On Forgotten Index of Stolarsky-3 Mean Graphs

Sree Vidya. ${ }^{1}$
Sandhya. S. S ${ }^{2}$

Abstract

The Forgotten index of a graph G is defined as $\mathrm{F}(\mathrm{G})=\sum_{u v \in E(G)}\left(d_{u}{ }^{2}+d_{v}{ }^{2}\right)$ over all edges $u v$ of G, where d_{u}, d_{v} are the degrees of the vertices u and v in G, respectively. In this paper, we introduced Forgotten index of some standard Stolarsky-3 Mean Graphs.

Keywords: Forgotten index, Stolarsky-3 Mean Graphs.
AMS Subject Classification: $05 \mathrm{C} 12^{3}$

[^0]
1. Introduction

Let G be a simple graph corresponding to a drug structure with vertex (atom) set $\mathrm{V}(\mathrm{G})$ and edge (bond) set $\mathrm{E}(\mathrm{G})$. The edge joining the vertices u and v is denoted by $u v$. Thus, if $u, v \in E(G)$ then u and v are adjacent in G. The degree of a vertex u, denoted by $\mathrm{d}(\mathrm{u})$, is the number of edge incident to u . Several topological indices such as Estrada index, Zagreb index, PI index, eccentric index, and wiener index have been introduced in the literature to study the chemical and pharmacological properties of molecules.
The forgotten topological index of a graph G is defined as the sum of weights ${d_{u}}^{2}+$ $d_{v}{ }^{2}$ over all edges $u v$ of G, where d_{u} and d_{v} are the degrees of the vertices u and v in G, respectively. In this paper, we characterize the external properties of F-index (forgotten topological index). We first introduce some graph transformation which increase or decrease this index. Recently in 2015 Furtula and Gutman was introduced another topological index called index or F-index as $\mathrm{F}(\mathrm{G})=\sum_{u v \in E(G)}\left(d_{u}{ }^{2}+d_{v}{ }^{2}\right)$. On the basis of this work, we introduce a new concept Forgotten index ofStolarsky3Meangraphs.Inthispaperweinvestigate Forgotten index of some standard graphs which admit Forgotten Mean graphs. We will provide a brief summary of definitions and other information which are necessary for our present investigation.

Definition:1.1 A graph G with p vertices and q edges is called a Stolarsky-3 Mean graph, if each vertex $x \in V$ with distinct labels $f(x)$ from $1,2, \ldots \ldots, q+1$ and eachedge $e=u v$ is assigned the distinct labels $f(e=u v)=$
$\left\lceil\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rceil$ or $\left\lfloor\sqrt{\frac{f(u)^{2}+f(u) f(v)+f(v)^{2}}{3}}\right\rfloor$ then the resulting edge labels are distinct. In this case f is called Stolarsky-3 Mean labeling of G.

Definition:1.2 Let G be a Stolarsky-3 Mean graph. The Forgotten index of a graph $\mathrm{F}(\mathrm{G})$ is defined by $\mathrm{F}(\mathrm{G})=\sum_{u v \in E(G)}\left(d_{u}{ }^{2}+d_{v}{ }^{2}\right)$, where $\mathrm{d}(\mathrm{u})$ is the degree of vertex u in G.

Theorem 1.3: Any Path Pn is a Stolarsky-3 mean graph.
Theorem 1.4: Any Cycle Cn is a Stolarsky-3 mean graph.
Theorem 1.5: Any Comb Pn $\odot K 1$ is a Stolarsky 3 mean graph.
Theorem 1.6: The ladder graph L_{n} is a Stolarsky-3 mean graph.
Theorem 1.7: ATriangular Snake graph T_{n} is a Stolarsky-3 mean graph.
Theorem 1.8: AQuadrilateral Snake graph Q_{n} is a Stolarsky-3 mean graph.

Remark 1.9: If G is a Stolarsky 3 mean graph, then ' 1 ' must be a label of one of the vertices of G, Since, an edge should get label ' 1 '.

Remark1.10: If u gets label ' 1 ', then any edge incident with must get label 1 (or) 2 (or) 3 . Hence this vertex must have a degree ≤ 3.

2. Main results

Theorem 2.1: Let $G=P_{n}$ be a Stolarsky-3 mean graph. Then the Forgotten index of a path P_{n} is $F\left(P_{n}\right)=5 n+4$.
Proof. Let $G=P_{n}$ be a Stolarsky-3 mean graph.

Figure: 1 Path P_{n}
We have $|V|=n$ and $|E|=n-1$.
Therefore, by the definition of forgotten topological index, we obtain
$\mathrm{F}(\mathrm{G})=\sum_{u v \in E(G)}\left(d_{u}{ }^{2}+d_{v}{ }^{2}\right)$
$=\left[\left(d\left(u_{1}\right)^{2}+d\left(u_{2}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(u_{3}\right)^{2}\right)+\cdots+\left(d\left(u_{n-1}\right)^{2}+d\left(u_{n}\right)^{2}\right)\right]$
$=\left(1^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+\cdots+\left(2^{2}+1^{2}\right)$
$=(n-1) \times 2+(n+2) \times 3=2 n-2+3 n+6$
$\mathrm{F}(\mathrm{G})=5 n+4$
Example 2.2. Forgotten index of P_{6} is given below

Figure: 2 Path P_{6}
$\mathrm{F}\left(\mathrm{P}_{6}\right)=\quad\left[\left(d\left(u_{1}\right)^{2}+d\left(u_{2}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(u_{3}\right)^{2}\right)+\left(d\left(u_{3}\right)^{2}+d\left(u_{4}\right)^{2}\right)+\right.$
$\left.\left(d\left(u_{4}\right)^{2}+d\left(u_{5}\right)^{2}\right)+\left(d\left(u_{5}\right)^{2}+d\left(u_{6}\right)^{2}\right)\right]=\left(1^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+$
$\left(2^{2}+2^{2}\right)+\left(2^{2}+1^{2}\right)$
$=5+8+8+8+5$
$=5 \times 2+8 \times 3$
$=34$
Theorem 2.3. The Forgotten index of cycle C_{n} is $F\left(C_{n}\right)=8 n$.
Proof. Let $G=C_{n}$ be a Stolarsky-3 mean graph

Sree Vidya.M \& Sandhya. S. S

Figure: $3 \mathrm{G}=\mathrm{C}_{\mathrm{n}}$
We have $|V|=n$ and $|E|=n-1$. Therefore, by the definition of forgotten topological index, we obtain
$\mathrm{F}(\mathrm{G})=\sum_{u v \in E(G)}\left(d_{u}{ }^{2}+d_{v}{ }^{2}\right)$
$=\quad\left[\left(d\left(u_{1}\right)^{2}+d\left(u_{2}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(u_{3}\right)^{2}\right)+\cdots+\left(d\left(u_{n-1}\right)^{2}+d\left(u_{n}\right)^{2}\right)+\right.$
$\left.\left(d\left(u_{n}\right)^{2}+d\left(u_{1}\right)^{2}\right)\right]$
$=\left(2^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+\cdots+\left(2^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)$
$=(8+8+\cdots+n$ times $)$
$\mathrm{F}(\mathrm{G})=8 n$
Example 2.4. Forgotten index of C_{6} is given below

Figure: $4 \mathrm{G}=\mathrm{C}_{6}$

$$
\begin{aligned}
& \mathrm{F}\left(C_{6}\right) \quad=\quad\left[\left(d\left(u_{1}\right)^{2}+d\left(u_{2}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(u_{3}\right)^{2}\right)+\left(d\left(u_{3}\right)^{2}+d\left(u_{4}\right)^{2}\right)+\right. \\
& \begin{array}{c}
\left.\left(d\left(u_{4}\right)^{2}+d\left(u_{5}\right)^{2}\right)+\quad\left(d\left(u_{5}\right)^{2}+d\left(u_{6}\right)^{2}\right)+\left(d\left(u_{6}\right)^{2}+d\left(u_{1}\right)^{2}\right)\right] \\
\\
=\left(2^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right) \\
\quad 8 \times 6=48
\end{array}
\end{aligned}
$$

Theorem 2.5. The Forgotten index of Comb graph $F\left(P_{n} \odot K_{1}\right)=21 n-65$.
Proof. Let $G=P_{n} \odot K_{1}$ be a Stolarsky -3 Mean graph.

Figure: 5 Comb $\mathrm{P}_{\mathrm{n}} \odot \mathrm{K}_{1}$
We have $|V|=n$ and $|E|=n-1$. Therefore, by the definition of forgotten topological index, we obtain
$\mathrm{F}(\mathrm{G})=\sum_{u v \in E(G)}\left(d_{u}{ }^{2}+d_{v}{ }^{2}\right)$
$=\left[\begin{array}{c}\left(d\left(u_{1}\right)^{2}+d\left(u_{2}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(u_{3}\right)^{2}\right)+\cdots+\left(d\left(u_{n-1}\right)^{2}+d\left(u_{n}\right)^{2}\right)+\left(d\left(u_{1}\right)^{2}+d\left(u_{3}\right)^{2}\right) \\ +\cdots+\left(d\left(u_{n-3}\right)^{2}+d\left(u_{n-1}\right)^{2}\right)\end{array}\right]$
$=\left[\left(2^{2}+1^{2}\right)+\left(3^{2}+1^{2}\right)+\cdots+\left(2^{2}+1^{2}\right)+\left(2^{2}+3^{2}\right)+\left(3^{2}+3^{2}\right)+\cdots+\left(3^{2}+2^{2}\right)\right]$
$=18 \times 3+13 \times 2+10 \times 4+5 \times 2$

$$
=9 n+4 n+6 n+16
$$

$\mathrm{F}(\mathrm{G})=19 n+16$
Example 2.6: Forgotten index of $\mathrm{P}_{6} \odot \mathrm{~K}_{1}$ is given below.

Figure: 6 Comb $\mathrm{P}_{6} \odot \mathrm{~K}_{1}$

$$
\begin{gathered}
\mathrm{F}\left(\mathrm{P}_{6} \odot \mathrm{~K}_{1}\right) \quad=\left[\left(2^{2}+1^{2}\right)+\left(2^{2}+3^{2}\right)+\left(3^{2}+1^{2}\right)+\left(3^{2}+3^{2}\right)+\left(3^{2}+1^{2}\right)+\right. \\
\left.\left(3^{2}+3^{2}\right)+\left(3^{2}+1^{2}\right)+\left(3^{2}+3^{2}\right)+\left(3^{2}+1^{2}\right)+\left(3^{2}+2^{2}\right)+\left(2^{2}+1^{2}\right)\right] \\
=18 \times 3+13 \times 2+10 \times 4+5 \times 2=130
\end{gathered}
$$

Theorem 2.7: Forgotten index of ladder graph L_{n} is $H\left(L_{n}\right)=\left\{\begin{array}{lll}8 n & \text { if } & n=2 \\ 32 n+12 & \text { if } & n>2\end{array}\right.$
Proof. Let $G=P_{n} \times P_{2}$ be a Stolarsky- 3 Mean graph

Figure: $7 \mathrm{G}=\mathrm{P}_{\mathrm{n}} \times \mathrm{P}_{2}$
Case (i) if $\mathbf{n}=\mathbf{2}$
$\mathrm{F}\left(L_{2}\right)=\left[\left(d\left(u_{1}\right)^{2}+d\left(u_{2}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(u_{4}\right)^{2}\right)+\cdots+\left(d\left(u_{n-1}\right)^{2}+d\left(u_{n}\right)^{2}\right)\right]$
$=\left(2^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+\cdots+\left(2^{2}+2^{2}\right)$
$=8+8+\cdots+n$ times
$=8 n$

Case (ii) if $\mathbf{n}>2$

$\mathrm{F}\left(L_{4}\right)$
$=$
$\left[\begin{array}{c}\left(d\left(u_{1}\right)^{2}+d\left(u_{2}\right)^{2}\right)+\cdots+\left(d\left(u_{n-1}\right)^{2}+d\left(u_{n}\right)^{2}\right)+\left(d\left(u_{1}\right)^{2}+d\left(u_{3}\right)^{2}\right)+\cdots+ \\ \left(d\left(u_{n-3}\right)^{2}+d\left(u_{n-1}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(u_{4}\right)^{2}\right)+\cdots+\left(d\left(u_{n-2}\right)^{2}+d\left(u_{n}\right)^{2}\right)\end{array}\right]$
$=\quad\left[\left(2^{2}+2^{2}\right)+\left(3^{2}+2^{2}\right)+\cdots+\left(2^{2}+2^{2}\right)+\left(2^{2}+3^{2}\right)+\left(3^{2}+3^{2}\right)+\cdots+\right.$
$\left.\left(3^{2}+2^{2}\right)+\left(2^{2}+3^{2}\right)+\cdots+\left(3^{2}+2^{2}\right)\right]$
$=8 \times 2+13 \times 4+18 \times 4$
$=2 n \times 2+(3 n+1) \times 4+(4 n+2) \times 4$
$=4(8 n+3)$
$\mathrm{F}\left(L_{4}\right)=32 n+12$
Example 2.8. Forgotten index of L_{4} is given below.

Figure: $8 \mathrm{~L}_{4}$
$\mathrm{F}\left(L_{4}\right)$
$\left[\begin{array}{c}\left(d\left(u_{1}\right)^{2}+d\left(u_{2}\right)^{2}\right)+\left(d\left(u_{3}\right)^{2}+d\left(u_{4}\right)^{2}\right)+\cdots+\left(d\left(u_{7}\right)^{2}+d\left(u_{8}\right)^{2}\right)+ \\ \left(d\left(u_{1}\right)^{2}+d\left(u_{3}\right)^{2}\right)+\cdots+\left(d\left(u_{5}\right)^{2}+d\left(u_{7}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(u_{4}\right)^{2}\right)+\cdots+\left(d\left(u_{6}\right)^{2}+d\left(u_{8}\right)^{2}\right)\end{array}\right]$
$=\quad\left[\left(2^{2}+2^{2}\right)+\left(3^{2}+3^{2}\right)+\left(3^{2}+3^{2}\right)+\left(2^{2}+2^{2}\right)+\left(2^{2}+3^{2}\right)+\left(3^{2}+3^{2}\right)+\right.$
$\left.\left(3^{2}+2^{2}\right)+\left(2^{2}+3^{2}\right)+\left(3^{2}+3^{2}\right)+\left(3^{2}+2^{2}\right)\right]$
$=8 \times 2+13 \times 4+18 \times 4$
$=16+52+72=140$
Theorem 2.9. Forgotten index of Triangular Snake graph T_{n} is $58 \mathrm{n}-6$.
Proof. Let us consider a Stolarsky-3 Mean graph $G=T_{n}$ be a Stolarsky-3 mean graph.

Figure: $9 \mathrm{G}=\mathrm{T}_{\mathrm{n}}$
$\mathrm{F}(\mathrm{G})=\sum_{u v \in E(G)}\left(d_{u}{ }^{2}+d_{v}{ }^{2}\right)$

```
\(=\quad\left[\left(d\left(u_{1}\right)^{2}+d\left(u_{2}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(u_{3}\right)^{2}\right)+\cdots+\left(d\left(u_{n-1}\right)^{2}+d\left(u_{n}\right)^{2}\right)+\right.\)
    \(\left(d\left(u_{1}\right)^{2}+d\left(v_{1}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(v_{2}\right)^{2}\right)+\cdots+\left(d\left(u_{n}\right)^{2}+d\left(v_{n}\right)^{2}\right)+\)
\(\left.\left(d\left(v_{1}\right)^{2}+d\left(u_{2}\right)^{2}\right)+\left(d\left(v_{2}\right)^{2}+d\left(u_{3}\right)^{2}\right)+\cdots\left(d\left(v_{n}\right)^{2}+d\left(u_{n+1}\right)^{2}\right)\right]\)
\(=\quad\left[\left(2^{2}+4^{2}\right)+\left(4^{2}+4^{2}\right)+\cdots+\left(4^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+\left(4^{2}+2^{2}\right)+\cdots+\right.\)
\(\left.\left(2^{2}+4^{2}\right)+\left(2^{2}+4^{2}\right)+\left(2^{2}+4^{2}\right)+\cdots+\left(2^{2}+2^{2}\right)\right]\)
\(=8 \times 2+20 \times 6+32\)
\(=(7 n-1) \times 6+(3 n-1) \times 2+32\)
\(=42 n-6+6 n-2+32\)
\(\mathrm{F}(\mathrm{G})=48 n+24\)
```

Example 2.10. Forgotten index of T_{3} is given below.

Figure: $10 \mathrm{G}=\mathrm{T}_{3}$

$$
\begin{aligned}
& \mathrm{F}\left(\mathrm{~T}_{3}\right)=\left[\left(d\left(u_{1}\right)^{2}+d\left(u_{2}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(u_{3}\right)^{2}\right)+\left(d\left(u_{3}\right)^{2}+d\left(u_{4}\right)^{2}\right)+\right. \\
& \left(d\left(u_{1}\right)^{2}+d\left(v_{1}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(v_{2}\right)^{2}\right)+\left(d\left(u_{3}\right)^{2}+d\left(v_{3}\right)^{2}\right)+\left(d\left(v_{1}\right)^{2}+\right. \\
& \left.\left.d\left(u_{2}\right)^{2}\right)+\left(d\left(v_{2}\right)^{2}+d\left(u_{3}\right)^{2}\right)+\left(d\left(v_{3}\right)^{2}+d\left(u_{4}\right)^{2}\right)\right] \\
& \quad=\left[\left(2^{2}+4^{2}\right)+\left(4^{2}+4^{2}\right)+\left(4^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+\left(4^{2}+2^{2}\right)+\left(2^{2}+4^{2}\right)+\right. \\
& \left.\left(2^{2}+4^{2}\right)+\left(2^{2}+4^{2}\right)+\left(2^{2}+2^{2}\right)\right] \\
& =8 \times 2+20 \times 6+32=120+16+32 \\
& =168
\end{aligned}
$$

Theorem 2.11: Forgotten index of Quadrilateral Snake graph Q_{n} is $80 \mathrm{n}-48$.
Proof. Consider $G=Q_{n}$ be a Stolarsky-3 mean graph.

Figure:11G $=Q_{n}$

$$
\begin{aligned}
& \mathrm{F}(\mathrm{G})=\sum_{u v \in E(G)}\left(d_{u}{ }^{2}+d_{v}{ }^{2}\right) \\
& =\quad\left[\left(d\left(u_{1}\right)^{2}+d\left(u_{2}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(u_{3}\right)^{2}\right)+\cdots+\left(d\left(u_{n}\right)^{2}+d\left(u_{n+1}\right)^{2}\right)+\right. \\
& =\left(d\left(u_{1}\right)^{2}+d\left(v_{1}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(v_{3}\right)^{2}\right)+\cdots+\left(d\left(u_{n}\right)^{2}+d\left(v_{2 n-1}\right)^{2}\right)+ \\
& \left(d\left(u_{2}\right)^{2}+d\left(v_{2}\right)^{2}\right)+\left(d\left(u_{3}\right)^{2}+d\left(v_{4}\right)^{2}\right)+\cdots+\left(d\left(u_{n+1}\right)^{2}+d\left(v_{2 n}\right)^{2}\right)+ \\
& \left(d\left(v_{1}\right)^{2}+d\left(v_{2}\right)^{2}\right)+\left(d\left(v_{3}\right)^{2}+d\left(v_{4}\right)^{2}\right)+\cdots+\left(d\left(v_{2 n-1}\right)^{2}+d\left(v_{2 n}\right)^{2}\right) \\
& =\left[\left(2^{2}+4^{2}\right)+\left(4^{2}+4^{2}\right)+\cdots+\left(4^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+\left(4^{2}+2^{2}\right)+\cdots+\right. \\
& \left.\left(4^{2}+2^{2}\right)+\left(4^{2}+2^{2}\right)+\left(4^{2}+2^{2}\right)+\cdots+\left(2^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+\cdots+\left(2^{2}+2^{2}\right)\right] \\
& =6(6 n+2)+5(2 n+2)+(n-2)(9 n+5)
\end{aligned}
$$

$$
=36 n+12+10 n+10+9 n^{2}+5 n-18 n-10
$$

$\mathrm{F}(\mathrm{G})=9 n^{2}+33 n+12$
Example 2.12. Forgotten index of Q_{3} is given below.

Figure: $12 \mathrm{G}=Q_{3}$
$\mathrm{F}\left(Q_{3}\right)=\left[\left(d\left(u_{1}\right)^{2}+d\left(u_{2}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(u_{3}\right)^{2}\right)+\left(d\left(u_{3}\right)^{2}+d\left(u_{4}\right)^{2}\right)+\right.$ $\left(d\left(u_{1}\right)^{2}+d\left(v_{1}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(v_{3}\right)^{2}\right)+\left(d\left(u_{3}\right)^{2}+d\left(v_{5}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+\right.$
$\left.d\left(v_{2}\right)^{2}\right)+\left(d\left(u_{3}\right)^{2}+d\left(v_{4}\right)^{2}\right)+\left(d\left(u_{4}\right)^{2}+d\left(v_{6}\right)^{2}\right)+\left(d\left(v_{1}\right)^{2}+d\left(v_{2}\right)^{2}\right)+$ $\left.\left(d\left(v_{3}\right)^{2}+d\left(v_{4}\right)^{2}\right)+\left(d\left(v_{5}\right)^{2}+d\left(v_{6}\right)^{2}\right)\right]$
$=\quad\left[\left(2^{2}+4^{2}\right)+\left(4^{2}+4^{2}\right)+\left(4^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+\left(4^{2}+2^{2}\right)+\left(4^{2}+2^{2}\right)+\right.$ $\left.\left(4^{2}+2^{2}\right)+\left(4^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)+\left(2^{2}+2^{2}\right)\right]$
$=[(20 \times 6)+(8 \times 5)+32 \times 1$
$=120+40+32$
$=192$
Theorem 2.13: Forgotten index of Crown graph $C_{n} \odot K_{1}$ is 28 n .
Proof. Consider $\mathrm{G}=C_{n} \odot K_{1}$ be a Stolarsky-3 mean graph.
$\mathrm{F}(\mathrm{G})=\sum_{u v \in E(G)}\left(d_{u}{ }^{2}+d_{v}{ }^{2}\right)$
$=\quad\left[\left(d\left(u_{1}\right)^{2}+d\left(u_{2}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(u_{3}\right)^{2}\right)+\cdots+\left(d\left(u_{n-1}\right)^{2}+d\left(u_{n}\right)^{2}\right)+\right.$
$\left(d\left(u_{n}\right)^{2}+d\left(u_{1}\right)^{2}\right)+\left(d\left(u_{1}\right)^{2}+d\left(v_{1}\right)^{2}\right)+\left(d\left(u_{2}\right)^{2}+d\left(v_{2}\right)^{2}\right)+\cdots+\left(d\left(u_{n}\right)^{2}+\right.$
$\left.\left.d\left(v_{n}\right)^{2}\right)\right]$
$=\left[\left(3^{2}+3^{2}\right)+\left(3^{2}+3^{2}\right)+\cdots+\left(3^{2}+3^{2}\right)+\left(3^{2}+1^{2}\right)+\cdots+\left(3^{2}+1^{2}\right)\right]$
$=[(18+18+\cdots+18)+(10+10+\cdots+10)$
$=18 n+10 n$
$\mathrm{F}(\mathrm{G})=28 n$
Example 2.14. Forgotten index of $C_{n} \odot K_{1}$ is given below.

Figure: $13 \mathrm{G}=C_{n} \odot K_{1}$
$\mathrm{F}\left(C_{n} \odot K_{1}\right)=\left[\left(3^{2}+3^{2}\right)+\left(3^{2}+3^{2}\right)+\left(3^{2}+3^{2}\right)+\left(3^{2}+1^{2}\right)+\left(3^{2}+1^{2}\right)+\right.$ $\left.\left(3^{2}+1^{2}\right)\right]$
$=[(18 \times 3)+(10 \times 3)]$
$=54+30$
$=84$

References

[1] F. Harary. Graph Theory, Narosa Publishing House: New Delhi; 2001.
[2] B. Furtula and I. Gutman, "A forgotten topological index ", Journal of mathematical chemistry, vol. 53, no. 4, pp. 1184-1190,2015.
[3] Toufik MANSOUR, Mohammad Ali ROSTAMI, On the bounds of the forgotten topological index Turkish Journal of Mathematics, (2017) 41:1687-1702.
[4] S. S. Sandhya, S. Somasundaram, and S. Kavitha "Stolarsky 3 Mean Labeling of Graphs" Journal of Applied Science and Computaions, Vol.5, Issue 9, pp. 59-66.
[5] Sree Vidya. M and Sandhya. S. S. "Degree Splitting of Stolarsky 3 Mean Labeling of Graphs" International Journal of Computer Science, ISSN 2348-6600, Volume 8, Issue 1, No 2, 2020, Page No: 2413 - 2420.
[6] Sree Vidya. M and Sandhya. S. S. "Decomposition of Stolarsky 3 Mean Labeling of Graphs" International Journal for Innovative Engineering Research, Volume 1, Issue 1, March, 2022, Page No: 08-12.

[^0]: ${ }^{1}$ Research Scholar, Sree Ayyappa College for Women, Chunkankadai
 ${ }^{2}$ Research Supervisor, Department of Mathematics, Sree Ayyappa College for Women, Chunkankadai. [Affiliated to Manonmaniam Sundaranar University, Abishekapatti - Tirunelveli - 627012, Tamilnadu, India] Email: witvidya@gmail.com \& sssandhya2009@gmail.com
 ${ }^{3}$ Received on June 9 th, 2022. Accepted on Sep 1st, 2022. Published on Nov 30th, 2022. doi: 10.23755/rm.v44i0.915. ISSN: 1592-7415. eISSN: 2282-8214. OThe Authors.This paper is published under the CC-BY licence agreement.

