots, k_{n}^{*}, k_{l}^{*} \in K$ such that $f\left(x_{1}\right)=f\left(u_{1}\right)+k_{1}^{*}, \ldots, f\left(x_{n}\right)=$ $f\left(u_{n}\right)+k_{n}^{*}$ and $f(p)=f(x)+k_{l}^{*}$. Hence, $f(a)+j=\left(f\left(u_{1}\right)+k_{1}^{*}+k_{1}\right)+\ldots+$ $\left(f\left(u_{n}\right)+k_{n}^{*}+k_{n}\right)+\left(f(x)+k_{l}^{*}+k^{*}\right)$ or $f(a)+j=\left(f\left(u_{1}\right)+k_{1}^{*}+k_{1}\right)+\ldots+\left(f\left(u_{n}\right)+\right.$ $\left.k_{n}^{*}+k_{n}\right)-\left(f(x)+k_{l}^{*}+k^{*}\right)$. Thus, using the same technique of the previous part $g(a)+k^{\prime}=\left(g\left(u_{1}\right)+k_{1}^{\prime *}+k_{1}^{\prime}\right)+\ldots+\left(g\left(u_{n}\right)+k_{n}^{\prime *}+k_{n}^{\prime}\right)+\left(g(p)+k_{l}^{\prime *}+k^{\prime *}\right)$ or $g(a)+k^{\prime}=\left(g\left(u_{1}\right)+k_{1}^{\prime *}+k_{1}^{\prime}\right)+\ldots+\left(g\left(u_{n}\right)+k_{n}^{\prime *}+k_{n}^{\prime}\right)-\left(g(p)+k_{l}^{\prime *}+k^{\prime *}\right)$ since $g(A)+K^{\prime} / K^{\prime} \cong A / I_{0}$ is an uniquely n-weakly clean ring. This implies that $\left(f(a)+k, g(a)+k^{\prime}\right)=\left\{\left(f\left(u_{1}\right)+k_{1}^{*}+k_{1}\right)+\ldots+\left(f\left(u_{n}\right)+k_{n}^{*}+k_{n}\right)+\left(f(x)+k_{l}^{*}+\right.\right.$ $\left.\left.k^{*}\right),\left(g\left(u_{1}\right)+k_{1}^{* *}+k_{1}^{\prime}\right)+\ldots+\left(g\left(u_{n}\right)+k_{n}^{* *}+k_{n}^{\prime}\right)+\left(g(x)+k_{l}^{* *}+k^{* *}\right)\right\}=\left(f\left(u_{1}\right)+k_{1}^{*}+\right.$ $\left.k_{1}, g\left(u_{1}\right)+k_{1}^{\prime *}+k_{1}^{\prime}\right)+\ldots+\left(f\left(u_{n}\right)+k_{n}^{*}+k_{n}, g\left(u_{n}\right)+k_{n}^{\prime *}+k_{n}^{\prime}\right)+\left(f(x)+k_{l}^{*}+k^{*}, g(x)+\right.$ $\left.k_{l}^{* *}+k^{* *}\right)$. Now, the same argument follows from Theorem 2.1 in the remaining case, $f(a)+j=\left(f\left(u_{1}\right)+k_{1}^{*}+k_{1}\right)+\ldots+\left(f\left(u_{n}\right)+k_{n}^{*}+k_{n}\right)-\left(f(x)+k_{l}^{*}+k^{*}\right)$. Let $g(a)+k^{\prime}=\left(g\left(u_{1}\right)+k_{1}^{\prime *}+k_{1}^{\prime}\right)+\ldots+\left(g\left(u_{n}\right)+k_{n}^{\prime *}+k_{n}^{\prime}\right)-\left(g(x)+k_{l}^{\prime *}+k^{\prime *}\right)$. We have $\left(f(a)+k, g(a)+k^{\prime}\right)=\left\{\left(f\left(u_{1}\right)+k_{1}^{*}+k_{1}\right)+\ldots+\left(f\left(u_{n}\right)+k_{n}^{*}+k_{n}\right)+(f(x)+\right.$ $\left.\left.k_{l}^{*}+k^{*}\right),\left(g\left(u_{1}\right)+k_{1}^{\prime *}+k_{1}^{\prime}\right)+\ldots+\left(g\left(u_{n}\right)+k_{n}^{\prime *}+k_{n}^{\prime}\right)+\left(g(x)+k_{l}^{\prime *}+k^{\prime *}\right)\right\}=$ $\left(f\left(u_{1}\right)+k_{1}^{*}+k_{1}, g\left(u_{1}\right)+k_{1}^{*}+k_{1}^{\prime}\right)+\ldots+\left(f\left(u_{n}\right)+k_{n}^{*}+k_{n}, g\left(u_{n}\right)+k_{n}^{* *}+\right.$ $\left.k_{n}^{\prime}\right)-\left(f(x)+k_{l}^{*}+k^{*}, g(x)+k_{l}^{\prime *}+k^{\prime *}\right)$. In all cases, $\left(f(a)+k, g(a)+k^{\prime}\right)$ is a (n, p)-weakly clean elements of $A \bowtie^{f, g}\left(J, J^{\prime}\right)$. This completes the proof.

4 Conclusions

Through the above we have studied the characterization for the bi-amalgamation of A with (B, C) along (K, K^{\prime}) with respect to (f, g) to be a $(n, p$ - clean ring along with an example. Further, we have studied the necessary and sufficient conditions for $A \bowtie^{f, g}\left(K, K^{\prime}\right)$ to be a (n, p)-weakly clean ring.

Acknowledgements

The first author is partially supported by Periyar University Research Fellowship (Letter No: PU/AD-3/URF/015723/2020 dated 16th November 2020). The second author is supported by DST FIST (Letter No: SR/FST/MSI-115/2016 dated 10th November 2017).

References

A. Chen and K. Qua. Some properties of n-weakly clean rings. AIP Conference Proceedings, 1605, 2014.
M. Chhiti. On (n, p)-clean commutative rings and n-almost clean rings. Palestine Journal of Mathematics, 7:23-27, 2018.
M. D'Anna. A construction of gorenstein rings. J. Algebra, 306:507-519, 2006.
M. D'Anna and M. Fontana. An amalgamated duplication of a ring along an ideal: the basic properties. Journal of Algebra and its Applications, 6:443-459, 2007.
M. D'Anna, C. Finocchiaro, and M. Fontana. Amalgamated algebras along an ideal. Comm Algebra and Applications, 306:241-252, 2009.
S. Kabbaj, K. Louartiti, and M. Tamekkente. Bi-amalgameted algebras along ideals. J. Commut. Algebra, 9:65-87, 2013.
W. Nicholson. Lifting idempotents and exchange rings. Trans. Amer. Math. Soc, 229:269-278, 1977.

[^0]: *Periyar University, Salem, India; aruldossa529@ gmail.com.
 ${ }^{\dagger}$ Periyar University, Salem, India; selvavlr@yahoo.com.
 ${ }^{1}$ Received on September 15, 2022. Accepted on December 15, 2022. Published online on January 10, 2023. DOI: 10.23755/rm.v41i0.937. ISSN: 1592-7415. eISSN: 2282-8214. OThe Authors. This paper is published under the CC-BY licence agreement.

