Bi-amalgamated algebra with (n, p)-weakly clean like properties

Aruldoss Antonysamy* Selvaraj Chelliah[†]

Abstract

Let $f : A \longrightarrow B$ and $g : A \longrightarrow C$ be two ring homomorphisms and let K and K' be two ideals of B and C, respectively such that $f^{-1}(K) = g^{-1}(K')$. In this paper, we give a characterization for the bi-amalgamation of A with (B, C) along (K, K') with respect to (f, g) (denoted by $A \bowtie^{f,g} (K, K')$) to be a (n, p)-weakly clean ring. **Keywords**: (n, p)-clean ring; (n, p)- weakly clean ring; bi-amalgamation algebra along ideals. **2020** AMS subject classifications:16N40, 16U40, 16S99, 16U60.¹

^{*}Periyar University, Salem, India; aruldossa529@gmail.com.

[†]Periyar University, Salem, India; selvavlr@yahoo.com.

¹Received on September 15, 2022. Accepted on December 15, 2022. Published online on January 10, 2023. DOI: 10.23755/rm.v41i0.937. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY licence agreement.

1 Introduction

Throughout this paper all rings are commutative with identity elements. Let A and B be two rings with unity, let K be an ideal of B and let $f : A \to B$ be a ring homomorphism. In D'Anna et al. [2009], the authors introduced and studied the new ring structure the following subring of $A \times B$:

$$A \bowtie^{f} K := \{(a, f(a) + k) \mid a \in A, k \in K\}$$

called the amalgamation of A with B along K with respect to f. This new ring structure construction is a generalization of the amalgamated duplication of a ring along an ideal. The amalgamated duplication of a ring along an ideal was introduced and studied in (D'Anna [2006], D'Anna and Fontana [2007]). In [D'Anna et al., 2009, Section 4], the authors studied the amalgamation can be in the frame of pullback constructions and also the basic properties of this construction (e.g., characterizations for $A \bowtie^f K$ to be a Noetherian ring, an integral domain, a reduced ring) and they characterized those distinguished pullbacks that can be expressed as an amalgamation.

Let $\alpha : A \longrightarrow C$, $\beta : A \longrightarrow C$ and $f : A \longrightarrow B$ be ring homomorphisms. In D'Anna et al. [2009], the authors studied amalgamated algebras within the frame of pullback $\alpha \times \beta$ such that $\alpha = \beta \circ f$ [D'Anna et al., 2009, Proposition 4.2 and 4.4]. In this motivation, the authors created the new constructions, called bi-amalgamated algebras which arise as pullbacks $\alpha \times \beta$ such that the following diagram of ring homomorphims

$$\begin{array}{cccc} A & \stackrel{f}{\longrightarrow} & B \\ & g & & & & & \\ C & \stackrel{\beta}{\longrightarrow} & D \end{array}$$

is commutative with $\alpha \circ \pi_B(\alpha \times \beta) = \alpha \circ f(A)$, where π_B denotes the canonical projection of $B \times C$ over B. Namely, let $f : A \longrightarrow B$ and $g : A \longrightarrow C$ be two ring homomorphisms and let K and K' be two ideals of B and C, respectively, such that $f^{-1}(K) = g^{-1}(K')$. The bi-amalgamation of A with (B, C) along (K, K')with respect to (f, g) is the subring of $B \times C$ given by

$$A \bowtie^{f,g} (K, K') := \{ (f(a) + k, g(a) + k') | a \in A, (k, k') \in K \times K' \}$$

Following Kabbaj et al. [2013], the above definition was introduced by and studied by Kabbaj, Louartiti and Tamekkante.

Following Nicholson [1977], an element a in a ring A is called a clean if a is a sum of a unit and an idempotent in A. A ring is clean if all its elements are clean.

Clean rings were initially developed by Nicholson [1977], as a natural class of rings which have the exchange property.

This paper aims at studying the transfer of the notion of *n*-clean rings, (n, p)weakly clean rings to bi-amalgamation of algebra along ideals.

We denote by U(A), set of all unit elements of A.

(n, p)-clean ring 2

We start with definition of (n, p)-clean rings.

Definition 2.1. (Chen and Qua [2014]) An element $a \in A$ is said to be (n, p)clean if $a = u_1 + \ldots + u_n + x$ for some unit $u_i \in A(i = 1, \ldots, n)$ and $x^p = x$, where x is called p-potent element. The ring A is said to be (n, p)-clean if all of its elements are (n, p)-clean.

Remark 2.1. Every clean rings are (1, 2)-clean rings and n-clean rings are (n, 2)clean rings.

Following Chhiti [2018], the above definition is studied the authors in 2018. Now, we start with following example of (2, 2)-clean ring.

Example 2.1. Let $A := \mathbb{Z}_4$, $B := \mathbb{Z}_4 \times \mathbb{Z}_4$ and $C := \mathbb{Z}_2$ and let $J := 0 \times \mathbb{Z}_4$ and $J' := \mathbb{Z}_2$ are ideals of B and C respectively. Consider the map $f : A \longrightarrow$ B is defined by f(a) = (a, 0) for all $a \in A$ and the map $g : A \longrightarrow C$ is defined by g(0) = g(2) = 0 and g(1) = g(3) = 1. Hence, $A \bowtie^{f,g} (J, J') =$ $\left\{ ((0,0),0), ((0,1),0), ((0,2),0), ((0,3),0), ((2,0),0), ((2,1),0), \\ ((2,2),0), ((2,3),0), ((1,0),1), ((1,1),1), ((1,2),1), ((1,3),1), ((3,0),1), \\ \end{array} \right.$

((3,1),1),((3,2),1),((3,3),1) is a 2-clean ring. Therefore, by the remark 2.1

 $A \bowtie^{f,g} (J, J')$ is (2, 2)-clean ring.

Proposition 2.1. The class of (n, p)-clean ring is closed under homomorphic images.

Proof. The proof is straightforward. \Box

Proposition 2.2. If $A \bowtie^{f,g} (K, K')$ is a (n, p)-clean ring then f(A) + K and g(A) + K' are (n, p)-clean rings.

Proof. Clearly, by Proposition 2.1 (n, p)-clean ring is a (n, p)-clean ring. Thus, in view of Kabbaj et al. [2013] [Proposition 4.1], we have the following isomorphism of rings $\frac{A \bowtie^{f,g}(K,K')}{0 \times K'} \cong f(A) + K$ and $\frac{A \bowtie^{f,g}(K,K')}{K \times 0} \cong g(A) + K'$. Hence, f(A) + K and g(A) + K' are (n, p)-clean rings.

A. Aruldoss and C. Selvaraj

Definition 2.2. A ring is called uniquely (n, p)-clean ring if each element in A can be written as unique way.

Theorem 2.1. Assume that A is (n, p)-clean ring and $\frac{f(A) + K}{K}$ and $\frac{g(A) + K'}{K'}$ are uniquely *n*-clean rings. Then $A \bowtie^{f,g} (K, K')$ is (n, p)-clean ring if and only if f(A) + K and g(A) + K' are (n, p)-clean rings.

If $A \bowtie^{f,g} (K, K')$ is a (n, p)-clean ring, then so f(A) + K and **Proof.** g(A)+K' by Proposition 2.1. Conversely, assume that f(A)+K and g(A)+K' are (n, p)-clean rings. Since A is a (n, p)-clean ring, we can write $a = u_1 + ... + u_n + x$ for some unit $u_i \in A(i = 1, ..., n)$ and $x^p = x$. On the other hand, since f(A) + Kis a (n, p)-clean ring, $f(a) + k = (f(x_1) + k_1) + ... + (f(x_n) + k_n) + f(p) + k^*$ with $f(x_i) + k_i (i = 1, ..., n)$ and $f(y) + k^*$ are respectively units and $(f(p) + k^*)^p =$ $f(p) + k^*$ element of f(A) + K. It is clear that $\overline{f(x_1)} = \overline{f(x_1) + k_1}$ (resp., $\overline{f(u_1)}$),..., $\overline{f(x_n)} = \overline{f(x_n) + k_n}$ (resp., $\overline{f(u_n)}$) and $\overline{f(p)} = \overline{f(p) + k^*}$ (resp., $\overline{f(x)}$), are respectively units and an *p*-potent element of $\frac{f(A) + K}{K}$, and we have $\overline{f(a)} = \overline{f(u_1)} + \ldots + \overline{f(u_n)} + \overline{f(p)} = \overline{f(x_1)} + \ldots + \overline{f(x_n)} + \overline{f(x)}$. Thus, $\overline{f(u_1)} = \overline{f(x_1)}, \ldots, \overline{f(u_n)} = \overline{f(x_n)}, \ldots$ $\overline{f(u_n)} = \overline{f(x_n)}$ and $\overline{f(p)} = \overline{f(x)}$ since $\frac{f(A) + K}{K}$ is an uniquely (n, p)-clean ring. Consider $k_1^*, ..., k_n^*, k_l^* \in K$ such that $f(x_1) = f(u_1) + k_1^*, ..., f(x_n) = f(u_n) + k_n^*$ and $f(x) = f(p) + k_l^*$ and also since g(A) + K' is a (n, p)-clean ring, g(a) + k' = k' $(g(x'_1) + k'_1) + ... + (g(x'_n) + k'_n) + g(p') + k'^*$ with $g(x'_i) + k'_i$ (i = 1, ..., n) and $g(p') + k'^*$ are respectively units and p-potent element of g(A) + K'. It is clear that $\overline{g(x'_1)} = \overline{g(x'_1)} + k'_1$ (resp., $\overline{g(u_1)}$),..., $\overline{g(x'_n)} = \overline{g(x'_n)} + k'_n$ (resp., $\overline{g(u_n)}$) and $\overline{g(p')} = \overline{g(p')} + k'^*$ (resp., $\overline{g(x)}$), are respectively units and an *p*-potent element of $\frac{g(A) + K'}{K'_{n}}$, and we have $\overline{g(a)} = \overline{g(u_1)} + \dots + \overline{g(u_n)} + \overline{g(p)} = \overline{g(x'_1)} + \dots + \overline{g(x'_n)} + \overline{g(p')}$. Thus, $\overline{g(u_1)} = \overline{g(x'_1)}, \dots, \overline{g(u_n)} = \overline{g(x'_n)}$ and $\overline{g(x)} = \overline{g(p')}$ since $\frac{g(A) + K'}{K'}$ is an uniquely (n, p)-clean ring. Consider $k'_1^*, ..., k'_n^*, k'_l^* \in K$ such that $g(x_1') = g(u_1) + k_1'^*, ..., g(x_n') = g(u_n) + k_n'^*$ and $g(y') = g(p) + k_l'^*$. We have $(f(a) + k, g(a) + k') = \{(f(u_1) + k_1^* + k_1) + \dots + (f(u_n) + k_n^* + k_n) + (f(p) + k_l^* + k_n) + (f(p) + k_n^* + k_n) + (f(p) + k_$ $k^*), (g(u_1) + k_1'^* + k_1') + \ldots + (g(u_n) + k_n'^* + k_n') + (g(p') + k_l'^* + k'^*) \} = (f(u_1) + k_1^* + k_n') + (g(p') + k_l'^* + k_n') + (g(p') + k_n' + k_n' + k_n') + (g(p') + k_n' + k_n' + k_n') + (g(p') + k_n' + k_n' + k_n' + k_n') + (g(p') + k_n' + k_n' + k_n') + (g(p') + k_n') + (g$ $k_1, g(u_1) + k_1'^* + k_1') + \ldots + (f(u_n) + k_n^* + k_n, g(u_n) + k_n'^* + k_n') + (f(p) + k_l^* + k^*, g(p') + k_l^* + k_n') + (f(p) + k_n$ $k_l^{\prime*} + k^{\prime*}$). It is clear that $(f(p) + k_l^* + k^*, g(p') + k_l^{\prime*} + k^{\prime*})$ is an *p*-potent in $A \bowtie^{f,g}$ (K, K'). Hence, we have only to prove that $(f(u_1) + k_1^* + k_1, g(u_1) + k_1'^* + k_1')$ is invertible in $A \bowtie^{f,g}(K, K')$. Since $f(u_1) + k_1^* + k_1$ is invertible in f(A) + K, there exists an element $f(\beta) + k_0$ such that $(f(u_1) + k_1^* + k_1)(f(\beta) + k_0) = 1$. Thus $\overline{f(u_1)f(\beta)} = \overline{1}$. Then $\overline{f(\beta)} = \overline{f(u_1^{-1})}$. So there exists $k_0^* \in K$ such that $f(\beta) = f(u_1^{-1}) + k_0^*$. Similarly, $g(u_1) + k_1'^* + k_1'$ is invertible in g(A) + K'. Hence, $(f(u_1) + k_1^* + k_1, g(u_1) + k_1'^* + k_1')(f(u_1^{-1}) + k_0^* + k_0, g(u_1^{-1}) + k_0'^* + k_0') =$

Bi-amalgamated algebra with (n, p)*-weakly clean like properties*

 $(f(u_1) + k_1^* + k_1, g(u_1) + k_1'^* + k_1')(f(\beta) + k_0, g(\gamma) + k_0') = (1, 1).$ Therefore, $(f(u_1) + k_1^* + k_1, g(u_1) + k_1'^* + k_1')$ is invertible in $A \bowtie^{f,g} (K, K')$. Similarly, each term are invertible. This completes the proof. \Box

Proposition 2.3. Let $f : A \to B$ and $g : A \to C$ be two surjective ring homomorphisms, let K and K' be two ideals of B and C respectively such that $f^{-1}(K) = g^{-1}(K') = I_0$ and let A is a (n, p)-clean ring and A/I_0 is an uniquely (n, p)-clean ring. Then $A \bowtie^{f,g}(K, K')$ is a (n, p)-clean ring.

Proof. It is clear that B and C are (n, p)-clean rings. So, since f(A)+K = B and g(A) + K' = C, we conclude that $A \bowtie^{f,g} (K, K')$ is a (n, p)-clean ring by Theorem 2.1. \Box

Let A be a commutative ring with identity and let M be a unitary A-module. The idealization of M in A(or trivial extension of A by M) is the commutative ring $A \propto M = \{(a,m) | a \in R, m \in M\}$ under the usual addition and the multiplication defined as $(a_1m_1)(a_2m_2) = (a_1a_2, a_1m_2 + a_2m_1)$ for all $(a_1, m_1), (a_2, m_2) \in A \propto M$.

Theorem 2.2. Consider n and p two positive integers $(p \ge 2)$. Let $f : A \longrightarrow C$, $g : A \longrightarrow C$ be two ring homomorphisms. Assume that A is (n, p)-clean ring. Let K be an ideal of B such that f(u) + k is invertible (in B) for each $u \in U(A)$ and $k \in K$ and K' be an ideal of C such that g(u) + k' is invertible (in C) for each $u \in U(A)$ and $k' \in K'$. Then $A \bowtie^{f,g} (K, K')$ is a (n, p)-clean ring if and only if f(A) + K and g(A) + K' are (n, p)-clean ring.

Proof. In light of Proposition 2.1, homomorphic image of (n, p)-clean ring is (n, p)-clean ring. Thus, in view of Kabbaj et al. [2013] [Proposition 4.1], we have the following isomorphism of rings $\frac{A \bowtie^{f,g}(K,K')}{0 \times K'} \cong f(A) + K$ and $\frac{A \bowtie^{f,g}(K,K')}{K \times 0} \cong g(A) + K'$. Hence, f(A) + K and g(A) + K' are (n, p)-rings. Conversely, we assume that A is (n, p)-clean and K be an ideal of B such that f(u) + k is invertible (in B) and K' be an ideal of C such that g(u) + k' is invertible (in C). Then there exist $v_1 \in B$ such that $(f(u_1 + k)v_1) = 1$ and there exist $v_2 \in C$ such that $(g(u_1 + k')v_2) = 1$. Hence, $(f(u_1) + k)(f(u_1^{-1}) - v_1f(u_1^{-1})k) = f(u_1)f(u_1^{-1}) + kf(u_1^{-1}) - (f(u_1) + k)v_1f(u_1^{-1})k) = 1 + kf(u_1^{-1}) - f(u_1^{-1})k = 1$ and $(g(u_1) + k')(g(u_1^{-1}) - v_2g(u_1^{-1})k') = g(u_1)g(u_1^{-1}) + k'g(u_1^{-1}) - g(u_1^{-1})k') = g(u_1)g(u_1^{-1}) + k'g(u_1^{-1}) - g(u_1^{-1})k' = 1$. Thus, $(f(u_1) + k, g(u_1) + k')v_2g(u_1^{-1})k' = 1 + k'g(u_1^{-1}) - g(u_1^{-1})k' = 1$. Thus, $(f(u_1) + k, g(u_1) + k')$ is invertible in $A \bowtie^{f,g}(K,K')$. Hence, $(f(a) + k, g(a) + k') = (f(u_1 + u_2 + \ldots + u_n + x) + k, g(u_1 + u_2 + \ldots + u_n + x) + k' = (f(u_1) + k, g(u_1) + k') \in U(A \propto M), (f(u_i), g(u_i) \in U(A \propto M)(i = 2, 3, \ldots, n)$ and $(f(x), g(x))^p = (f(x), g(x))$. Consequently, $A \bowtie^{f,g}(K,K')$ is (n, p)-clean ring. \Box

3 (n, p)-weakly clean ring

Now we introduce the new class of ring.

Definition 3.1. A ring A is called (n, p)-weakly clean ring if $a = u_1 + ... + u_n + x$ or $a = u_1 + ... + u_n - x$ for some unit $u_i \in A(i = 1, ..., n)$ and $x^p = x$, where x is p-potent element.

If the above representation is unique, we say that A is uniquely (n, p)-weakly clean ring.

Note that (n, p)-clean ring is weakly (n, p)-clean ring. In this section we study the transfer of (n, p)-weakly clean ring property to the ring $A \bowtie^{f,g} (K, K')$ is defined above. We establishes necessary and sufficient conditions for $A \bowtie^{f,g} (K, K')$ to be (n, p)-weakly clean.

Proposition 3.1. The class of (n, p)-weakly clean is closed under homomorphic images.

Proof. The proof is straightforward. \Box

Proposition 3.2. A ring A is called uniquely (n, p)-weakly clean ring if the representation of a (n, p)-weakly clean element in a unique way.

Our first main result gives a necessary and sufficient conditions for $A \bowtie^{f,g}(K, K')$ to be (n, p)-weakly clean ring.

Theorem 3.1. Let $f : A \to B$ and $g : A \to C$ be two ring homomorphisms, let K and K' be two ideals of B and C respectively such that $f^{-1}(K) = g^{-1}(K') = I_0$. Assume that the following conditions hold:

a) A is a (n, p)-weakly clean ring and A/I_0 is an uniquely (n, p)-weakly clean ring.

b) f(A) + K and g(A) + K' are (n, p)-weakly clean rings and atmost one of them is not a (n, p)-clean ring. Then $A \bowtie^{f,g} (K, K')$ is a (n, p)-weakly clean ring.

Proof. Without loss of generality, we assume that f(A) + K is a *n*-weakly clean ring and g(A) + K' is a *n*-clean ring. Let $a \in A$. Then *a* can be written as $a = u_1 + ... + u_n + x$ or $a = u_1 + ... + u_n - x$ for some $u_i \in A(i = 1, ..., n)$ and *p*-potent $x \in A$. Since *A* is (n, p)-weakly clean ring and since f(A) + K is a (n, p)-weakly clean ring, $f(a) + k = (f(x_1) + k_1) + ... + (f(x_n) + k_n) + (f(p) + k^*)$ or $f(a) + k = (f(x_1) + k_1) + ... + (f(x_n) + k_n) - (f(p) + k^*)$ with $f(x_i) + k_i (i = 1, ..., n)$ and $f(p) + k^*$ are respectively units and *p*-potent element of f(A) + K. Therefore, $f(a) = f(u_1) + ... + f(u_n) + f(x)$ or $f(a) = f(u_1) + ... + f(u_n) - f(x)$. Then, in f(A) + K/K we have: $f(a) = f(u_1) + ... + f(u_n) + f(x)$

or $\overline{f(a)} = \overline{f(u_1)} + \dots + \overline{f(u_n)} - \overline{f(x)}$. It is clear that $\overline{f(x_1)} = \overline{f(x_1) + k_1}$ (resp., $\overline{f(u_1)}$),..., $\overline{f(x_n)} = \overline{f(x_n) + k_n}$ (resp., $\overline{f(u_n)}$) and $\overline{f(p)} = \overline{f(p) + k^*}$ (resp., $\overline{f(x)}$), are respectively units and *p*-potent element of $\frac{\widetilde{f(A)} + K}{K}$, and we have $\frac{\overline{f(a)}}{f(u_1)} = \overline{f(u_1)} + \dots + \overline{f(u_n)} + \overline{f(x)} = \overline{f(x_1)} + \dots + \overline{f(x_n)} + \overline{f(p)} \text{ or } \overline{f(a)} = \overline{f(u_1)} + \dots + \overline{f(u_n)} - \overline{f(x)} = \overline{f(x_1)} + \dots + \overline{f(x_n)} - \overline{f(p)}.$ Thus, $\overline{f(u_1)} = \overline{f(x_1)}, \dots, \overline{f(u_n)} = \overline{f(x_n)}$ and $\overline{f(x)} = \overline{f(p)}$ since $\frac{f(A) + K}{K}$ is an uniquely (n, p)-weakly clean ring. Consider $k_1^*, ..., k_n^*, k_l^* \in K$ such that $f(x_1) = f(u_1) + k_1^*, ..., f(x_n) =$ $f(u_n) + k_n^*$ and $f(p) = f(x) + k_l^*$. Hence, $f(a) + j = (f(u_1) + k_1^* + k_1) + \dots + (f(u_n) + k_n^*) + \dots + (f(u_n) + (f(u_n) + k_n^*)) + \dots + (f(u_n) + k_n^*)) + \dots + (f(u_n) + k_n^*)) + \dots + (f(u_n) + (f(u_n) + k_n^*)) + \dots + (f(u_n) + k_n^*)) + \dots +$ $(f(u_n)+k_n^*+k_n)+(f(x)+k_l^*+k^*)$ or $f(a)+j=(f(u_1)+k_1^*+k_1)+\ldots+(f(u_n)+k_n^*+k_n)+\ldots+(f(u_n)+k_n)+(f(u_n)+k_n)+\ldots+(f(u_n)+k_n)+(f(u_n)+k_n)+(f(u_n)$ $k_n^* + k_n) - (f(x) + k_l^* + k^*)$. Thus, using the same technique of the previous part $g(a) + k' = (g(u_1) + k'^*_1 + k'_1) + \ldots + (g(u_n) + k'^*_n + k'_n) + (g(p) + k'^*_l + k'^*) \text{ or } (g(p) + k'^*_l + k') + (g(p) + k'^*_l + k'^*_l) + (g(p) + k'^*_l + k''_l) + (g(p) + k''_l + k''_$ $g(a) + k' = (g(u_1) + k_1'^* + k_1') + \dots + (g(u_n) + k_n'^* + k_n') - (g(p) + k_l'^* + k'^*)$ since $g(A) + K'/K' \cong A/I_0$ is an uniquely *n*-weakly clean ring. This implies that $(f(a)+k,g(a)+k') = \{(f(u_1)+k_1^*+k_1)+\ldots+(f(u_n)+k_n^*+k_n)+(f(x)+k_l^*+k_n)+(f(x)+k_n)+(f$ $k^*), (g(u_1) + k_1'^* + k_1') + \ldots + (g(u_n) + k_n'^* + k_n') + (g(x) + k_l'^* + k'^*) \} = (f(u_1) + k_1^* + k_1') + \ldots + (g(u_n) + k_n'^* + k_n') + (g(x) + k_n' + k_n') + (g(x) + k_n') + (g(x) + k_n') + (g(x) + k_n' + k_n') + (g(x) + k_n' + k_n') + (g(x) + k_n' + k_n') + (g(x) + k_n') +$ $k_1, g(u_1) + k_1'^* + k_1') + \dots + (f(u_n) + k_n^* + k_n, g(u_n) + k_n'^* + k_n') + (f(x) + k_l^* + k^*, g(x) + k_n') + (f(x) + k_n') + (f(x$ $k_{l}^{\prime *} + k^{\prime *}$). Now, the same argument follows from Theorem 2.1 in the remaining case, $f(a) + j = (f(u_1) + k_1^* + k_1) + \dots + (f(u_n) + k_n^* + k_n) - (f(x) + k_l^* + k^*).$ Let $g(a) + k' = (g(u_1) + k'_1 + k'_1) + \dots + (g(u_n) + k''_n + k'_n) - (g(x) + k''_1 + k''_n)$. We have $(f(a)+k, g(a)+k') = \{(f(u_1)+k_1^*+k_1)+\ldots+(f(u_n)+k_n^*+k_n)+(f(x)+k_n)+(f(x)+k$ $k_{l}^{*} + k^{*}), (g(u_{1}) + k_{1}^{\prime *} + k_{1}^{\prime}) + \dots + (g(u_{n}) + k_{n}^{\prime *} + k_{n}^{\prime}) + (g(x) + k_{l}^{\prime *} + k^{\prime *}) \} = 0$ $(f(u_1) + k_1^* + k_1, g(u_1) + k_1'^* + k_1') + \dots + (f(u_n) + k_n^* + k_n, g(u_n) + k_n'^* + k_n +$ k'_{n}) - $(f(x) + k_{l}^{*} + k^{*}, g(x) + k'_{l}^{*} + k'^{*})$. In all cases, (f(a) + k, g(a) + k') is a (n, p)-weakly clean elements of $A \bowtie^{f,g} (J, J')$. This completes the proof. \Box

4 Conclusions

Through the above we have studied the characterization for the bi-amalgamation of A with (B, C) along (K, K') with respect to (f, g) to be a (n, p- clean ring along with an example. Further, we have studied the necessary and sufficient conditions for $A \bowtie^{f,g} (K, K')$ to be a (n, p)-weakly clean ring.

Acknowledgements

The first author is partially supported by Periyar University Research Fellowship (Letter No: PU/AD-3/URF/015723/2020 dated 16th November 2020). The second author is supported by DST FIST (Letter No: SR/FST/MSI-115/2016 dated 10th November 2017). A. Aruldoss and C. Selvaraj

References

- A. Chen and K. Qua. Some properties of *n*-weakly clean rings. *AIP Conference Proceedings*, 1605, 2014.
- M. Chhiti. On (n, p)-clean commutative rings and *n*-almost clean rings. *Palestine Journal of Mathematics*, 7:23–27, 2018.
- M. D'Anna. A construction of gorenstein rings. J. Algebra, 306:507-519, 2006.
- M. D'Anna and M. Fontana. An amalgamated duplication of a ring along an ideal: the basic properties. *Journal of Algebra and its Applications*, 6:443–459, 2007.
- M. D'Anna, C. Finocchiaro, and M. Fontana. Amalgamated algebras along an ideal. *Comm Algebra and Applications*, 306:241–252, 2009.
- S. Kabbaj, K. Louartiti, and M. Tamekkente. Bi-amalgameted algebras along ideals. *J. Commut. Algebra*, 9:65–87, 2013.
- W. Nicholson. Lifting idempotents and exchange rings. *Trans. Amer. Math. Soc*, 229:269–278, 1977.