Semi generalization of δI*-closed sets in ideal topological space

Dr K Palani¹ M Karthigai Jothi²

Abstract

In this paper we introduce the notion of semi generalized δI^* -closed sets or $gs\delta I^*$ closed sets using semi open sets and investigate its basic properties and characterizations in an ideal topological space. This class of sets is properly lies between the class of δI^* -closed sets and the class of g-closed sets. Also, study the relationship with various existing closed sets in ideal topological spaces. Moreover, we introduce and study the concept of maximal $gs\delta I^*$ -closed sets.

Keywords: ideal topological space, δI^* -closed sets, $gs\delta I^*$ -closed sets.

2010AMS subject classification: 05C69³

¹Associate Professor and Head, PG & Research Department of Mathematics, A.P.C Mahalaxmi College for Women, Thoothukudi-2. Tamilnadu, India.E-mail: palani@apcmcollege.ac.in

²Research Scholar, Reg. No: 21212012092005, PG & Research Department of Mathematics, A.P.C Mahalaxmi College for Women, Thoothukudi-². Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli -12. Tamilnadu, India.E-mail: jothiperiyasamy05@gmail.com.

³Received on June 10 th, 2022. Accepted on Sep 1st, 2022. Published on Nov 30th, 2022. doi: 10.23755/rm.v44i0.925. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors. This paper is published under the CC-BY license agreement.

1. Introduction and Preliminaries

An ideal I is a non-empty collection of subsets of X which satisfies: (i) A \in I and B \subseteq A implies B \in I, and (ii) A \in I and B \in I implies A \cup B \in I. Given a topological space (X, τ) with an ideal I on X called ideal topological space denoted by (X, τ, I) . Kuratowski [5] and vaidhyanathaswamy [18] was studied the notion of ideal topological spaces, J. Dontchev, M. Ganster [3], Navaneethakrishnan, P. Paulraj Joseph [13], D. Jankovic, T. R. Hamlett [4], M. N. Mukherjee, R. Bishwambhar, R. Sen [10], A. A. Nasef, R. A. Mahmond [12] etc., were investigated applications to various fields of ideal topology. If P(X) is the collection of all subsets of X a set operator (.)*: P(X) \rightarrow P(X) called a local function [5] for any subset A of X with respect to I and τ is defined as, $A^*(I, \tau) = \{x \in X : U \cap A \notin I \text{ for every } U \in \tau(x)\}$, where $\tau(x) = \{U \in \tau / I \}$ $x \in U$. A kuratowski closure operator cl*(A) for a topology $\tau^*(I, \tau)$ called *topology finer than τ is defined by $cl^*(A) = A \cup A^*(I, \tau)$. A subset A of X is said to be δ -closed [19] set if $cl_{\delta}(A) = A$, where $cl_{\delta}(A) = \{x \in X: Int(cl(U)) \cap A \neq \phi, \text{ for every } U\}$ $\in \tau(x)$. The complement of δ -closed set is δ -open set. A subset A subset A of a space (X, τ) is an α -open [14] (resp. semi open [7]) set if A \subset int(cl(int(A))) (resp. A \subset cl(int(A))). The complement of a semi open (resp. α -open) set is called a semi closed (resp.α-open).

Definition 1.1. Let (X,τ) be a topological space. A subset A of X is said to be

(i) a generalized closed (briefly, g-closed) set [6] if $cl(A) \subset U$ whenever $A \subset U$ and U is open in (X, τ) .

(ii) a generalized semi closed (briefly, gs-closed) set [1] if $scl(A) \subset U$ whenever $A \subset U$ and U is open set in (X, τ) .

(iii) a semi-generalized closed (briefly, sg-closed) set [2] if $scl(A) \subset U$ whenever $A \subset U$ and U is semi open set in (X, τ) .

(iv)an α -generalized closed (briefly, α g-closed) se [8]t if α cl(A) \subset U whenever A \subset U and U is open in (X, τ).

(v) a generalized α -closed (briefly, g α -closed) set [9] if α cl(A) \subset U whenever A \subset U and U is α -open in (X, τ).

(vi) $a\hat{g}$ (or) w-closed set [20] if $cl(A) \subset U$ whenever $A \subset U$ and U is semi open set in (X, τ) .

Definition 1.2. [21] Let (X, τ, I) be an ideal topological space. A subset A of X is said to be an I_g-closed set if $A^* \subset U$ whenever $A \subset U$ and U is open in X.

Definition 1.3. [21] Let (X, τ, I) be an ideal topological space, A a subset of X and x is a point of X. Then

(1) x is called a δ -I-cluster point of A if A \cap int(cl*(U)) $\neq \phi$, for each open neighborhood U of x.

(2) the family of all δ -I-cluster points of A is called the δ -I-closure of A and is denoted by [A] $_{\delta$ -I.

(3) a subset A is said to be δ -I-closed if $[A]_{\delta-I} = A$. The complement of a δ -I-closed set of X is said to be δ -I-open.

Lemma 1.4. [21] Let A and B be subsets of an ideal topological space (X, τ, I) . Then, the following properties hold.

 $(1) A \subset [A]_{\delta-I}.$

(2) If $A \subset B$, then $[A]_{\delta - I} \subset [B]_{\delta - I}$.

(3) $[A]_{\delta - I} = \cap \{F \subset X / A \subset F \text{ and } F \text{ is } \delta \text{-I-closed}\}.$

(4) If A_{α} is δ -I-closed set of Xs for each $\alpha \in \Delta$, then $\cap \{A_{\alpha} / \alpha \in \Delta\}$ is δ -I-closed.

(5) [A] $_{\delta-I}$ is δ -I-closed.

Lemma 1.5. [21] Let (X, τ, I) be an ideal topological space and $\tau_{\delta-I} = \{A \subset X / A \text{ is } \delta\text{-I-open subset of } (X, \tau, I)\}$. Then $\tau_{\delta-I}$ is a topology such that $\tau_S \subset \tau_{\delta-I} \subset \tau$, where τ_S is the collection of

δ-open sets.

Definition 1.6. [16] Let (X, τ, I) be an ideal topological space and A a subset of X. Then $[A]^*(I, \tau) = \{x \in X: int[U]_{\delta - I} \cap A \neq \phi \text{ for every } U \in \tau(x)\}$ is called local δI -closure function of A with respect to the ideal I and topology τ , where $\tau(x) = \{U \in \tau / x \in U\}$. A subset A is said to be δI -closed if $[A]^* = A$. The complement of δI -closed set is called δI -open set.

Remark 1.7.[16] Always, (i) [A]* is closed, (ii) $[\phi]^* = \phi$ and $[X]^* = X$, (iii) $A \subseteq [A]^*$.

Lemma.1.8. [16] Let (X, τ, I) be an ideal topological space and A, B subsets of X. Then for local δ I-closure functions the following properties hold.

(i) If $A \subseteq B$ then $[A]^* \subseteq [B]^*$. (ii) $[A \cup B]^* = [A]^* \cup [B]^*$. (iii) $[A \cap B]^* \subseteq [A]^* \cap [B]^*$. (iv) $[[A]^*]^* = [A]^*$.

Lemma 1.9.[16] (i) $cl(A) \subseteq [A]^*$, (ii) $A^* \subseteq [A]^*$, (iii) $cl_{\delta}(A) \subseteq [A]^*$, (iv) $[A]_{\delta-I} \subseteq [A]^*$. **Definition 1.10.** [17] A subset A of an ideal space (X, τ, I) is called $g\delta I^*$ -closed if $[A]^* \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ, I) . The complement of a $g\delta I^*$ -closed set in (X, τ, I) is called $g\delta I^*$ open set in (X, τ, I) .

2. gs₈I*- closed Sets

In this section we introduce $gs\delta I^*$ -closed sets and discuss the relationship with some existing sets.

Definition 2.1. A subset A of an ideal topological space (X, τ, I) is called $gs\delta I^*$ -closed if $[A]^* \subseteq U$ whenever $A \subseteq U$ and U is semi open set in (X, τ, I) . The complement of $gs\delta I^*$ -closed set in (X, τ, I) , is called $gs\delta I^*$ -open set in (X, τ, I) .

Theorem 2.2. EveryδI*-closed set is gsδI*-closed.

Proof. Let A be any δI^* -closed set and U be any semi open set containing A. Since A is δI^* -closed, $[A]^* = A$. Therefore, A is $gs\delta I^*$ -closed set in (X, τ, I) .

Remark 2.3. The converse of the above Theorem 2.2 is need not be true as shown in the following Example 2.4.

Example 2.4. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{c, d\}, \{b, c\}, \{b, c, d\}\}, I = \{\phi, \{d\}\}.$ Let $A = \{a, b, c\}$. Then, A is gs δI^* -closed but not δI^* -closed.

Theorem 2.5. In an ideal topological space (X, τ, I) , every $gs\delta I^*$ -closed set is (i) \hat{g} -closed set in (X, τ) .

(ii) g-closed (resp. $g\alpha$, αg , sg, gs) -closed set in (X, τ).

(iii) I_g -closed set in (X, τ , I).

Proof. (i) Let A be a gs δI^* -closed set and U be any semi open set in (X, τ, I) containing A. Since A is gs δI^* -closed, $[A]^* \subseteq U$. Then $cl(A) \subseteq U$ and hence A is \hat{g} -closed in (X, τ, I) , by Lemma 1.9.

(ii) By [20], every \hat{g} -closed set is g-closed (resp. ga-closed, ag-closed, sg-closed, gs-closed) set in (X, τ , I). Therefore, it holds.

(iii) Since every g-closed set is Ig-closed, it holds.

Remark 2.6. The following Example 2.7 shows that, the converse of the above Theorem 2.5 (i) is not always true.

Example 2.7. Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$ and $I = \{\phi, \{b\}\}$. Let $A = \{c, d\}$. Then A is \hat{g} -closed set but not $gs\delta I^*$ -closed.

Remark 2.8. The following Examples shows that, the converse of Theorem 2.5 (ii) is not true.

Example 2.9. Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{b\}, \{c\}, \{b, c,\}\}$ and $I = \{\phi, \{d\}\}$. Let $A = \{d\}$. Then A is g-closed, α g-closed, α g-closed but not $gs\delta I^*$ -closed.

Example 2.10. Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$ and $I = \{\phi, \{a\}\}$. Let $A = \{a, b\}$. Then A is gs-closed and sg-closed but not gs δI^* closed.

Remark 2.11. The following Example 2.12 shows that, the converse of Theorem 2.5 (iii) is not always true.

Example 2.12. Let $X = \{a, b, c, d\}$, $\tau = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$ and $I = \{\phi, \{b\}\}$. Let $A = \{b\}$. Then A is Ig -closed but not gs δI^* -closed.

3. Characterizations

In this section we study some of the basic properties and characterizations of $gs\delta I^*$ -closed sets.

Theorem 3.1. Let (X, τ, I) be an ideal space and A a subset of X. Then $[A]^*$ is semi closed.

Proof. By Remark 1.7, [A]* is closed and hence it is semi closed.

Theorem 3.2. Let (X, τ, I) be an ideal space and $A \subseteq X$. If $A \subseteq B \subseteq [A]^*$, then $[A]^* = [B]^*$.

Proof. Since $A \subseteq B$, $[A]^* \subseteq [B]^*$ and since $B \subseteq [A]^*$, $[B]^* \subseteq [[A]^*]^* = [A]^*$, By Lemma 1.8 and Lemma 1.9. Therefore, $[A]^* = [B]^*$.

Theorem 3.3. Let (X, τ, I) be an ideal space. Then $[A]^*$ is always $gs\delta I^*$ -closed for every subset A of X.

Proof. Let $[A]^* \subseteq U$, where U is semi open. Always, $[[A]^*]^* = [A]^*$. Hence $[A]^*$ is $gs\delta I^*$ -closed.

Theorem 3.4. Let (X, τ, I) be an ideal space and $A \subseteq X$. If sker(A) is gs δI^* -closed, then A is also gs δI^* -closed.

Proof. Suppose that, sker(A) is a $gs\delta I^*$ -closed set. If $A \subseteq U$ and U is semi open, then $sker(A) \subseteq U$. Since sker(A) is $gs\delta I^*$ -closed, $[sker(A)]^* \subseteq U$. Always, $[A]^* \subseteq [sker(A)]^*$. Thus, A is $gs\delta I^*$ -closed.

The following Example 3.5 shows that, the converse of the above Theorem 3.4 is not always hold.

Example 3.5. In Example 2.12, let $A = \{a, b\}$. Then A is $gs\delta I^*$ -closed. But, $sker(A) = \{a, b, c\}$ is not $gs\delta I^*$ -closed.

Theorem 3.6. If A is $gs\delta I^*$ -closed subset in (X, τ, I) , then $[A]^* - A$ does not contain any nonempty closed set in (X, τ, I) .

Proof. Let F be any closed set in (X, τ, I) such that $F \subseteq [A]^* - A$ then $A \subseteq X - F$ and X - F is open and hence semiopen in (X, τ, I) . Since A is $gs\delta I^*$ -closed, $[A]^*\subseteq X - F$. Hence, $F \subseteq X - [A]^*$. Therefore, $F \subseteq ([A]^* - A) \cap (X - [A]^*) = \phi$.

Remark 3.7. The converse of the above Theorem 3.6 is not always true as shown in the following Example 3.8.

Example 3.8. Let $X = \{a, b, c\}, \tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\phi, \{c\}, \{d\}, \{c, d\}\}$. Let $A = \{a, b, c\}$. Then $[A]^* - A = X - \{a, b, c\} = \{d\}$ does not contain any nonempty closed set. But A is not a gs δI^* -closed subset of (X, τ, I) .

Theorem 3.9. For a subset A of an ideal space (X, τ, I) , cl(A) - A is $gs\delta I^*$ -closed if and only if $A \cup (X - cl(A))$ is $gs\delta I^*$ -open.

Proof. Necessity - Let F = cl(A) - A. By hypothesis, F is $gs\delta I^*$ -closed and $X - F = X \cap (X - F) = X \cap (X - (cl(A) - A)) = A \cup (X - cl(A))$. Since X - F is $gs\delta I^*$ -open, $A \cup (X - cl(A))$ is $gs\delta I^*$ -open.

Sufficiency-Let $U = A \cup (X - cl(A))$. By hypothesis, U is $gs\delta I^*$ -open. Then X - U is $gs\delta I^*$ -closed and $X - U = X - (A \cup (X - cl(A))) = cl(A) \cap (X - A) = cl(A) - A$. Hence proved.

Theorem 3.10. Let (X, τ, I) be an ideal space. Then every subset of X is $gs\delta I^*$ -closed if and only if every semiopen subset of X is δI^* -closed.

Proof. Necessity - Suppose every subset of X is $gs\delta I^*$ -closed. If U is a semiopen subset of X, then U is $gs\delta I^*$ -closed and so $[U]^* = U$. Hence, U is δI^* -closed.

Sufficiency - Suppose $A \subseteq U$ and U is semiopen. By hypothesis, U is δI^* -closed. Therefore, $[A]^* \subseteq [U]^* = U$ and hence A is $gs\delta I^*$ -closed.

Theorem 3.11. Let (X, τ, I) be an ideal space. If every subset of X is $gs\delta I^*$ -closed, then every open subset of X is δI^* -closed.

Proof. Suppose every subset of X is $gs\delta I^*$ -closed. If U is an open subset of X, then U is $gs\delta I^*$ -closed and so $[U]^* \subseteq U$, since every open set is semiopen. Hence, U is δI^* -closed.

Theorem 3.12. Intersection of a $gs\delta I^*$ -closed set and $a\delta I^*$ -closed set is always $gs\delta I^*$ -closed.

Proof. Let A be a gs δI^* -closed set and G be any δI^* -closed set of an ideal space (X, τ, I) . Suppose $A \cap G \subseteq U$ and U is semiopen set in X. Then, $A \subseteq U \cup (X - G)$. Now, X - G is δI^* -open and hence open and so semiopen set. Therefore, $U \cup (X - G)$ is a semiopen set containing A. But A is gs δI^* -closed and therefore, $[A]^* \subseteq U \cup (X - G)$.

Therefore, $[A]^* \cap G \subseteq U$ which implies that, $[A \cap G]^* \subseteq U$. Hence, $A \cap G$ is gs δI^* -closed.

Theorem3.13. In an ideal space (X, τ , I), for each $x \in X$, either $\{x\}$ is semiclosed or $\{x\}^c$ is gs δI^* -closed.

Proof. Suppose that $\{x\}$ is not a semiclosed set, then $\{x\}^c$ is not a semiopen set and hence X is the only semiopen set containing $\{x\}^c$. Therefore, $[\{x\}^c] *\subseteq X$ and hence $\{x\}^c$ is $gs\delta I^*$ -closed in (X, τ, I) .

Theorem 3.14. Every $gs\delta I^*$ -closed, semiopen set is δI^* -closed. **Proof.** Let A be a $gs\delta I^*$ -closed, semiopen set in (X, τ, I) . Since A is semiopen such that $A \subseteq A$, by hypothesis, $[A]^* \subseteq A$. Thus, A is δI^* -closed.

Corollary 3.15. Every $gs\delta I^*$ -closed; open set is δI^* -closed set.

Theorem 3.16. If A and B are $gs\delta I^*$ -closed sets in an ideal topological space (X, τ , I), then $A \cup B$ is a $gs\delta I^*$ -closed set in (X, τ , I).

Proof. Suppose that $A \cup B \subseteq U$, where U is semi open set in (X, τ, I) . Then $A \subseteq U$ and $B \subseteq U$. Since A and B are gs δI^* -closed sets in (X, τ, I) , $[A]^* \subseteq U$ and $[B]^* \subseteq U$. Always, $[A \cup B]^* = [A]^* \cup [B]^*$. Therefore, $[A \cup B]^* \subseteq U$, whenever U is semi open. Hence, $A \cup B$ is gs δI^* -closed set in (X, τ, I) .

Theorem 3.17. Let (X, τ, I) be an ideal space. If A is a gs δI^* -closed subset of X and A $\subseteq B \subseteq [A]^*$, then B is also gs δI^* -closed. **Proof.** The proof is clear.

Theorem 3.18. A subset A of an ideal space (X, τ, I) is $gs\delta I^*$ -closed if and only if $[A]^* \subseteq sker(A)$.

Proof. Necessity - Suppose A is $gs\delta I^*$ -closed and $x \in [A]^*$. If $x \notin sker(A)$, then there exist a semiopen set U such that $A \subseteq U$ but $x \notin U$. Since A is $gs\delta I^*$ -closed, $[A]^* \subseteq U$ and so $x \notin [A]^*$, a contradiction. Therefore, $[A]^* \subset sker(A)$.

Sufficiency - Suppose that $[A]^* \subseteq$ sker(A). If $A \subseteq U$ and U is semiopen then sker(A) \subseteq U and so $[A]^* \subseteq U$. Therefore, A is gs δI^* -closed.

Theorem3.19. Let A be a semi \wedge - set of an ideal space (X, τ , I). Then A is gs δ I*-closed if and only if A is δ I*-closed.

Proof. Necessity - Suppose A is $gs\delta I^*$ -closed. Then by Theorem 3.18, $[A]^* \subseteq sker(A) = A$, since A is semi \wedge - set. Therefore, A is δI^* -closed.

Sufficiency - The proof is follows from the Theorem 2.2.

Definition 3.20. A proper nonempty $gs\delta I^*$ -closed subset A of an ideal space (X, τ , I) is said to be maximal $gs\delta I^*$ -closed if any $gs\delta I^*$ -closed set containing A is either X or A.

Example 3.21. Let $X = \{a, b, c, d\}, \tau = \{X, \phi, \{b\}, \{c, d\}, \{b, c, d\}\}$ and $I = \{\phi, \{d\}\}$. Then $\{a, b, c\}$ is a maximal gs δI^* -closed set.

Theorem 3.22. In an ideal space (X, τ, I) , the following are true.

(i) Let F be a maximal gs δI^* -closed set and G be a gs δI^* -closed set. Then $F \cup G = X$ or $G \subseteq F$.

(ii) Let F and G be maximal $gs\delta I^*$ -closed sets. Then $F \cup G = X$ or F = G.

Proof. (i)Let F be a maximal $gs\delta I^*$ -closed set and G be a $gs\delta I^*$ -closed set. If $F \cup G = X$, then there is nothing to prove. Assume that, $F \cup G \neq X$. Now, $F \subseteq F \cup G$. By Theorem 3.16, $F \cup G$

is a gs δ I*-closed set. Since F is maximal gs δ I*-closed, we have $F \cup G = X$ or $F \cup G = F$. F. Hence, $F \cup G = F$ and so $G \subseteq F$.

(ii) Let F and G be maximal gs δI^* -closed sets. If $F \cup G = X$, then there is nothing to prove. Assume that, $F \cup G \neq X$. Then by (i), $F \subseteq G$ and $G \subseteq F$, which implies that, F = G.

Theorem 3.23. A subset A of an ideal space (X, τ, I) is $gs\delta I^*$ -open if and only if $F \subseteq [A]_{int}^*$ whenever F is semiclosed and $F \subseteq A$.

Proof. Necessity - Suppose A is $gs\delta I^*$ -open and F be a semiclosed set contained in A. Then $X - A \subseteq X - F$ and hence $[X - A]^* \subseteq X - F$. Thus, $F \subseteq X - [X - A]^* = [A]_{int}^*$.

Sufficiency - Suppose $X - A \subseteq U$, where U is semiopen. Then $X - U \subseteq A$ and X - U is semiclosed. Then $X - U \subseteq [A]_{int}^*$, which implies $[X - A]^* \subseteq U$. Therefore, X - A is gs δI^* -closed and hence A is gs δI^* -open.

Theorem 3.24. If A is a gs δI^* -open subset of an ideal space (X, τ, I) and $[A]_{int}^* \subseteq B \subseteq A$. Then B is also a gs δI^* -open subset of (X, τ, I) .

Proof. Suppose $F \subseteq B$, where F is semiclosed set. Then, $F \subseteq A$. Since A is $gs\delta I^*$ -open, $F \subseteq [A]_{int}^*$. Since $[A]_{int}^* \subseteq [B]_{int}^*$, we have $F \subseteq [B]_{int}^*$. By the above Theorem 3.23, B is $gs\delta I^*$ -open.

References

[1] S. P. Arya, T. Nour, Characterizations of S-normal Spaces, Indian J. Pure Appl. Math., 21 (8), 717 - 719. 1990.

[2] P. Bhattacharya, B. K. Lahiri, Semi-generalized Closed Sets in Topology, Indian J. Math., 29, 375 – 38. 1987.

[3] J. Dontchev, M. Ganster., D. Rose, Ideal Resolvability. Topology and its Appl., 93, pp.1-16. 1999.

[4] D. Jonkovic, T.R. Hamlett, New Topologies from old via Ideals, Amer. Math., Monthly 97, pp. 295-310. 1990.

[5] K. Kuratowski, Topology, Vol. I. New York: Academic Press, 1996.

[6] N. Levine, Generalized Closed Sets in Topology, Rend. Circ. Mat. Palermo., 19, 89 - 96. 1970.

[7] N. Levine, Semiopen Sets and Semi continuity in Topological Spaces, Amer. Math. Monthly, 70, 36 - 41.1963.

[8] H. Maki, R. Devi and K. Balachandran, Generalized α -closed sets in Topology, Bull. Fukuoka Uni., Ed part III, 13 - 21. 1993.

[9] H. Maki, R. Devi and K. Balachandran, Associated Topologies of Generalized α - closed Sets and α -generalized Closed Sets, Mem. Fac. Sci. Kochi Univ. Ser. A. Math., 15, 57 – 63. 1994.

[10] M.N. Mukherjee, R. Bishwambhar, R. Sen, On Extension of Topological Spaces in terms of Ideals. Topology and its Appl., 154, pp. 3167-3172, 2007.

[11] B.M. Munshi and D. S. Bassan, Superc continuous Mappings, Indian J. Pure Appl. Math., 13, 229 – 236, 1982.

[12] A.A. Nasef, Rearmament, Some Applications via Fuzzy ideals. Chaos, Solitons and Fractals 13, pp. 825-831, 2002.

[13] M. Navaneethakrishnan, J. Paulraj Joseph, g-closed sets in ideal Topological Spaces, Acta. Math. Hungar., DOI.10.107/s10474-007-7050-1.

[14] O. Njastad, On Some Classes of Nearly Open Sets, Pacific J. Math., 15 (3), 961 – 970. 1965.

[15] T. Noiri, On δ -continuous Functions, J. Korean Math. Soc., 16, pp 161 – 166, 1980.

[16] K. Palani, Karthigaijothi, δI^* -Closed sets in Ideal Topological Spaces- Chap. II-Ph.d –Mini Project.

[17] K. Palani, Karthigaijothi, Generalization of δ I*-Closed Sets in Ideal Topological Spaces – Ph.d Mini Project – Chap. III.

[18] V. Vaidyanathaswamy, The Localization Theory in set Topology, Proc. Indian. Acad. Sci. 20, 1945.

[19] N.V. Velicko, H-Closed Topological Spaces, Math. Sb., 70, pp. 98-112, 1996.

[20] M.K.R.S. Veerakumar, On \hat{g} –closed sets in Topological Spaces, Bull.Allh.Math. Soc., 99 – 112. 2003.

[21] S. Yuksel, A. Acikgoz, T. Noiri, On δ-I-Continuous Functions, Turk J Math, 29, pp.39-51, 2005.