Independent Restrained k - Rainbow Dominating Function

M. Esakki Dharani^{*} A. Nagarajan[†] K. Palani[‡]

Abstract

Let G be a graph and let f be a function that assigns to each vertex a set of colors chosen from the set {1, 2..., k} that is f: V(G) \rightarrow P [1, 2, ..., k]. If for each vertex $v \in V(G)$ such that $f(v) = \emptyset$ we have $\bigcup_{u \in N[v]} f(u) = \{1, 2, ..., k\}$ then f is called the k – Rainbow Dominating Function (KRDF) of G. A k – Rainbow Dominating Function is said to be Independent Restrained k - Rainbow Dominating function if (i)The set of vertices assigned with non – empty set is independent. (ii)The induced subgraph of G, by the vertices with label \emptyset has no isolated vertices. The weight w(f) of a function f is defined as w(f) = $\sum_{v \in V(G)} |f(v)|$. The Independent Restrained k – Rainbow Domination number is the minimum weight of G. In this paper we introduce Independent Restrained k – Rainbow Domination and find for some graphs

Keywords: Independent, Restrained, Rainbow domination number, weight.

2010 AMS subject classification: 05C69[§]

^{*}Research Scholar (Reg.No.21212232092011), PG & Research Department of Mathematics, V.O. Chidambaram College, Thoothukudi-628008, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.dhanushiya1411@gmail.com

[†]Associate Professor (Retd.), V.O. Chidambaram College, Thoothukudi-628008, Tamil Nadu, India Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.nagarajan.voc@gmail.com

[‡]Associate Professor, A.P.C. Mahalaxmi College for Women, Thoothukudi-628008, Tamil Nadu, India. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.palani@apcmcollege.ac.in

[§] Received on June 10th, 2022. Accepted on Sep 1st, 2022. Published on Nov 30th, 2022. doi: 10.23755/rm.v44i0.924. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors.This paper is published under the CC-BY licence agreement.

1. Introduction

Domination in graphs originates from location problems in operations research. As a variation of domination in graphs, rainbow domination was introduced by Bresar et al. [2]. Shao et al. [7] gave bounds for the k – rainbow domination number on an arbitrary graph. Hao et al. [4] studied the k – rainbow domination number of directed graphs. Independent rainbow domination was introduced by Zehui Shao et al. [8]. Amjadi et al. [1] was investigated the rainbow restrained domination number. In this paper we introduce Independent Restrained k – Rainbow Domination and find for some graphs.

2. Preliminaries

A graph G consists of pair(V(G), E(G)) where V(G) is a non-empty finite set whose elements are called points or vertices and E(G) is a set of unordered pair of distinct elements of V(G). The elements of E(G) are called lines or edges of the graph G. For any vertex u in G, the open neighbourhood of u, is denoted by N(u) is the set of vertices adjacent to u and the closed neighbourhood of u, is denoted by $N[u] = N(u) \cup \{u\}$. A set of vertices in a graph is said to be an independent set of vertices or simply an independent if no two vertices in the set are adjacent. The splitting graph of G is denoted by S[G]For each vertex v of a graph G, take a new vertex v' and join v' to all vertices adjacent to v in G.The corona product of two graphs G and H is defined as the graph obtained by taking one copy of G and |V(G)| copies of H and joining the i^{th} vertex of G to every vertex in the i^{th} copy of H. It is denoted as $G \circ H$. Let G be a graph and let f be a function that assigns to each vertex a set of colors chosen from the set {1, 2, ..., k} that is f : V(G) \rightarrow P [1,2,...,k]. If for each vertex v \in V(G) such that f(v) = Ø we have $\bigcup_{u \in N[v]} f(u) = \{1, 2, ..., k\}$ then f is called the k – Rainbow Dominating Function (KRDF) of G. A k – Rainbow dominating function is called independent k – Rainbow Domination if vertices assigned with non - empty sets are pairwise nonadjacent. A k - Rainbow dominating function is called Rainbow Restrained Domination function if vertices assigned with empty sets has no isolated vertex.

3. Main Results

Definition 3.1. Let G be a graph and let f be a function that assigns to each vertex a set of colors chosen from the set $\{1, 2, ..., k\}$ that is $f : V(G) \rightarrow P[1,2,...,K]$. If for each vertex $v \in V(G)$ Such that $f(v) = \emptyset$. we have $\bigcup_{u \in N[v]} f(u) = \{1,2,...,k\}$ then f is called the k – Rainbow Dominating Function (KRDF) of G. A k – Rainbow Dominating Function is said to be Independent Restrained k- Rainbow Dominating function if

- i. The set of vertices assigned with non empty set is independent.
- ii. The induced subgraph of G, by the vertices with label \emptyset has no isolated vertices.

Independent Restrained k - Rainbow Dominating Function

The weight w(f) of a function f is defined as w(f) = $\sum_{v \in V(G)} |f(v)|$. The Independent Restained k – Rainbow Domination number is the minimum weight of G.

Observation 3.2.

- 1. Let u be a pendant vertex to v. If one of the vertex u and v is assigned $\{1, 2, \dots, k\}$ then the other may be assigned \emptyset . (i.e) if the end vertex is assigned $\{1, 2, \dots, k\}$ then the support vertex may be assigned \emptyset
- 2. Always $k \leq \gamma_{irkr} \leq nk$
- 3. If a graph G has a clique as a subgraph, then one of the vertices of the clique should be labelled $\{1, 2, \dots, k\}$ and all the remaining vertices are labelled \emptyset .

Theorem 3.3. Let G be a graph and let v be a full degree vertex in G. Suppose $G - \{v\}$ has no isolated vertex then $\gamma_{irkr}(G) = k$

Proof:

Define f: V(G) \rightarrow P [1,2,...,k] by $f(x) = \begin{cases} \{1,2,...,k\} & if x = v \\ \emptyset & otherwise \end{cases}$ Then clearly f is an independent restrained rainbow dominating function.

Further w(f) = k

As $\gamma_{irkr}(G) \ge k$, f is a minimum independent restrained k rainbow dominating function. Therefore, $\gamma_{irkr}(G) = k$

Corollary 3.4: Complete graph, Wheel graph, Fan graph, Flower graph all have independent restrained k rainbow domination number is equal to k.

Theorem 3.5: The Independent Restrained k- Rainbow Dominating function exists for path graph P_n if and only if $n \equiv 1 \mod 3$ and then $\gamma_{irkr}(P_n) = \left\lfloor \frac{n}{3} \right\rfloor$ k, where $n \equiv$ $1 \mod 3$

Proof: When $n \equiv 0$ or 2 mod 3, the graph G does not admit any Independent Restrained k Rainbow dominating function. Since any k Rainbow Dominating function f fails to satisfy either Independent or Restrained condition.

let $v_1, v_2, v_3, \dots v_n$ be the vertices of the path graph.

Define f: $V(G) \rightarrow P[1, 2, ..., k]$ by $f(x) = \begin{cases} \{1, 2, \dots, k\} & \text{if } x = v_i \\ \text{where} i \equiv 1 \mod 3 \text{ and } 0 \le i \le n \\ \emptyset & \text{otherwise} \end{cases} \end{cases}$

Then clearly f is an Independent Restrained k Rainbow Dominating function. Therefore, w(f) = $\sum |f(v_i)| = |f(v_1)| + |f(v_4)| + |f(v_7)| + \dots + |f(v_n)|$ Therefore, $\gamma_{irkr}(P_n) = \left[\frac{n}{3}\right] \mathbf{k}$

M. Esakki Dharani, A. Nagarajan, and K. Palani

Theorem 3.6: The Independent Restrained k- Rainbow Dominating function exists for cycle graph C_n if and only if $n \equiv 0 \mod 3$ and then $\gamma_{irkr}(C_n) = \frac{nk}{3}$, $n \equiv 0 \mod 3$ **Proof:** When $n \equiv 1 \text{ or } 2 \mod 3$, the graph G does not admit any Independent Restrained k Rainbow dominating function. Since any k Rainbow Dominating function f fails to satisfy either Independent or Restrained condition. let $v_1, v_2, v_3, \dots v_n$ be the vertices of the cycle graph.

Define f: V(G) \rightarrow P [1, 2, ..., k] by $f(x) = \begin{cases} where i \equiv 0 \mod 3 \pmod{0} \le i \le n \\ \emptyset & otherwise \end{cases}$

Then clearly f is an Independent Restrained k Rainbow Dominating function. Therefore, w(f) = $\sum |f(v_i)| = |f(v_3)| + |f(v_6)| + |f(v_9)| + \dots + |f(v_n)|$ Therefore, $\gamma_{irkr}(C_n) = \left[\frac{n}{3}\right] k$

Theorem 3.7: Let H_n be the helm graph obtained from the wheel by attaching a pendant vertex to each rim vertex. Then $\gamma_{irkr}(H_n) = k + n - 2$ for $n \ge 4$

Proof: Let $v_1, v_2, v_3, \dots v_{n-1}$ be the rim vertex. Let u be the apex vertex. Let w_1, w_2, \dots, w_{n-1} such that w_i is adjacent to v_i for $1 \le i \le n-1$.

Define f: V(G) \rightarrow P [1, 2, ..., k] by $f(x) = \begin{cases} \{1\}ifx = w_i \text{ where } 1 \le i \le n-1 \\ \{2,3,...,k\}ifx = u \\ \emptyset \text{ otherwise} \end{cases}$

Obviously, every vertex v with labelled \emptyset satisfies the condition $\bigcup_{u \in N[v]} f(u) = \{1, 2, ..., k\}$

∴f is a k Rainbow Dominating Function.

Let S be the set of vertices assigned \emptyset labelled then S = { $v_1, v_2, v_3, ..., v_{n-1}$ }. Here $\langle S \rangle$ has no isolated vertices.

Let S' be the set of vertices assigned non empty labelled. Then $S' = \{u, w_1, w_2, \dots, w_{n-1}\}$ is Independent.

Then clearly f is an Independent Restrained k Rainbow Dominating function.

 $\therefore w(f) = \sum (|f(u)| + |f(w_i)|) \text{ where } i = 1 \text{ to } n - 1$ Therefore, $\gamma_{irkr}(H_n) = k + n - 2$

Theorem 3.8: Let $(C_n \circ K_1)$ be the crown graph obtained by joining a pendant edge to each vertex of C_n . Then for $n \ge 1$, $\gamma_{i_{rkr}}(C_n \circ k_1) = nk$

Proof: Let $v_1, v_2, v_3, ..., v_n$ be the vertices of the cycle. Let $w_1, w_2, w_3, ..., w_n$ be the set of end vertices of the crown graph, where $1 \le i \le n$.

 $\begin{array}{l} \text{Define f: V(G)} \rightarrow & \mathbb{P}\left[1, 2, ..., k\right] \text{ by} \\ f(\mathbf{x}) = \begin{cases} \{1, 2, ..., k\} i f \mathbf{x} = w_i \; ; \; 1 \leq i \leq n \\ \emptyset & \text{otherwise} \end{cases} \right\}$

Obviously, every vertex v with labelled \emptyset satisfies the condition $\bigcup_{w \in N[v]} f(w) = \{1, 2, ..., k\}$

∴f is a k Rainbow Dominating Function.

By Observation 3.2(1), we assigned $\{1, 2, ..., k\}$ to the end vertices, which is independent and we assigned \emptyset to all the support vertices. Then the induced subgraph of empty set is also connected.

Hence it satisfies both Independent and Restrained condition.

Then clearly f is an Independent Restrained k Rainbow Dominating function.

 $\therefore w(f) = \sum (|f(w_i)|) \text{ where } i = 1 \text{ to } n = |f(w_1)| + |f(w_2)| + |f(w_3)| + \dots + |f(w_n)| = nk$ Therefore, $\gamma_{i_{rkr}}(C_n \circ k_1) = nk$

Remark 3.9:

(i) In Observation 2.2 (2), Equality holds. Since $\gamma_{i_{rkr}}(K_n) = nk$ and $\gamma_{i_{rkr}}(C_n \circ k_1) = nk$.

(ii) The inequality is also strict. Since $\gamma_{irkr}(H_n) = k + n - 2$

References

[1] J. Amjadi S.M. Sheikholeslami. L. Volkmann. Rainbow Restrained domination numbers in graphs, in Ars Combinatoria

[2] B. Bresar, M. Henning, D. Rall, *Rainbow domination in graphs, Taiwanese J. Math. 12* (2008), 213–225.

[3] Fujita. S, Furuyana. M, Magnant C general bounds on rainbow domination numbers. Graphs Combin 2015,31, 601-613.

[4] Hao, G.L, Quian, J. G. On the rainbow domination number of digraphs. Graphs Combin 2016, 32,1903 -1913.

[5] T.W. Haynes, S. T. Hedetniemi and P.J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, New York, 1998.

[6] Hong Gao, Changqing Xi, Yuansheng Yang. The 3-rainbow domination number of the cartesian product of the cycles.

[7] Shao z h, Liang M L, Yin C, Pavlic P, Zerovnik J. On rainbow domination number of graphs. Inform. Sci. 2014, 254,225-234.

[8] Zehui Shao, Zepeng Li, Aljosa Peperko, Jiafu Wan. Independent rainbow domination of graphs.