The Detour Monophonic Convexity Number of a Graph

M. Sivabalan*
S. Sundar Raj ${ }^{\dagger}$
V. Nagarajan*

Abstract

A set S is detour monophonic convexif $J_{d m}[S\}=S$. The detour monophonic convexity number is denoted by $C_{d m}(G)$, is the cardinality of a maximum proper detour monophonic convex subset of V.Some general properties satisfied by this concept are studied. The detour monophonic convexity number of certain classes of graphs are determined. It is shown that for every pair of integers a and b with $3 \leq a<b$, there exists a connected graph G such that $C_{m}(G)=a$ and $C_{d m}(G)=2(b+1)$, where $C_{m}(G)$ is the monophonic convexity number of G.

Keywords: convex, detour, chord, detour monophonic path, monophonic convexity number, detour monophonic, convexity number.

AMS subject classification: $05 \mathrm{C} 12,05 \mathrm{C} 38^{\S}$.

[^0]M. Sivabalan, S. Sundar Raj and V. Nagarajan,

1. Introduction

By a graph $G=(V, E)$, we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology, we refer to [1]. A vertex v is adjacent to another vertex u if and only if there exists an edge $e=u v \in E(G)$. If $u v \in E(G)$, we say that u is a neighbor of v and denote by $N_{G}(v)$, the set of neighbors of v. A vertex v is said to be universal vertex if $\operatorname{deg}_{G}(v)=p-1$. A vertex v is called an extreme vertex if the subgraph induced by v iscomplete.
The length of a path is the number of its edges. Let u and v be vertices of a connected graph G. A shortest u-v path is also called a u-vgeodesic. The (shortest path) distance is defined as the length of a $u-v$ geodesic in G and is denoted by $d_{G}(u, v)$ or $d(u, v)$ for short if the graph is clear from the context. For a set S of vertices, let $I[S]=$ $\mathrm{U}_{x, y \in S} I[x, y]$. A set $S \subset V$ is called a convex set of G if $I[S]=S$. These concepts were studied in [1,3]

A chord of a path P is an edge which connects two non-adjacent vertices of P . A uv path is called a monophonic path if it is a chordless path. For two vertices u and v, the closed interval $J[\mathrm{u}, \mathrm{v}]$ consists of all the vertices lying in a $\mathrm{u}-\mathrm{v}$ monophonic path including the vertices u and v. If u and v are adjacent, then $J[u, v]=\{u, v\}$. For a set M of vertices, let $J[M]=U_{u, v \in M} J[u, v]$. Then certainly $M \subseteq J[M]$. A set $M \subseteq V(G)$ is called a monophonic set of G if $J[M]=V$. The monophonic number $m(G)$ of G is the minimum order of its monophonic sets and any monophonic set of order $m(G)$ is called a m-set of G. A set $M \subseteq V(G)$ is called a monophonic convex set of G if $J(M)=M$. The monophonic convexity number $C_{m}(G)$ of G is the cardinality of a maximum proper monophonic convex subset of V. These concepts were studied in [5-10].

The detour distance $D(u, v)$ between two vertices u and v in a connected graph G from u to v is defined as the length of a longest $u-v$ path in G. An $u-v$ path of length $D(u, v)$ is called an $u-v$ detour. The detour monophonic distance $d m(u, v)$ between two vertices u and v is the length of a longest $u-v$ monophonic path in G, Any monophonic path of length $\mathrm{dm}(u, v)$ is called $u-v$ detour monophonic path. For two vertices $u, v \in$ V, let $J_{d m}[u, v]$ denotes the set of all vertices that lies in u-vdetour monophonic path including u and v, and $J_{d m}(u, v)$ denotes the set of all internal vertices that lies in $u-$ v detour monophonic path. For $M \subseteq V$, let $J_{d m}[M]=\cup_{u, v \in M} J_{d m}[u, v]$.A set $M \subseteq V$ is a detour monophonic set if $J_{d m}[M]=V$. The minimum cardinality of a detour monophonic set of G is the detour monophonic number of G and is denoted by $\mathrm{dm}(G)$. The detour monophonic set of cardinality $d m(G)$ is called dm-set. These concepts were studied in $[2,4,11]$.

2.The detour monophonic convexity number of a Graph

Definition 2.1. A set S is detour monophonic convex if $J_{d m}[S\}=S$. Clearly $S=\{v\}$ or $S=V$ then S is detour monophonic convex. The detour monophonic convexity number
is denoted by $C_{d m}(G)$, is the cardinality of a maximum proper detour mono-phonic convex subset of V.

Example 2.2. For the graph G in Figure 2.1, $M_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}, v_{7}, v_{8}\right\}$ is a $C_{d m^{-}}$ set of G so that $C_{d m}(G)=8$. Also $M_{2}=\left\{v_{1}, v_{2}\right\}$ is a C_{m}-set of G so that $C_{m}(G)=2$.

Figure 2.1
Observation 2.3. Let G be a connected graph of order $p \geq 3$. Then $2 \leq C_{d m}(G) \leq$ $p-1$.

Theorem 2.4. Let G be a connected graph of order p and G contains an extreme vertex. Then $C_{d m}(G)=p-1$.
Proof. Let G contain an extreme vertex, say v. Then $S=V(G)-\{v\}$ is a dm-convex set of G so that $C_{d m}(G)=p-1$.

Theorem 2.5. Let G be a connected graph of order $p \geq 3$. Then $2 \leq \omega(G) \leq C_{d m}(G) \leq$ $p-1$, where $\omega(G)$ is the clique number of G.
Proof. Since G is a connected graph of order $p \geq 3, \omega(G) \geq 2$. Let H be a subgraph of G such that $\langle V(H)\rangle$ is a maximal complete subgraph of G so that $C_{d m}(G) \geq|v(H)|=\omega(G)$. Let S be a $d m$-convex set of G. Then S is a convex set of G so that $C_{d m}(G) \leq C(G)$. Since every convex set of G is a proper subset of $G, C(G) \leq p-1$. Therefore $2 \leq \omega(G) \leq C_{d m}(G) \leq p-1$..

Corollary 2.6. (i) For the complete graph $G=K_{p}(p \geq 3), C_{d m}(G)=p-1$.
(ii) For a trivial tree G of order $p \geq 3, C_{d m}(G)=p-1$.
(iii) For the fan graph $G=K_{1}+P_{p-1}(p \geq 4), C_{d m}(G)=p-1$.

Theorem 2.7. For the cycle $G=C_{p},(p \geq 3), C_{d m}(G)=2$.

Proof. Let $S=\{x, y\}$ be a set of two adjacent vertices of G. Then $J_{d m}[S]=S$, it follows that S is a $d m$-convex set of G so that $C_{d m}(G) \geq 2$. We prove that $C_{d m}(G)=2$. Suppose that $C_{d m}(G) \geq 3$. Then there exists a dm-convex set S_{1} such that $\left|S_{1}\right| \geq 3$. Hence it follows that S_{1} contains two independent vertices of G. Then $J_{d m}\left[S_{1}\right] \neq S_{1}$. Therefore $C_{d m}(G)=2$.

Theorem 2.8. For the complete bipartite graph $G=K_{m, n}, C_{d m}(G)=2$.
Proof: Let $\left(V_{1}, V_{2}\right)$ be a partition of G. Since $\omega(G)=2, C_{d m}(G) \geq 2$. We prove that $C_{d m}(G)=2$. Suppose that $C_{d m}(G) \geq 3$. Then there exists two vertices x and y belong to the same partite V_{1} (or V_{2}). Since $d(x, y)=2$ in G, every vertex in V_{1} (or V_{2}) lie on $x-y$ detour monophonic. Hence it follows that $J_{d m}[S] \neq S$. Therefore $C_{d m}(G)=2$.

Theorem 2.9. For the wheel graph $\mathrm{G}=W_{p}=K_{1}+C_{p-1}(p \geq 4), C_{d m}(G)=3$.
Proof. $\operatorname{Let} V\left(K_{1}\right)=x \operatorname{and} V\left(C_{p-1}\right)=\left\{v_{1}, v_{2}, \ldots v_{p-1}\right\}$. Then $S=\left\{x, v_{1}, v_{2}\right\}$ is a detour monophonic convex set of G so that $C_{d m}(G) \geq 3$. We prove that $C_{d m}(G)=3$. Suppose that $C_{d m}(G) \geq 4$. Then there exists $d m$-convex set S_{1} such that $\left|S_{1}\right| \geq 4$. Hence it follows that S_{1} contains two independent vertices of G. Then $J_{d m}\left[S_{1}\right] \neq S_{1}$. Therefore $C_{d m}(G)=3$.

Theorem 2.10. For any two positive integers such that $2 \leq a \leq b$, there exists a connected graph G such that $\omega(G)=a$ and $C_{d m}(G)=b$.
Proof. For $a=b$, let $G=K_{a+1}-\{e\}$. Then $\omega(G)=C_{d m}(G)=a$.For $a<b$, let K_{a} be the complete graph with vertices $v_{1}, v_{2}, \ldots, v_{a}$. Let $P: u_{1}, u_{2}, \ldots, u_{b-a}, u_{b-a+1}, \ldots, u_{c}$ where $c>b-a$ a path on c vertices. Let G be the graph obtained from K_{a} and P by joining u_{1} with v_{a-1} and v_{a} each $u_{i}(2 \leq i \leq b-a)$ with v_{a-1} and u_{c} with v_{a-1}. The graph G is shown in Figure 2.2.
First, we prove that $\omega(G)=a$. Let $S=\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$. It is clear that S is a maximal complete subgraph of G such that $\omega(G)=a$.
Next, we prove that $C_{d m}(G)=b$. Let $W=\left\{v_{1}, v_{2}, \ldots, v_{a}, u_{1}, u_{2}, \ldots, u_{b-a}\right\}$. It is clear that W is a $d m$-convex set of G so that $C_{d m}(G) \geq G$. We prove that $C_{d m}(G)=b$. Suppose that $C_{d m}(G)>b$. Let S_{1} be a dm-convex set with $\left|S_{1}\right| \geq b+1$.Then there exists a vertex $u_{i}(b-a+1 \leq i \leq c)$ such that $u_{i} \in S_{1}$. Then $J_{d m}\left[S_{1}\right] \neq$ S_{1}.Therefore $C_{d m}(G)=b$.

Figure 2.2

Theorem 2.11. For every pair of integers a and b with $3 \leq a<b$, there exists a connected graph G such that $C_{m}(G)=a$ and $C_{d m}(G)=2(b+1)$.
Proof. Let $V\left(\bar{K}_{2}\right)=\{x, y\}$. Let $P_{i}: u_{i}, v_{i}(1 \leq i \leq b)$ be a copy of path of order two. Let G be the graph obtained from $\bar{K}_{2}, P_{i}(1 \leq i \leq b)$ and K_{a-1} by joining x with each $u_{i}(1 \leq i \leq b)$ and y with each $v_{i}(1 \leq i \leq b)$ and x and y with each vertex of K_{a}. The graph G is shown in Figure 2.3.
First, we prove that $C_{m}(G)=a$. Let $M=V\left(K_{a}\right) \cup\{x\}$. Then M is a monophonic convex set of G and so $C_{m}(G) \geq a$. We prove that $C_{m}(G)=a$. Suppose that $C_{m}(G) \geq$ $a+1$. Let M_{1} be m-convex set with $|S| \geq a+1$. Then there exists at least one vertex, say x such that $x \in M_{1}$ and $x \notin M$. Hence it follows that $x=u_{i}$ or v_{i} or y for some $i(1 \leq i \leq b)$. Then $J_{m}\left[M_{1}\right] \neq M_{1}$, which is a contradiction. Therefore $C_{m}(G)=a$.
Next we prove that $C_{d m}(G)=2(b+1)$. Let $S=V(G)-V\left(K_{a}\right)$. Then S is a detour monophonic convex set of G and so $C_{d m}(G) \geq 2(b+1)$. We prove that $C_{d m}(G)=$ $2(b+1)$. On the contrary $C_{d m}(G)>2(b+1)$. Let S_{1} be a dm-convex set with $\left|S_{1}\right| \geq$ $2(b+1)+1$. Then there exists a vertex $x \in S_{1}$ such that $x \notin S$. Hence it follows that $x \in K_{a}$. Then $J_{d m}\left[S_{1}\right] \neq S_{1}$. Therefore $C_{d m}(G)=2(b+1)$.

M. Sivabalan, S. Sundar Raj and V. Nagarajan,

Figure 2.3

3. Conclusions

In this paper, we investigated the detour monophonic convexity number of some standard graphs. Also, we proved for every pair of integers a and b with $3 \leq a<b$, there exists a connected graph G such that $C_{m}(G)=a$ and $C_{d m}(G)=2(b+1)$.

Acknowledgements

The author would like to express her gratitude to the referees for their valuable comments and suggestions.

References

[1] F. Buckley and F. Harary, Distance in Graphs, Addition-Wesley, Redwood City, CA, 1990.
[2] G. Chartrand, G. Johns and S. Tian, Detour Distance in Graphs, Annals of Discrete Mathematics,55, 127-136, 1993.
[3] G. Chartrand, C. Wall and P. Zhang, The Convexity number of a Graph, Graphs and Combinatorics, 18, 209-217, 2002.
[4] G. Chartrand, G. Johns and P. Zhang, The detour number of a graph, Utilitas Mathematica, 64, 97-113, 2003.
[5] P. Duchlet, Convex sets in Graphs, II. Minimal path convexity, J. Comb. Theory, ser-B, 44, 307-316, 1988.
[6] J. John and S. Panchali, The upper monophonic number of a graph, International J. Combin, 4, 46-52,2010.
[7] Jase Caceres and Ortrud R. Oellermann, Minimal Trees and Monophonic Convexity Discussiones Mathematicae Graph Theory, 32, 685-704,2012.
[8] Mitre C. Dourado, Fabio Protti and Jayme L. Szwarcfiter, Complexity results related to monophonic convexity, Discrete Applied Mathematics, 158, 1268-1274. 2010.
[9] S. V. Padmavathi, The Weak (Monophonic) convexity number of a graph, Progress in Nonlinear Dynamics and chaos, 3(2), 71-79,2015.
[10] A. P. Santhakumaran and P. Titus, Monophonic distance in graphs, Discrete Mathematics, Algorithms and Applications, 3(2), 159 - 169,2011.
[11] P. Titus, K. Ganesamoorthy and P. Balakrishnan, The detour monophonic number of a graph, ARS Combinatoria, 84, 179-188,2013.

[^0]: *Register Number.12567, Research Scholar, Department of Mathematics, S.T. Hindu College, (Nagercoil - 629002, India); e-mail: sivabalanvkc@ gmail.com
 ${ }^{\dagger}$ Department of Mathematics, Vivekananda College, (Agasteeswaram - 629701, India); e-mail: sundarrajvc@gmail.com
 *Department of Mathematics, S.T. Hindu College, (Nagercoil - 629002, India);
 e-mail: sthcrajan@gmail.com Affiliated to Manonmaniam Sundaranar University, Abishekapatti,
 Tirunelveli - 627 012, Tamil Nadu, India
 § Received on June 12 th, 2022. Accepted on Sep 1st, 2022. Published on Nov 30th, 2022. doi: $10.23755 / \mathrm{rm} . \mathrm{v} 44 \mathrm{i} 0.918$. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors.This paper is published under the CC-BY licence agreement.

