Relationship Between Weight Function and 1 – Norm

M. Melna Frincy^{*} J. Robert Victor Edward[†]

Abstract

The δ function on a subset E of \mathbb{R} is the function defined by $\delta(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x \neq 0 \end{cases}$.

For $x = (x_1, x_2, ..., x_n) \in \mathbb{R}^n$, we define $\delta(x) = (\delta(x_1), \delta(x_2), ..., \delta(x_n))$. The Hamming weight w(x) of x is the number of non – zero coordinates of x, where $x \in \mathbb{R}^n$. From this one could see that $w(x) = ||\delta(x)||_1$, where $|| \quad ||_1$ is the 1 – norm of x given by $||x||_1 = \sum_{j=1}^n |x_j|$, where $= (x_1, x_2, ..., x_n)$. This gives a relationship between the weight function and the 1 – norm. In this paper we establish certain properties of the weight function using the properties of norms.

Keywords: mininorm, mininormed space, 1-norm, weight function.

2010 AMS subject classification: 90B06[‡]

^{*}Research Scholar, Department of Mathematics, Scott Christian College(Autonomous)

Nagercoil- 629003, TamilNadu, India. Affiliated to ManonmaniumSundaranar University, Tirunelveli – 627012, Tamilnadu, India.E- mail: melnabensigar84@gmail.com.

[†]Department of Mathematics, Scott Christian College(Autonomous)Nagercoil629003,TamilNadu,IndiaAffiliated to ManonmaniumSundaranar University, Tirunelveli – 627012, Tamilnadu, India.E- mail: jrvedward@gmail.com.

[‡]Received on June 24, 2022. Accepted on Aug 10th, 2022. Published on Nov 30th, 2022. doi: 10.23755/rm.v44i0.914. ISSN: 1592-7415. eISSN: 2282-8214. ©The Authors.This paper is published under the CC-BY licence agreement.

1. Introduction

Let $X = \mathbb{R}^n$, where \mathbb{R} is the set of real numbers. Then, X is a vector space over \mathbb{R} of dimension *n*. The Hamming weight function on X is the function $w_H : X \to \mathbb{R}$ given by $w_H(x) =$ number of non-zero co-ordinates of x, For $x = (x(1), x(2), ..., x(n)) \in \mathbb{R}^n$. Thus w_H satisfies the conditions:

 $w_{H}(x) \ge 0 \text{ for all } x \in \mathbb{R}^{n} \text{ and } w_{H}(x) = 0 \text{ if and only if } x = 0.(1)$ $w_{H}(\alpha x) = w_{H}(x) \text{ for all } x \in \mathbb{R}^{n} \text{ and } 0 \neq \alpha \in \mathbb{R}.$ (2) $w_{H}(x+y) \le w_{H}(x) + w_{H}(y) \text{ for all } x, y \in \mathbb{R}^{n}.(3)$

A norm on \mathbb{R}^n is a function $\| \|: X \to \mathbb{R}$ satisfying $\|x\| \ge 0$ for all $x \in \mathbb{R}^n$ and if and only if x = 0(4)

 $\|\alpha x\| = |\alpha| \|x\|$ for all $x \in X$ and $\alpha \in \mathbb{R}$. (5)

and $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{R}^{n}$.(6)

We see that w_H satisfies the condition of a norm except the condition (5). Instead, it satisfies (2). We may call such a function a mininorm. Let us formalize the definition.

Definition:1.1Let X be a vector space over $K = \mathbb{R}$ or \mathbb{C} . A mininorm on X is a function

 $p: X \to \mathbb{R}$ satisfying the following conditions:

 $p(x) \ge 0$ for all $x \in X$ and p(x) = 0 if and only if x = 0(7)

 $p(\alpha x) = p(x)$ for all $x \in X$ and $0 \neq \alpha \in K$. (8)

 $p(x + y) \le p(x) + p(y)$ for all $x, y \in X$. (9)

a vector space with a mininorm defined on it is called a mininormed spaces. It is clear that w_H is a mininorm on \mathbb{R}^n .

2. The weight function and the 1- norm

The 1-norm or $\| \|_1$ on \mathbb{R}^n is defined by

 $||x||_1 = \sum_{j=1}^n |x(j)|$, where $x = (x(1), x(2), \dots, x(n)).$ (10)

We cannot connect the weight function with the 1- norm using the δ - function.

The δ – function on \mathbb{R} is defined by $\delta(x) = \begin{cases} 0 & \text{if } x = 0 \\ 1 & \text{if } x \neq 0. \end{cases}$ (11)

The δ – function can be extended to \mathbb{R}^n in the following way:

 $\delta(x) = \left(\delta(x_1), \delta(x_2), \dots, \delta(x_n)\right), (12)$

where x = (x(1), x(2), ..., x(n)).

This δ – function satisfies the following [1] :

$$\begin{split} \delta(x) &\geq 0 \text{ for all } x \in \mathbb{R}^n \text{ and } \delta(x) = 0 \text{ if and only if } x = 0(13) \\ \delta(\alpha x) &= \delta(x) \text{ for all } x \in \mathbb{R}^n \text{ and } 0 \neq \alpha \in \mathbb{R} . (14) \\ \text{and} \quad \delta(x+y) &\leq \delta(x) + \delta(y) \text{ for all } x, y \in \mathbb{R}^n . (15) \\ \text{Hence the partial order relation } &\leq \text{ on } \mathbb{R}^n \text{ is defined as follows:} \\ \text{For } x = (x(1), x(2), \dots, x(n)) \text{ and } y = (y(1), y(2), \dots, y(n)) \text{ in } \mathbb{R}^n, \\ x \leq y \text{ if and only if } x(j) \leq y(j), j = 1, 2, \dots, n.(16) \\ \text{Now let } x = (x(1), x(2), \dots, x(n)) \in \mathbb{R}^n. \\ \text{Then, } \delta(x) = (\delta(x_1), \delta(x_2), \dots, \delta(x_n)) \\ \text{Now, } \delta(x_j) = \begin{cases} 0 \text{ if } x_j = 0 \\ 1 \text{ if } x_j \neq 0. \end{cases} \\ \text{Hence } \| \delta(x) \|_1 = \sum_{j=1}^n |\delta(x_{(j)})|^2 = \text{number of non- zero components of } x. \end{cases}$$

Thus, $\|\delta(x)\|_1 = w_H(x).(17)$

This gives the connection between the Hamming weight function and the 1- norm, via the function

 δ – function.

3.Topological Properties of the *s* – function

Proposition:3.1The δ – function on \mathbb{R}^n is bounded.

Proof: Let $x, \in \mathbb{R}^n$. $\| \delta(x) \|_1 = \| \delta(x_1), \delta(x_2), \dots, \delta(x_n) \|_1$ $= \sum_{j=1}^n |x(j)|$ $\leq n, \text{ since } |\delta(x_{(j)})| \leq 1 \text{ for all } j.$

Hence δ is bounded.

Proposition:3.2The δ – function on \mathbb{R}^n is not continuous.

Proof:First we show that W_H is not continuous,

Let $x, \in \mathbb{R}^n$. Then $\left\|\frac{1}{n}x\right\|_1 = \frac{1}{n} \|x\|_1 \to 0$ as $n \to \infty$. That is, $\frac{1}{n}x \to 0$ in \mathbb{R}^n with $\|x\|_1$. But $\left\| w_H\left(\frac{1}{n}x\right) \right\|_1 = \left\| w_H(x) \right\|$ for all n.

So, $w_H\left(\frac{1}{n} x\right) \not\rightarrow 0$.

Hence w_H is not continuous.

Now $w_H(x) = \| \delta(x) \|_1$ for all $x \in \mathbb{R}^n$.

Thus, $w_H = \| \|_1 \circ \delta$, where \circ denotes the composition of functions.

 $\| \|_1$ is continuous [3].

Suppose δ is continuous.

Hence w_H is continuous, since the composition of two continuous functions is

continuous. This is not possible. Hence **∂**is not continuous ■

Acknowledgements

The authors thank the referees for their valuable suggestions and comments.

References

[1] M. MelnaFrincy and J.R.V. Edward – Extension of the δ – function to \mathbb{R}^n . Turkish Online Journal of Qualitative Inquiry . Volume 12, Issue 6, June 2021: 714-718.

[2]Justesan and Hoholdt – A Course in Error Correcting Codes. Hindustan Bork Agency, New Delhi, 2004.

[3] E.Kreyszig – Introductory Functional Analysis with Applications. John Wiley & Sons, New York, 1978.

[4] B.V.Limaye – Functional Analysis, New Age International Publishers, New Delhi, 1996.

[5] G. F. Simmons – Introduction to Topology and Modern Analysis. Mc – Graw Hill, Tokyo, 1963.